Title
Evaluation of greenhouse gas emissions from HOG manure application in a Canadian cow-calf production system using whole-farm models

Permalink
https://escholarship.org/uc/item/0rq8s05f

Journal
Animal Production Science, 56(10)

ISSN
1836-0939

Authors
Alemu, AW
Ominsinski, KH
Tenuta, M
et al.

Publication Date
2016

DOI
10.1071/AN14994

Peer reviewed
Evaluation of greenhouse gas emissions from hog manure application in a Canadian cow–calf production system using whole-farm models

Aklilu W. Alemu\(^{A,D}\), Kim H. Ominski\(^{A}\), Mario Tenuta\(^{B}\), Brian D. Amiro\(^{B}\) and Ermias Kebreab\(^{C}\)

\(^{A}\)Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
\(^{B}\)Department of Soil Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
\(^{C}\)Department of Animal Science, University of California, Davis, CA, 95616, USA.
\(^{D}\)Corresponding author. Email: akliluwake@yahoo.com

Abstract. The development of beneficial management practices is a key strategy to reduce greenhouse gas (GHG) emissions from animal agriculture. The objective of the present study was to evaluate the impact of time and amount of hog manure application on farm productivity and GHG emissions from a cow–calf production system using two whole-farm models. Detailed model inputs (climate, soil and manure properties, farm operation data) were collected from a 3-year field study that evaluated the following three treatments: no application of hog manure on grassland (baseline); a single application of hog manure on grassland in spring (single); and two applications of hog manure as fall and spring (split). All three treatments were simulated in a representative cow–calf production system at the farm-gate using the following whole-farm models: a Coupled Components Model (CCM) that used existing farm component models and the Integrated Farm System Model (IFSM). Annual GHG intensities for the baseline scenario were 17.7 kg CO\(_2\)-eq/kg liveweight for CCM and 18.1 kg CO\(_2\)-eq/kg liveweight for IFSM. Of the total farm GHG emissions, 73–77% were from enteric methane production. The application of hog manure on grassland showed a mean emission increase of 7.8 and 8.4 kg CO\(_2\)-eq/kg liveweight above the baseline for the single and split scenarios, respectively. For the manured scenarios, farm GHG emissions were mainly from enteric methane (47–54%) and soil nitrous oxide (33–41%). Emission estimates from the different GHG sources in the farm varied between models for the single and split application scenarios. Although farm productivity was 3–4% higher in the split than in single application (0.141 t liveweight/ha), the environmental advantage of applying manure in a single or split application was not consistent between models for farm emission intensity. Further component and whole-farm assessments are required to fully understand the impact of timing and the amount of livestock manure application on GHG emissions from beef production systems.

Additional keywords: beef cattle, emissions intensity, single application, split application.

Received 8 December 2014, accepted 24 February 2015, published online 27 April 2015

Introduction

The environmental impact of animal agriculture has received increasing attention and, therefore, quantification and mitigation of greenhouse gas (GHG) emissions from the sector has been a focal point in agricultural research (O’Mara 2011). Globally, agriculture is estimated to contribute more than 10% of anthropogenic GHG emissions, with livestock accounting for about one-third of the methane (CH\(_4\)) emissions (Smith \textit{et al.} 2007; O’Mara 2011). In 2012, the Canadian agricultural sector contributed ~8% of the total national GHG emissions, of which 57% was from the livestock sector where beef cattle were the main contributors (Environment Canada 2014).

