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Climate change will push the weather experienced by people affected outside the bounds of
historic norms, resulting in unprecedented weather events. But people and firms should be able to
learn from their experience of unusual weather and adjust their expectations about the climate
distribution accordingly. The efficiency of this learning process gives an upper bound on the rate at
which adaptation can occur and is therefore important in determining the adjustment costs
associated with climate change. Learning about climate change requires people to infer the state of
a changing probability distribution (climate) given annual draws from that distribution (weather).
If the climate is stationary, it can be inferred from the distribution of historic weather observations,
but if it is changing, the inference problem is more challenging. This paper first develops different
learning models, including an efficient hierarchical Bayesian model in which the observer learns
whether the climate is changing and, if it is, the functional form that describes that change.
I contrast this with a less efficient but simpler learning model in which observers react to past
changes but are unable to anticipate future changes. I propose a general metric of learning costs
based on the average, discounted squared difference between beliefs and the true climate state and
use climate model output to calculate this metric for two emissions scenarios, finding substantial
relative differences between learning models and scenarios but small absolute values. Geographic
differences arise from spatial patterns of warming rates and natural weather variability (noise).
Finally, I present results from an experimental game simulating the adaptation decision, which
suggests that people are able to learn about a trending climate and respond proactively.

Keywords: Adaptation; learning; weather; climate; extremes; Bayesian learning.

1. Introduction

Much climate change adaptation is a private good and will therefore be undertaken by
individuals and firms acting in their own self-interest (Mendelsohn, 2000). However,
adapting to climate change is not straightforward because it requires people to learn
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about a changing climate and, in some cases, to anticipate future changes. The rate at
which people perceive and learn about a changing climate places an upper limit on the
rate of adaptation.

Learning about climate change is challenging because climate — the probability
distribution from which weather realizations are drawn — is not directly observed.
Instead, it must be inferred by agents based on the information available to them. In a
stationary climate, the parameters of the climate distribution can be reliably inferred
from historic weather observations. But if the climate is changing, then past obser-
vations are not necessarily informative about the current state of the probability
distribution over possible weather outcomes. It seems unlikely that climate models
will be able to provide the local-scale, specific, reliable, and trusted information
required for most private adaptation decisions. Instead, direct experience of weather
events is likely to be an important information source, with several studies sug-
gesting a link between experience of weather anomalies and stated belief in climate
change (Howe et al., 2014; McCright et al., 2014; Kaufmann et al., 2017). There-
fore, how well people learn from experience in nonstationary, stochastic environ-
ments has important implications for the rate of adaptation and the economic costs
associated with climate change.

The rate at which private adaptation occurs is in turn an important determinant of
adjustment costs and of the overall economic costs associated with climate change.
A change in climate has both equilibrium effects (differences in productivity after full
adjustment to the new climate) and adjustment costs (costs associated with being
imperfectly adjusted to the new climate). Adjustment costs arise because it takes time
to adopt the full set of possible adaptation options. This lag may be due to learning
rates, long turnover time of capital stock, or market failures such as a lack of infor-
mation about available adaptation options (Kelly et al., 2005). Several authors have
argued that, because climate change happens gradually, costs associated with the
turnover of capital stock are likely to be small (Mendelsohn et al., 1994; Kelly et al.,
2005). The rate of learning may therefore be a principal determinant of climate change
adjustment costs, which in turn have important implications for both mitigation and
adaptation policy (Cropper and Oates, 1992; Stern, 2006). The goal of this paper is to
begin to provide an estimate of the magnitude of global adjustment costs associated
with learning by combining learning models with climate model predictions and some
experimental evidence.

This study builds on previous work by Kelly, Kolstad, and Mitchell (KKM)
(Kelly et al., 2005), who first proposed using a Bayesian updating model to describe
how agents learn about climate change, given observations of weather in order to
quantify dynamic adjustment costs. They use a Bayesian updating model in which
the agent updates beliefs about a set of parameters describing the time evolution of
the mean state of the climate using sequential weather observations, starting with
priors informed by the IPCC. Using an empirical example from U.S. agriculture,
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KKM find that learning this way takes decades and imposes significant adjustment
costs.

This paper develops the ideas in KKM in two ways. First, it extends the Bayesian
learning model using a more flexible hierarchical model. This allows for the fact
that agents are unlikely to know a priori the particular functional form describing how
climate changes over time. Instead, they must use weather observations to jointly infer
whether the climate is changing, when it started changing, and the rate at which it is
changing. The particular hierarchical Bayesian model described here covers a broad
class of functional forms relevant to climate change in which the climate is initially
stationary and begins changing at a certain point in time. The agent integrates over all
possible functional forms in order to determine the current probability distribution over
weather outcomes. The KKM model is a particular case of this model in which the
agent places zero probability on the possibility that the climate is stationary and has
priors over the rate of change informed by the IPCC.