Given the complex nature of livestock production systems, quantification of GHG emissions from the sector and evaluation of management practices to minimise GHG emissions at the farm scale have been challenging (Schils \textit{et al.} 2005). As such, in an effort to quantify emissions and assess the whole-farm impact of management practices, various component-based (e.g. Dijkstra \textit{et al.} 1992; Li \textit{et al.} 1992; Kebreab \textit{et al.} 2004) as well as integrated whole-farm models (e.g. Little \textit{et al.} 2008; White \textit{et al.} 2010; Rotz \textit{et al.} 2011a) have been developed and implemented. Evaluation of management practices that reduce GHG emissions must be conducted at the farm scale using a whole-farm approach because implementation may yield synergistic and/or tradeoff effects among farm components, which impacts net farm GHG emissions (Janzen \textit{et al.} 2006; Gerber \textit{et al.} 2013). For example, a whole-farm simulation study by Hünerberg \textit{et al.} (2014) on an average Canadian beef farm indicated that including high-fat dried distiller grain in the diet of feedlot cattle reduced enteric CH\(_4\) emissions but increased nitrogen (N) excretion, which increased nitrous oxide (N\(_2\)O) emissions. As such, the intensity of GHG emissions increased by 6–9% on farms that fed dried distiller grain compared with the control average practice. Generally, whole-farm modelling provides a tool to inform policy decisions with respect
to estimated effectiveness of GHG mitigation practices associated with changes in farm management practices.

Application of manure as a substitute for synthetic fertiliser can potentially increase pasture productivity and reduce the carbon footprint of livestock products (Petersen et al. 2007; Hermansen and Kristensen 2011). For a cow–calf production system in a nutrient-poor landscape such as the Canadian prairie, where the largest proportion of the grazing land is unimproved (native) pasture (McCaughey et al. 1999; Manitoba Agricultural Review 2001), addition of external sources of manure to grassland is essential to maintain and improve productivity (Wilson et al. 2010; Bork and Blonski 2012). The use of animal manure as a source of N also provides a means to effectively utilise manure from intensive livestock operations and is a common practice in several parts of the world, including south-eastern Manitoba, Canada (Chadwick et al. 2000; Petersen et al. 2007; Wilson et al. 2010; Bork and Blonski 2012). Furthermore, application of animal manure reduces the use of synthetic fertilisers and, therefore, the GHG emissions associated with production and use (Bouwman et al. 2010). However, application of manure to grassland has a potential to increase soil N₂O emissions (Ellis et al. 1998; Chadwick et al. 2000; Rochette et al. 2008; Tenuta et al. 2010). Therefore, the challenge is to identify management practices, such as amount and time of application, that serve to improve productivity while decreasing gaseous emissions. In the Canadian Prairies, it is a common practice to apply manure on grassland once during the growing season, either in the spring, summer or fall; however, there is a lack of knowledge regarding its impact on net farm GHG emissions. Therefore, the objective of the present study was to evaluate the impact of timing and amount of hog manure application on farm productivity and total farm GHG emissions from a cow–calf production system by using whole-farm models.

Materials and methods

Data sources

Data for model inputs came from a 3-year field experiment in which manure was applied to grassland. Experiments were conducted for 3 years from 2004 to 2006 on the University of Manitoba La Broquerie Pasture and Manure Management Project site, La Broquerie, Manitoba, Canada (49°31′N, 96°30′W). The experimental site was divided into 12 paddocks, with hog manure applied to eight paddocks, as follows: four paddocks, as a split application in fall and spring, with 50% of the manure (70 kg available N/ha) applied in fall and the remaining 50% in spring (split); four paddocks, as a single application in spring (142 kg available N/ha, single); and the remaining four paddocks that did not receive hog manure served as a control (baseline). The paddocks were further subdivided such that they were used for either grazing or hay production (Wilson et al. 2010). The applied hog manure was sourced from the primary cell of a three-cell earthen manure storage at an adjacent commercial hog finishing operation. Manure was applied at a rate based on plant-available N content in the manure, assuming that 25% of manure ammonia and ammonium were lost by volatilisation on surface application forage and 25% of organic N was available for plant use in the year of application (Tri-Provincial Manure Application and Use Guidelines 2006). Average total N applied over the 3-year period was 252 and 236 kg/ha for the single and split applications, respectively (Table 1). Hog manure was surface-applied using a splash-plate system without incorporation.

The quantity and composition of the applied hog manure, pasture and hay yield, and nutrient composition were measured throughout the experimental periods (Tables 1, 2). Soil properties were measured before the start of the experiment (Fall 2003) and throughout the trial in the fall of 2004, 2005 and 2006 before manure application (Table 1). Manure samples were collected and sent to a commercial laboratory for detailed analysis (Wilson et al. 2011). Rainfall at the site was monitored using a tipping bucket rain gauge and the normal annual precipitation was 541 mm. The growing-season total precipitation (April to October) during 2004, 2005 and 2006 was 611, 574 and 283 mm, respectively.

On the basis of the detailed information collected from the experimental site, the three management scenarios, namely (1) zero application of hog manure on grassland as baseline, (2) single full application of hog manure on grassland in spring and (iii) split application of hog manure on grassland in fall and spring, were used to simulate a cow–calf production system using whole-farm models to evaluate net GHG emissions associated with time and amount of manure application.

Description of the simulated cow–calf production system

The simulated system consisted of a cow–calf operation that maintained breeding animals, a backgrounding operation that raised weaned calves in preparation for finishing in a feedlot, as well as annual crop and forage production. The cow–calf production system was typical of the area and located in proximity to hog production facilities that provided hog manure to the land to enrich the nutrient content of the soil. The annual production cycle consisted of three major production periods, which began in late October when the animals were managed in confinement (Table 2). During the first period, 1 November to end of February, the operation consisted of 150 cows, 24 replacement heifers, seven bulls and 104 backgrounded animals. Animals were confined in a seasonal feeding area including pens and drylots and fed rations formulated on the basis of grass hay supplemented with barley grain and soybean meal. Beef cows were assumed to be in the third trimester of pregnancy. At the beginning of Period 1, culled cows were replaced by heifers from the previous year. Average cow-culling and mortality rate were 0.15 and 0.0125, respectively (Waldner et al. 2009). Replacement heifers (average daily gain (ADG) = 0.68 kg/day) were bred and calved at 15 and 24 months of age, respectively (Alemu et al. 2011). During the second period, 1 March to end of April, animals were also managed in confinement. Calves were born in late winter–early spring, with an average bodyweight (BW) of 44 kg. The gender ratio of calves was assumed to be 1:1 (MacNeil et al. 1994). At the age of weaning (7 months, average BW = 190 kg), calves were categorised as replacement heifers (24) and/or backgrounded animals (104). Backgrounded animals were fed a high forage diet containing 70–75% grass hay (ADG = 1.2 kg/day, Alemu et al. 2011) and shipped to market at the end of March (average BW = 433 kg for steers and 423 kg for heifers). Solid manure produced during Periods 1 and 2 was managed using a deep-bedding system, with barley straw as the bedding material,
Table 1. Average climate, soil and manure characteristics measured at the experimental site over 3 years (2004–2006) for the baseline and manured (single and split application of hog manure) treatments (mean ± s.e.)

Baseline, no application of hog manure on forage land; Single, application of hog manure in spring (100% spring application); Split, application of hog manure on forage land in fall and spring (50% of the manure is applied in fall and 50% in spring)