Secondly, this paper investigates the importance of how observers learn about
climate change for determining adjustment costs. Though Bayesian learning is ef-
ficient, it can be computationally burdensome. In reality, people may be updating
beliefs using less efficient but more straightforward heuristics (Simon, 1955;
Kahneman, 2003). In addition, both KKM and the hierarchical Bayesian model
presented in this paper model a process of proactive learning and adaptation —

agents are able to learn that the climate is changing and therefore anticipate and
prepare for future change. In reality, much adaptation may instead be reactive —

agents are able to learn and adjust to past changes, but not anticipate future changes.
Many formalized updating rules in institutions are reactive (for instance, zoning
rules based on the historic 50- or 100-year flood) and therefore will always be
suboptimal if the climate is not stationary. This paper compares the efficient, pro-
active hierarchical Bayesian learning model with a simpler but reactive rolling-mean
learning model in order to assess the importance of learning efficiency in deter-
mining adjustment costs. Finally, I present the results of a simple experiment
designed to distinguish between proactive and reactive learning models in a labo-
ratory context. This provides evidence that agents are able to learn about a changing
climate and to anticipate future changes and respond proactively in a manner con-
sistent with the Bayesian learning model.

This paper contributes to the existing literature in two ways. Topically, this study
contributes to a small but growing body of work on the rate of adaptation to climate
change. To date, these studies have empirically estimated adjustment rates in response
to historical climate or weather changes in particular locations and sectors. Hornbeck
(2012) looked at responses to productivity shocks associated with the Dust Bowl and
found that it took decades for farms to fully adjust. Taraz, (in press) uses decadal
changes in the Indian monsoon to show that farmers are able to adapt to changes on the
10–20-year timescale, although this adaptation is imperfect and significant residual
impacts from climate fluctuations remain. Burke and Emerick (2016) use the response
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of U.S. maize yields to multi-decadal trends in growing-season temperature to show
limited ability of farmers to adapt to changing climate conditions in the medium run.
Kala (2016) is perhaps most similar to this paper because it focusses on how farmers
use observations of the monsoon start date to update their beliefs about the underlying
climate distribution. She uses observations of planting decisions to test alternative
learning models, finding evidence for ambiguity aversion in the way farmers adjust
their beliefs in response to weather experiences. Although not explicitly discussing
adjustment costs, Kelly and Kolstad (1999) model Bayesian learning about the climate
(specifically about the climate sensitivity) using weather observations, finding that
learning is challenging and takes several decades. This paper extends this body of
work by describing a general theoretical framework for learning-related adjustment
costs and connecting a measure of these costs to global rates of climate change using
climate model output. It is therefore linking the rate of learning in individual regions
and sectors studied by previous papers, the global adjustment costs associated with
climate change, and the rate of climate change as determined by global mitigation
decisions.

Theoretically, this paper contributes to a literature on the economic consequences
of heuristic, imperfectly rational decision-making by economic agents. There is now
a large literature showing that agents do not always behave rationally and, in par-
ticular, that they show significant biases in processing of probabilistic information
(Tversky and Kahneman, 1974; Gilovich et al., 1985; Kahneman et al., 1991;
Kahneman, 2003). However, the aggregate economic implications of this suboptimal
decision-making are less well understood. Ackerlof and Yellen (1985) show that
though the envelope theorem means that in many cases the economic consequences
of small deviations from rationality may be small for individuals, the aggregate
effects on the economy could be an order of magnitude larger. Klumpp (2006)
compares decisions under an efficient Bayesian learning model and a heuristic linear
learning model in a simulated environment. He finds that although different learning
models result in different beliefs, if the decision space is discrete, these beliefs could
result in identical or near-identical decisions. More generally, the welfare con-
sequences of imperfect learning models will depend on both the difference in beliefs
resulting from alternative learning models and the nature of the decision space (in
this case adaptation options) available to agents. This paper addresses the former —
quantifying the expected difference in beliefs under different learning models and
climate scenarios.

The following section describes two models for how agents might infer the state of
the climate-given observations of weather. Section 3 describes how beliefs are con-
nected to adjustment costs and simulates beliefs and associated learning costs over the
globe for two different emission scenarios under alternative learning models. Section 4
presents results from a simple experiment designed to distinguish between learning
models in a laboratory setting. Section 5 concludes.

F. C. Moore
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2. Learning Models

Weather at time t is a draw from the climate distribution at time t. Here the climate
distribution is assumed to be normal, with a mean that may be changing over time1:

wt � N(�t,�
2
w):

The initial baseline climate is known:

w0 � N(�0,�
2
w):

At some point, r, the mean begins changing according to a functional form described
by a set of parameters, �. Therefore, at time t, the mean state of the climate is given by:

�t ¼
�0 for t � r,

f (¯, t) for t > r:

�
(1)

The natural variability of weather around the mean (�2
w) does not change, and I assume

that the learner knows both the baseline climate and that the natural weather variability
is not changing. The assumption of unchanging weather variability is consistent with
some recent evidence for global surface temperature, which suggests that once the
nonstationarity of the climate mean is accounted for, there is not strong evidence in
observations or models for increasing variability around the mean (Rhines and
Huybers, 2013; Thompson et al., 2015). This would not hold for precipitation, the
variability of which is projected to increase with climate change (Marvel and Bonfils,
2013). Relaxing the assumption of known and unchanging weather variability would
substantially increase the complexity of the learning models and is not attempted in
this paper. The function f is arbitrary and, for simplicity I assume a linear rate of
change so that f (¯, t) ¼ �0 þ �(t � r) for t > r, as in KKM.

The observer’s problem at time t is to infer, given a time series of weather obser-
vations up to that point, wt, the current distribution over possible weather outcomes
that they face. In other words, they are learning the predictive distribution of future
weather outcomes, conditional on the weather that has been observed to date
P(wtþ1jwt).

2 The learner sequentially updates their beliefs about the state of the cli-
mate, given each new weather observation and a particular learning model. The time
series describing the learner’s beliefs about the state (mean and variance) of the climate
system therefore depends on how the climate is changing, the particular weather
realizations that the learner observes from the changing climate, and the learning
model they are using to update beliefs. I examine two learning models in this paper.

1A normal distribution is reasonable distribution for annual temperatures in most locations, but may not be a good fit for
other climate variables such as rainfall, which tend to be more heavily skewed (Wilson and Toumi, 2005).
2The posterior predictive distribution, P(wtþ1jwt), in this paper, is defined only for the period immediately following t,
not for subsequent periods. Therefore, this framework is most directly relevant for adaptation decisions made on a year-
to-year basis (for instance, changing crop varieties or planting dates in agriculture), rather than capital investment
decisions. For large capital investments that last multiple years, agents will use their beliefs over multiple future years to
inform their decision (i.e., P(wtþ1wtþ2 . . .wtþnjwt), where n is the lifetime of the investment, something not directly
addressed in this paper.

Learning, Adaptation, and Weather
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2.1. Proactive learning: Hierarchical Bayesian model

Bayesian updating is an efficient way of incorporating new information into existing
beliefs. As long as the learner places a nonzero prior probability on the true model,
beliefs are guaranteed to eventually converge to the true state. Although standard
Bayesian models are well known, the hierarchical model described here allows for
the fact that observers may be unsure whether or not the climate is changing and, if it
is changing, the functional form that describes how it is changing. The Bayesian
learner in this model must infer whether or not the climate is changing, when it
started changing, and how quickly it is changing. In other words, he uses the ob-
served weather (wt) to update beliefs over the probability of both the change point (r)
and possible rates of change (�), integrating over this these posterior distributions in
order to give the posterior predictive distribution, P(wtþ1jwt) (Adams and MacKay,
2007).3

The probability of a weather event, wtþ1, given the history of weather experienced
to date, wt, is the probability of that event under each possible change-point, multiplied
by the probability of that change-point occurring:

P(wtþ1jwt) ¼
Xt

n¼1

P(wtþ1jrn,wt)*P(rnjwt): (2)

The second term in Eq. (2) is the posterior probability density over possible change-
points, which comes from Bayes law:

P(rnjwt) ¼
P(rn)*P(wtjrn)

P(wt)
:

P(rn) is the prior probability of a change-point occurring at point n whereas P(wtjrn) is
the likelihood of the data, conditional on a particular change-point. Obtaining this
likelihood requires integrating over all possible rates of change:

P(wtjrn) ¼
Z 1

�1
P(wtjrn,�)*P(�jrn)d�: (3)

P(�jrn) is the prior probability over the rate of change, conditional on a particular
change-point. I assume that this prior is normal, distributed N(��, r�

2
�, r). Given a

particular rate of change and change-point, the probability of the set of weather
observations is also normal N(�t, �

2
w), where �t is defined according to Eq. (1). Under

these distributional assumptions, Eq. (3) is a Gaussian integral with an exact solution
given in Appendix A.

The first term in Eq. (2), the probability of a particular weather observation given a
change-point and set of weather observations, requires integrating over all possible

3The model could, with some difficulty, be extended so that observers chose between a set of alternative functional
forms describing the rate of climate change (i.e., f1(�1, t), f2(�2, t) etc.).

F. C. Moore
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rates of change:

P(wtþ1jrn,wt) ¼
Z 1

�1
P(wtþ1jrn,�) *P(�jrn,wt)d�:

The second term in this integral is simply the posterior distribution over rates of change
and, given that both the prior and the likelihood are normally distributed, is also
normally distributed (SI Appendix). The first term is also normally distributed
(N(�tþ1�

2
w), with �tþ1 defined according to Eq. (1)), meaning that this is also a

Gaussian integral with an exact solution given in Appendix A. The posterior predictive
distribution P(wtþ1jwt), although not itself a standard distribution, can be sampled
using the two Gaussian integrals (additional details in Appendix A).

As with any Bayesian model, priors must be specified and form the free parameters
of the model. Priors are sequentially updated with each weather observation, so that the
posterior for one period becomes the prior for the subsequent period:

P(rn)tþ1 ¼
P(rn)t *P(wtjrn)

P(wt)
,

P(�jrn)tþ1 ¼
P(�jrn)t *P(wtj�, rn)

P(wtjrn)
,

where P(rn)t is the prior belief that a change-point occurred at time n after t obser-
vations and P(�jrn)t is the prior belief at period t over the rate of change, conditional
on a change-point occurring at time n.