<table>
<thead>
<tr>
<th>Item</th>
<th>Baseline</th>
<th>Single</th>
<th>Split</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average daily solar radiation (MJ/m²)</td>
<td>13.53</td>
<td>13.53</td>
<td>13.53</td>
</tr>
<tr>
<td>Total precipitation from April to October (mm)</td>
<td>489.33</td>
<td>489.33</td>
<td>489.33</td>
</tr>
<tr>
<td>Nitrogen in precipitation (mg/L)</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>Soil characteristics (0–30 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texture</td>
<td>Loamy sand</td>
<td>Loamy sand</td>
<td>Loamy sand</td>
</tr>
<tr>
<td>Type</td>
<td>Gleyed dark gray Chernozem</td>
<td>Gleyed dark gray Chernozem</td>
<td>Gleyed dark gray Chernozem</td>
</tr>
<tr>
<td>pH</td>
<td>7.6 ± 0.1</td>
<td>7.5 ± 0.1</td>
<td>7.5 ± 0.1</td>
</tr>
<tr>
<td>Field capacity (water filled pore space)</td>
<td>0.58</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Total organic C (g C/kg)</td>
<td>18.7 ± 1.4</td>
<td>18.2 ± 1.2</td>
<td>18.3 ± 1.5</td>
</tr>
<tr>
<td>Total N (g N/kg)</td>
<td>1.5 ± 0.1</td>
<td>1.5 ± 0.1</td>
<td>1.4 ± 0.1</td>
</tr>
<tr>
<td>NO₃⁻ concentration (mg N/kg)</td>
<td>3.5 ± 1.2</td>
<td>4.5 ± 1.4</td>
<td>3.1 ± 0.8</td>
</tr>
<tr>
<td>NH₄⁺ concentration (mg N/kg)</td>
<td>2.7 ± 0.2</td>
<td>3.1 ± 0.4</td>
<td>3.2 ± 0.3</td>
</tr>
<tr>
<td>Olsen-P (mg/kg)</td>
<td>12.1 ± 4.0</td>
<td>30.4 ± 8.4</td>
<td>27.6 ± 6.9</td>
</tr>
<tr>
<td>K⁺ (mg/kg)</td>
<td>84.3 ± 19.2</td>
<td>131.7 ± 41.4</td>
<td>125.1 ± 32.4</td>
</tr>
<tr>
<td>Land topography</td>
<td>Nearly level (<2%)</td>
<td>Nearly level (<2%)</td>
<td>Nearly level (<2%)</td>
</tr>
<tr>
<td>Imported hog manure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM (%)</td>
<td>–</td>
<td>8.8 ± 1.9</td>
<td>6.0 ± 1.3</td>
</tr>
<tr>
<td>pH</td>
<td>–</td>
<td>7.0 ± 0.2</td>
<td>7.2 ± 0.1</td>
</tr>
<tr>
<td>C:N ratio</td>
<td>–</td>
<td>7.0 ± 0.2</td>
<td>7.2 ± 0.1</td>
</tr>
<tr>
<td>NH₄⁺ (g N/L)</td>
<td>–</td>
<td>3.6 ± 0.2</td>
<td>3.4 ± 0.2</td>
</tr>
<tr>
<td>NO₃⁻ (g N/L)</td>
<td>–</td>
<td>0.002 ± 0.005</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>Organic N, % total N</td>
<td>–</td>
<td>36.8 ± 3.1</td>
<td>27.3 ± 1.9</td>
</tr>
<tr>
<td>Manure nutrient application rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application (’000 L/ha)</td>
<td>–</td>
<td>49.2 ± 8.0</td>
<td>48.7 ± 4.3</td>
</tr>
<tr>
<td>Total N (kg/ha)</td>
<td>–</td>
<td>252.0 ± 27.8</td>
<td>235.8 ± 12.2</td>
</tr>
<tr>
<td>Organic N (kg/ha)</td>
<td>–</td>
<td>95.0 ± 40.1</td>
<td>39.0 ± 30.1</td>
</tr>
<tr>
<td>Ammonium-N (kg/ha)</td>
<td>–</td>
<td>120.0 ± 11.0</td>
<td>126.4 ± 4.2</td>
</tr>
<tr>
<td>Total P (kg/ha)</td>
<td>–</td>
<td>62.4 ± 3.3</td>
<td>44.0 ± 7.4</td>
</tr>
</tbody>
</table>

A Measured at the experimental site from 2005 to 2010.
B Rainfall at the site was monitored using a tipping bucket rain gauge. The total precipitation for the growing season (April–October) was 611, 574, 283 mm for the 2004, 2005 and 2006 growing year, respectively.
C Nitrogen in precipitation was obtained from Environment Canada (2012).
D Measured over 3 years (2004–2006), textural class was according to USDA classification. Information regarding soil characteristics was obtained from Tenuta et al. (2010), Wilson et al. (2011) and Coppi (2012). Soil characteristics for the 30–120 cm were reported in Wilson et al. (2011) and Coppi (2012).
E Average values for the composition and application rates of the imported hog manure applied in spring and fall (2003–2006) for the manured (split and single) treatments were obtained from Wilson et al. (2010, 2011) and Tenuta et al. (2010).
F The average (2004–2006) applied total N for the split and single hog manure applications were 240 and 252 kg/ha, respectively.