2.2. Reactive learning: Rolling-mean model

Although Bayesian learning efficiently uses new information and is guaranteed to
converge to the true state, it is computationally very complex. It may be that people
will instead use a much simpler process to learn about climate change. In addition to
computational complexity, the Bayesian model assumes proactive learning — learners
are able to perceive that the climate is nonstationary and therefore to anticipate future
changes. In reality, it may be that people are able to react to climate change that has
happened, but not anticipate future changes. In particular, many institutional updating
rules relevant to climate change adaptation are reactive. For example, the yield basis
for crop insurance in the United States is typically calculated using a 10-year trailing
mean (Plastina and Edwards) or the definition of a floodplain or storm drain design
specifications might be based on historical 100-year flood events. While these rules do
result in gradual adaptation to past change, because they do not explicitly recognize the
nonstationary nature of climate change, they will never produce beliefs that converge
to the true climate and therefore will always result in suboptimal decisions under
climate change.

Here I use the rolling-mean process as an example of a computationally simple,
reactive learning process. The mean of the climate distribution at time t is estimated by

Learning, Adaptation, and Weather
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averaging a fixed number of past weather observations:

d�tþ1 ¼
Pt

t�(d�1) wt

d
,

where d is the window over which the learner considers observations in their estimate
of the next mean state d�tþ1. Given this belief about the mean climate state, the learner
assumes that weather observations are distributed about the mean with natural weather
variability �2w. So the predictive distribution for the rolling-mean learner is given by the
normal distribution P(wtþ1jwt) ¼ N(d�tþ1,�

2
w).

Figure 1 shows the behavior of these two learning models under a changing cli-
mate, as well as a reference case without learning. If there is no learning, then the
climate state quickly departs from the baseline, resulting in weather events that are
consistently different from expectations (gray lines, Fig. 1). If instead the agent is able
to use observations of weather to update their beliefs about the state of the climate,
then beliefs are able to more closely track the changing climate state (pink and blue
lines, Fig. 1).

In both learning models, beliefs lag the true state of the climate for some period
after the climate begins changing because learners have yet to acquire sufficient new
weather observations to conclude that a change has occurred. Over time, both types of
learners make new observations of weather and conclude that the climate is warming.
The Bayesian updater is able to learn about the rate at which the climate is changing

Figure 1. Performance of the two learning models presented in this paper and a reference case
with no learning under a stylized representation of a changing climate. Solid lines show beliefs
about the mean state of the climate and dashed lines show �2 standard deviations of the
perceived weather distribution based on 250 simulations

F. C. Moore
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and his beliefs therefore ultimately converge to the true state of the climate.4

The rolling-mean learner, in contrast, never learns about the rate of climate change.
Because of this, he is not able to anticipate future change and his beliefs never
converge to the true climate state.

3. Learning and Adjustment Costs

3.1. General framework

The fact that climate change is imperfectly observed by those affected results in a
difference between beliefs about the climate and its true state. The observer anticipates
and prepares for weather from the distribution P(wtþ1jwt) when, in fact, weather events
are drawn from the true climate distribution, N(�tþ1, �

2
w). The difference between these

distributions means that the observer experiences a set of weather events that is dif-
ferent from what they expect.

Adjustment costs arise if the observer would have done something different in
response to the actual climate distribution relative to the climate distribution they
expect. Following KKM, if observers face a profit function, y, that depends on weather
and a set of management parameters µ, they will choose µ to maximize profits,
conditional on beliefs about the climate distribution:

µ*(P(wtþ1jwt)) ¼ max
�

Z w

w
y(wtþ1, µ)*P(wtþ1jwt)dwtþ1,

where �w and w are plausible upper and lower bounds of the climate distribution.
Adjustment costs at time t (Ct) are the difference in expected profits given chosen
management options (µ*(P(wtþ1jwt))) and the options that would have been chosen
with full information about the climate state (µ*(N(�tþ1,�

2
w))), given that weather is

actually drawn from the true climate distribution N(�tþ1,�
2
w). They will differ

depending on the agent’s (a) production function and management options, on the
updating rule (u) used to produce the posterior predictive distribution, and on the
climate mean, variability, and weather draws in a particular location (l):

Ctula ¼
Z w

w
ya(wl, tþ1,µ

*
a(N(�l, tþ1, �

2
w, l))) *N(�l, tþ1,�

2
w, l)dwl, tþ1

�
Z w

w
ya(wl, tþ1, µ

*
a(Pu(wl, tþ1jwl, t))) *N(�l, tþ1,�

2
w, l)dwl, tþ1:

4The KKM model forms one part of the hierarchical Bayesian model — if agents knew for sure that climate was
changing, when it began changing, and held priors informed by the IPCC, results would be identical. The principal
contribution of the hierarchical Bayesian model is in modeling how agents learn the functional form describing how the
climate is changing. Once this is learned, beliefs under the two models will converge so that, in the long run, beliefs in
both the KKM model and the hierarchical Bayesian model will converge to the true climate state.