1.81 kg/animal unit.day, where one animal unit is equivalent to the weight of a mature cow (Manitoba Agriculture Food and Rural Development 2013). Measured soil parameters of the baseline scenario were used as model inputs to simulate barley production. On-farm produced solid cattle manure and synthetic urea N were applied in spring to the barley field on the basis of the recommendations in Manitoba (Tri-Provincial Manure Application and Use Guidelines 2006). During the third period, 1 May to 31 October, animals (cows, suckling calves, replacement heifers and bulls) were grazed on pasture continuously at a stocking rate of 0.56, 1.14 and 1.26 animal unit month per hectare for the control, single and split management scenarios, respectively. An average stocking rate of 0.59 animal unit month per hectare has been reported as an ecologically sustainable rate for mixed grass (wheat, needle and thread) native prairie pasture (Adams et al. 2013). Land area required for forage (pasture, hay) and barley grain production to support the nutritional needs of the animals was calculated on the basis of the total farm annual feed requirement, land productivity and losses related to harvest, storage and feeding (Table 3).

System boundary

The system boundary was defined by the GHG emissions associated with the simulated cow–calf production from ‘cradle to farm-gate’ (Fig. 1). The study used an International Organisation for Standardisation (ISO) partial lifecycle
Table 2. Characteristics of beef cattle populations in the simulated cow–calf production system for the individual periods within the annual production cycle

Cattle feed requirement and diets were formulated using CowBytes (Alberta Agriculture Food and Rural Development 2003). ADG, average daily gain; BW, bodyweight; DMI, dry matter intake

<table>
<thead>
<tr>
<th>Animals</th>
<th>Period 1 (1 November – 29 February)</th>
<th>Period 2 (1 March – 30 April)</th>
<th>Period 3 (1 May – 31 October)</th>
<th>Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. ADG (kg/day)</td>
<td>DMI (kg/day)</td>
<td>BW (kg)</td>
<td>No. ADG (kg/day)</td>
</tr>
<tr>
<td>Cows</td>
<td>150</td>
<td>0</td>
<td>11.6</td>
<td>588</td>
</tr>
<tr>
<td>Suckling calves</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Replacement heifers</td>
<td>24</td>
<td>0.68</td>
<td>8.0</td>
<td>351</td>
</tr>
<tr>
<td>Bulls</td>
<td>7</td>
<td>1.28</td>
<td>12.9</td>
<td>579</td>
</tr>
<tr>
<td>Backgrounded steers</td>
<td>64</td>
<td>1.20</td>
<td>10.4</td>
<td>383</td>
</tr>
<tr>
<td>Backgrounded heifers</td>
<td>40</td>
<td>1.20</td>
<td>9.2</td>
<td>366</td>
</tr>
</tbody>
</table>

A Average calving date was assumed as 15 March.

B Approximately 75% grass hay, 15% barley grain and 10% soybean meal during Periods 1 and 2 as well as 90% pasture and 10% barley grain during Period 3 for the baseline scenario; 80% grass hay and 20% barley grain during Periods 1 and 2 as well as 100% pasture during Period 3 for the split and single scenarios.
methodology (ISO 2006a, 2006b). The GHG emissions included were (1) direct emissions of CH\(_4\) from enteric fermentation and manure, and N\(_2\)O from soil and manure, (2) indirect emissions of N\(_2\)O from N leaching, runoff and volatilisation, and (3) carbon dioxide (CO\(_2\)) emissions from primary (on-farm energy use) and secondary (production and transportation of farm inputs) sources (Fig. 1). On-farm energy use included diesel fuel for farm operations and electricity for housing and crop processing. Farm inputs included hog manure, soybean meal, herbicide and commercial urea-N fertiliser. GHG global-warming potentials for a 100-year time horizon were expressed as CO\(_2\) equivalent units (CO\(_2\)-eq), where: CO\(_2\) = 1, N\(_2\)O = 265 and CH\(_4\) = 28 on a mass basis, without including climate-carbon feedbacks (Myhre et al. 2013). Total GHG emission of the cow–calf production system was the sum of all GHG emissions converted to CO\(_2\)-eq units.