Learning, Adaptation, and Weather
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A necessary and sufficient condition for the existence of adjustment costs for
a particular type of agent in a particular place is that µ*a(Pu(wl, tþ1jwl, t)) 6¼
µ*a(N(�l, tþ1,�

2
w, l)). This requires both that beliefs about the climate state are inaccurate

(i.e., Pu(wl, tþ1jwl, t) 6¼ N(�l, tþ1, �
2
w, l)) and that optimal management choices are dif-

ferent under the expected and real climate distribution.
The present value of the full set of learning-related adjustment costs associated with

a particular updating rule under climate change requires summing adjustment costs
from all agents and locations and discounting back to the present:

Cu ¼
X1
t¼0

X
a

X
l

Ctula

(1þ r)tþ1
:

Precisely determining the global value of Cu requires knowing the production function
and adaptation options for each agent affected by climate change, something that is
currently unrealistic. Therefore, in order to evaluate the performance of different
updating rules, I abstract away from the production function and instead assume that
adjustment costs will be weakly increasing in the difference between the perceived and
true climate means, based on a loss function L. This gives a quasi-adjustment cost
metric (~C) that depends on the location and updating rule:

~Cul ¼
X1
t¼0

L(�l, tþ1 � E(Pu(wl, tþ1jwl, t))
(1þ r)tþ1

:

These quasi-adjustment costs are aggregated over regions using a population-weighted
averaging:

~Cu ¼
P

l Nl
P1

t¼0
L(�l, tþ1�E(Pu(wl, tþ1jwl, t)))

(1þr)tþ1P
l Nl

,

where Nl is the population in location l. The loss function L is arbitrary and for the
simulations in this paper I use a discounted root mean squared error measure over a
finite time horizon, so that ~Cu becomes:

~Cu ¼
P

l Nl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
t¼0

(�l, tþ1�E(Pu(wl, tþ1jwl, t)))2

(1þr)tþ1

q
P

l Nl
:

The benefits of this metric are that the units are the same as the relevant climate
variable and therefore interpretable in absolute, not just in relative, terms and that the
squared term accounts for the fact that larger deviations are likely to be relatively more
damaging than smaller ones. The interpretation of this metric is as the population
weighted-average difference between the perceived and the true climatological means,
adjusting for time preferences, and for the fact that larger differences are likely to be
more damaging than small differences.

F. C. Moore

1750010-10

C
lim

. C
ha

ng
e 

E
co

n.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 7

3.
18

9.
91

.1
98

 o
n 

09
/1

2/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



3.2. Learning costs for two emissions scenarios

To show how the quasi-adjustment cost metric ~Cu varies depending on the updating
model and future emissions scenarios, I calculate ~Cu over the period 2010–2050 under
both a business-as-usual scenario (RCP 8.5) and an aggressive mitigation scenario
(RCP 2.6), focussing on annual average temperatures as the weather metric of interest.
Surface temperature trends come from the CMIP5 model ensemble of 81 runs of 39
different climate models, available at 0.5� resolution. For each land grid cell, I calculate
the linear trend in temperature between 2010 and 2050 (Fig. A.1(a)). Natural inter-
annual variability of temperature comes from a 500-year (800AD–1300AD) pre-in-
dustrial control run of a single climate model (the Community Climate System
Model 4, Fig. A.1(b)). For computational reasons, I bin each grid cell into one of
16 groups based on the combination of climate trend and internal variability in that
gird cell. For each group, I simulate 100 possible weather realizations based on an
initialization of 10 years of a stationary climate followed by 40 years of linear change
at the rate estimated for that group from the CMIP5 ensemble mean.

Both learning processes include some free parameters. For the Bayesian learner,
priors over the rate of change (P(�jrn)) are centered fairly tightly around zero
(N(0, 0:001)). Priors over the location of the change-point (P(rn)) are uniform and are
updated sequentially with additional weather observations. The Bayesian also holds a
fixed belief that the probability of a change-point occurring at all is 20%, which is not
updated. The rolling-mean process has a single free parameter — the window over
which past observations are averaged to give the current estimate of the climate state.
This is set at 15 years in the simulations. The discount rate, r, is 2.5%.

Figure 2(a) gives the average, population-weighted learning-related adjustment
costs for the two learning models and the no-learning reference case for the period
2010–2050 for the two emissions scenarios. As expected, the learning costs are greater
than zero and decrease with the efficiency of the learning model. Costs in the no-
learning case are 2.9–3.1 times higher than the rolling-mean learner and 4.5–5.5 times
higher than the Bayesian learner. Figure 2(a) also suggests an interaction between the
rate of climate change and the benefits of learning more efficiently. Moving from
moderate rates of change under RCP 2.6 to faster climate change under RCP 8.5
increases learning costs uniformly, but this increase is less (84%) for the Bayesian
learner than for the rolling-mean learner (116%).

Note that the discount rate is likely to be important in determining the relative
importance of adjustment costs under different learning models, as well as the absolute
value of ~Cu. As can be seen in Fig. 1, learning models differ most in later time periods.
Initially, differences between beliefs and the true climate state are small (because the
climate has not yet changed significantly). The difference grows over time as the
climate continues changing, but there is not yet sufficient evidence, in the form of
altered weather conditions, for learners to adjust their beliefs. Only after new infor-
mation has been acquired, in the form of unexpected weather conditions, do learners
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begin adjusting their beliefs and start to diverge from nonlearners. The distinction
between the rolling-mean learner and the Bayesian learner is also sensitive to the
discount rate. The primary difference between these learning models is that the
Bayesian is able to eventually learn about the rate of climate change and therefore
anticipate future change whereas the rolling-mean learner permanently lags the true
climate state. Therefore, a lower (higher) discount rate will increase (decrease) the
difference in ~Cu between different learning models.

Figure 2(b) shows the spatial pattern of ~Cul for the two emissions scenarios and
three learning cases. Spatial differences are due largely to differences in rates of
warming (Fig. A.1(a)). The more rapid warming at higher latitudes and in continental
interiors leads to larger adjustment costs. Spatial differences in natural variability,

(a)

Figure 2. (a) Global, population-weighted average learning-related adjustment costs (~Cu) for
2010–2050 under two emissions scenarios and three learning models, using a discount rate of
2.5%. RCP 8.5 is a business-as-usual emissions scenario, whereas RCP 2.6 is an ambitious
mitigation scenario. (b) Learning-related adjustment costs (~Cu, Eq. (1)) for 2010–2050 for
two emissions scenarios and three learning models. Plotted is the average difference (in �C)
between expectations and the true mean climate state, discounted at a rate of 2.5%
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which is much higher in temperate compared with tropical regions (Fig. A.1(b)), also
play a role for the Bayesian learner as higher natural variability makes the signal of a
changing climate more difficult to identify and tends to increase adjustment costs.
Figure A.2 compares the population-weighted mean values of ~Cu for tropical and
temperate regions. Costs are lower for all cases in tropics compared with temperate
regions (Fig. A.2). This is due both to the somewhat slower rate of warming in the
tropics and to the much lower inter-annual temperature variability. Costs for the
nonlearner, which depend only on the rate of climate change, in tropical areas
are 14.5–23.1% lower than those in temperate regions. For the Bayesian learner,
costs depend both on the rate of climate change and on inter-annual variability

(b)

Fig. 2. (Continued )
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(noise), and the difference between temperate and tropical areas is twice as large
(40.5–42.6%).

One other notable feature of this simulation is the absolute values of learning-
related adjustment costs, which are remarkably small. The average discounted differ-
ence between beliefs and the true climate state for efficient Bayesian learners is less
than one-tenth of a degree and is only 0.16�C for the rolling-mean learner under the
business-as-usual scenario. Only nonlearners show what might be considered climat-
ically meaningful differences of 0.45�C under the business-as-usual case or 0.23�C in
the ambitious mitigation case. Whether or not these relatively small values result in
economically meaningful adjustment costs depends on the specific set of adaptation
strategies available to firms. Guo and Costello (2013) show that if adaptation tech-
nologies are discontinuous, then the value of adaptation is theoretically unbounded.
This means that even small discrepancies between beliefs and the true climate could, in
some circumstances, result in large adjustment costs. Hsiang (2016) in turn shows the
converse: that if adaptation technologies are continuous, the envelope theorem implies
that the effects of small differences in climate should be small. The small values found
in these simulations may, therefore, suggest that learning-related adjustment costs are
relatively small, although, as noted above, absolute values will be sensitive to the
choice of discount rate.

4. Distinguishing Between Learning Models in a Laboratory Environment

The previous section has shown that how people learn from observations in a sto-
chastic, nonstationary environment may be important for determining the adjustment
costs associated with climate change.

However, empirically distinguishing between learning models is challenging
because (1) in most areas the signal of anthropogenic climate change has yet to emerge
from the noise of inter-annual variability (Hawkins and Sutton, 2012; Mora et al.,
2013) and (2) beliefs about the climate state can typically not be observed directly. An
experimental setting, while abstracting away from some important aspects of the ad-
aptation decision, can be useful because it provides a controlled environment that can
be systematically manipulated in order to distinguish between learning models.

I use an online experimental game that simulates the decision to adapt to a changing
climate by presenting subjects with a choice between two hypothetical crop varieties.
Payoffs depend on the choice of crop and on the weather in a particular turn:

yt ¼ f (�*t ,wt),

where yt are the points in turn t, �
*
t 2 [A,B] is the subject’s ex-ante choice of Crop A or

Crop B in turn t, and wt is the random draw of weather for turn t. wt is drawn from a
normal distribution (“climate”), which is not observed by subjects and which changes
over the length of the game, though with a fixed variance:

wt � N(�t, �
2
w):
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The two payoff functions (f (�Awt)) and (f (�Bwt)) are both inverted quadratics, with the
optimal weather for Crop B higher than that for Crop A. This set-up means that the
subject faces the problem of choosing � so as to maximize the expected number of
points, conditional on subject’s beliefs about the state of the climate:

�*t ¼ max
�2[A,B]

Z w

w
f (�,wt) *P(wtjwt�1)dwt:

This means that observing the choice of crop (�*t ) over the course of the game allows
inferences to be made about the evolution of the posterior predictive distribution
(P(wtjwt�1)) and therefore what learning model is being used by the subjects.

I use two treatment groups to distinguish between a proactive learning model that
anticipates future changes (such as the Bayesian model presented in this paper) and a
reactive adaptation strategy that implicitly assumes that the climate is stationary (such
as the rolling-mean model). Both groups face the same unobserved change in prob-
abilities, an initial stationary baseline for 10 turns, followed by a linearly changing
mean.

�t ¼
�0 for t � 10,

�0 þ �(t � 10) for t > 10:

�

I manipulate the payoff functions between treatment groups so that the optimal ad-
aptation point varies. In both groups, payoff functions are such that the optimal choice
under the baseline climate (�0) is Crop A. The optimal adaptation point (t*) occurs
when: Z 1

�1
f (�A,wt) *N(�t, �

2)dwt ¼
Z 1

�1
f (�B,wt) *N(�t,�

2)dwt:

In the “Early” treatment group, payoff functions are such that t* ¼ 17 (i.e., 7 turns after
the “climate” starts changing) and in the “Late” treatment group t* ¼ 29.

A proactive learner is able to learn about a trend in the stochastic environment and
so will be better able to anticipate the later change-point because they have had time to
learn about the rate of change. This means that this kind of learner should adapt closer
to the optimal adaptation point in the “Late” treatment group, relative to the “Early”
treatment group. The beliefs of a learner using a reactive updating process such as the
rolling mean do not converge to the true climate state. This means that this type of
learner should show a similar delay in adapting between the two treatment groups. This
difference is shown schematically in Fig. A.3. Figure A.4 shows the results of 100
simulations of the experiment under the hierarchical Bayesian model and the rolling-
mean model, using parameters from the two experimental treatment groups. This
shows large differences in adaptation time for the trend-learner, but no differences
between treatment groups for the rolling-mean learner. A trend-learning model and the
rolling-mean model can, therefore, be distinguished by testing whether the delay
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between the optimal adaptation point (t*) and the observed adaptation point (tobs) is
significantly less in the “Late” treatment group compared with the “Early” treatment
group:

H0: (tobs � t*)Early ¼ (tobs � t*)Late,

H1: (tobs � t*)Early > (tobs � t*)Late:

A rejection of H0 indicates that subjects faced with a gradually changing stochastic
environment are able to learn about a trend in the environment and therefore to respond
proactively to climate change.

The experiment was implemented using Amazon Mechanical Turk (AMT), with
subjects drawn from the United States. Subjects were paid $0.50 to participate, with
much larger bonus amounts (of up to $2.00) tied to performance in the game. All
subjects played to completion, all took less than 10min to complete the game, and
each AMT worker only participated in the experiment once. Subjects were given an
initial set of instructions on how to complete the game, including a histogram showing
the baseline “climate” conditions. This was followed by 10 turns of the baseline
conditions, followed by 40 turns of gradually changing conditions. The “Early”
treatment group had 97 subjects and the “Late” group had 48. The observed adaptation
point (tobs) was determined by fitting a logistic curve to the fraction of participants
choosing Crop B over the course of the game and observing the point at which this
curve crossed 50%; 95% confidence intervals for tobs � t* are derived from uncertainty
in the parameters of these logistic curves.

Figure 3 shows the results of this experiment. In both treatment groups, subjects
were more likely to choose Crop A at the beginning of the experiment and Crop B at
the end of the experiment. This indicates that expectations about the “weather” dis-
tribution were being updated and therefore provides evidence against the no-learning
model. Although subjects adapted in the game, indicating that learning was happening,
adaptation was delayed in both treatment groups. The delay (tobs � t*) was 12:1� 2:4
turns in the early treatment group and 6:6� 1:9 turns in the late treatment group. A
one-tailed hypothesis test indicates that the adaptation delay for the late treatment
group is significantly shorter than that for the early treatment group (p ¼ 0:035).5 This
means that the null hypothesis can be rejected and that the results of this experiment
provide some evidence that people are able to learn about a trend and anticipate future
changes.

5The relevant hypotheses derived from the proactive versus reactive learning model, as well as the results of simulations
shown in Fig. A.4, indicate that a one-tailed hypothesis test is appropriate here. However, previous papers that show
comparable performance of simple learning rules relative to optimal strategies in some contexts (Klumpp, 2006) mean
that it is possible that the hypothesis is mis-specified and a two-tailed test might be appropriate instead. A two-tailed test
that the difference in delay is different between the early and late treatment groups rejects the null at the 10% level, but
not at the 5% level (p ¼ 0:07).
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Because of the simplicity of the experimental set up, and the number of (poten-
tially individual-specific) free parameters involved in fully specifying a learning
model, this experiment is only able to distinguish between broad classes of models.
Specifically, these results appear to rule out models in which subjects either do not
react at all to a changing environment (i.e., no learning) or respond reactively to past
changes but do not anticipate future changes (e.g., the rolling-mean model). The
results suggest that subjects are able to recognize a trending climate and therefore
respond proactively. This is consistent with the Bayesian model presented in this
paper, but a number of other trend-learning models would also be consistent with the
observed behavior.

5. Discussion and Conclusion

As the climatological distribution over weather shocks is not directly observed and
because climate models can give us only a rough sense of how it is changing at a local
scale, it seems likely that a primary source of information will be observations of
weather, particularly unexpected (extreme) weather events. How rapidly people and
firms adjust beliefs about the state of the climate limits the rate at which adaptation can
occur and therefore is a first-order determinant of the adjustment costs associated with

Figure 3. Difference between the observed adaptation point and the optimum adaptation
point for two treatment groups in the experiment. Error bars show the 95% confidence
interval
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climate change.6 Therefore, the accuracy and efficiency with which people use their
own observations of weather to learn about a changing climate distribution will be an
important determinant of total climate change damages, with significant implications
for both adaptation and mitigation policy (Cropper and Oates, 1992; Stern, 2006).

This raises the question of how people update beliefs about an unobserved, non-
stationary state variable, about which they receive only noisy information. This paper
has presented a Bayesian model of learning in which observers learn both that climate
change is happening and the rate at which it is changing, a more flexible formulation
than the original learning model proposed in KKM. Comparing this with less com-
putationally intensive learning model using parameters derived from climate models, I
find substantial relative differences in the learning-related adjustment costs between
learning models, although the absolute values of differences between the perceived and
true climate distributions are small.

Whether these differences between the perceived and true climate distribution result
in economically significant costs depends on the adaptation technologies available in
individual regions and sectors. People prepare for the distribution of weather risks they
believe they face, but if their beliefs are wrong, then they will over- or under-prepare
for different weather events, both of which are costly relative to a situation with full
information. If adaptation is discontinuous, then costs associated with imperfect ad-
justment are theoretically unbounded and could be substantial (Guo and Costello,
2013). However, if the difference between beliefs is small enough and the set of
adaptation options discrete, then imperfect learning may result in no difference in
decisions and therefore no welfare losses (Klumpp, 2006). In other cases in which
adaptations are continuous, Hsiang (2016) points out that the envelope theorem implies
that adjustment costs are unlikely to be economically meaningful, at least at the
individual level.

The simple experimental result presented in this paper suggests that individuals may
be able to learn about a gradually changing environment and respond proactively rather
than simply react to changes that have already occurred. If people are able to anticipate
future climate change and plan adaptations accordingly, then in some cases adjustment
costs may be on the lower end of the possible range. However, many laws and
regulations relevant to climate change adaptation implicitly incorporate a reactive,
rolling-mean learning model. For example, the yield basis for crop insurance in the
United States is typically calculated using a 10-year trailing mean (Plastina and
Edwards), or the definition of a floodplain for zoning purposes might be based on the

6It may be that this learning process is also important in determining public support for mitigation policies, although the
direction of this relationship is ambiguous. If observers realize that their expectations have adjusted, and attribute this
change to anthropogenic climate change, this learning process may increase support for mitigation. If this learning
process is unconscious though, so that previously unusual or extreme weather comes to be seen as normal, it may be
that rapid adjustment will decrease support for mitigation. The question of how people attribute observed trends is
beyond the scope of this paper. It is not necessary that trends be attributed to anthropogenic climate change for
adaptation to occur, but it is an important question for mitigation.
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historical 50- or 100-year flood events. Under a changing climate, measures of weather
risk based on these metrics will always be biased. Therefore, this work points to the
importance of having laws and institutions that learn about and anticipate a changing
climate in order to promote efficient adaptation and minimize adjustment costs.

A range of recent works in the climate sciences has begun connecting the local
weather events that people actually experience with the more abstract and intangible
concept of global climate change. Relevant examples include literature on the rate at
which the climate change signal emerges from natural variability (Diffenbaugh and
Scherer, 2011; Hawkins and Sutton, 2012; Mora et al., 2013), the attribution of local
extremes to global climate change (Fischer and Knutti, 2015; Horton et al., 2015), as
well as work more explicitly relating people’s experience of extremes with perception
of global climate change (Ricke and Caldeira, 2014; Lehner and Stocker, 2015). In
understanding what experience of weather actually means for people affected, it is
important to remember that people can, and almost certainly will, adjust their
expectations of and preparations for weather as the climate changes: what once seemed
unusual may eventually be considered normal, and once normal weather may even-
tually become extreme. Although some kind of learning will almost certainly take
place, the exact manner of learning and the associated rate of adaptation are still poorly
understood. This paper then points to the importance of future theoretical and, in
particular, empirical extensions in order to understand the formation of expectations in
a changing climate and to better constrain adaptation costs.
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