Table 3. Total land required for annual production cycle and expected yield, losses and nutrient composition of forage and barley grain used in the whole-farm analysis

Yield and composition of grass hay and pasture were obtained from the field experiment conducted between 2003 and 2006 (Wilson et al. 2010), barley grain yield for La Broquerie area was obtained from Manitoba Management Plus Program (MMPP 2012) and barley straw DM (89%) and straw crude protein (38 g/kg) were obtained from Narasimhalu et al. (1998). Harvest and storage loss for grass hay was based on Rotz (2003). Feed utilisation loss (trampling and wastage for pasture land) was according to Adams et al. (2013). Baseline, no application of hog manure on forage land; Single, application of hog manure in spring (100% spring application); Split, application of hog manure on forage land in fall and spring (50% of the manure is applied in fall and 50% in spring). Y, yes; N, no

Fig. 1. System boundaries and processes of a Western Canadian cow-calf backgrounding production system from ‘cradle to farm-gate’.

Note: Nitrogen applied on the barley field was from solid on-farm produced manure as well as synthetic urea nitrogen.
Functional unit and allocation

The functional unit is the measure of the performance of the production system in which all inputs and outputs are related (ISO 2006), and should be consistent to compare beef-production systems (Crosson et al. 2011). In our study, 1 kg of liveweight at the farm-gate was used as the functional unit (Fig. 1). Total liveweight at the farm-gate was calculated from the average weight of backgrounded steers and heifers as well as culled cows sold from the farm. Emissions were also expressed per unit land (t liveweight/ha) to consider the whole system as an integrated production unit. These functional units have been implemented in several previous studies (e.g. Phetteplace et al. 2001; Casey and Holden 2006a, 2006b; Beauchemin et al. 2010; Basarab et al. 2012; Bell et al. 2012).

Because hog manure was used as fertiliser in the cow–calf production system, emissions related to transport and application were included in the whole-farm GHG analysis; however, emissions associated with the storage and handling were allocated to the hog farm as described by Knudsen et al. (2010) and Whitman et al. (2011). Furthermore, emissions (N₂O, CO₂) related to the production, processing and transportation of the imported soybean meal were included in the whole-farm GHG analysis using an average emission factor of 0.46 kg CO₂eq/kg dry soybean meal (Adom et al. 2012; McGeough et al. 2012; Table 4).

Mathematical models

Two models were used to analyse total farm GHG emissions from the simulated cow–calf production system, namely, the Coupled Components Model (CCM) and the Integrated Farm System Model (IFSM; Rotz et al. 2011a). Table 4 summarises the different approaches, assumptions and emission factors used in the models. A brief summary of each of the models is provided below.

Coupled Components Model

Several models developed for different components of the farm were coupled to estimate emissions from the cow–calf operation. The CCM included: Cowbytes® beef-cattle ration balancer (Alberta Agriculture Food and Rural Development 2003), COWPOLL (Dijkstra et al. 1992), Manure–DNDC (Li et al. 2012) and some aspects of the Intergovernmental Panel on Climate Change (IPCC 2006). These models were simulated separately for their respective farm components by maintaining the carbon (C) and N flows within the production system.

Dry matter intake and diet composition for a representative animal from each category during the annual production cycle (Table 2) in CCM were estimated using the Cowbytes® beef-cattle ration balancer (Version 4.6.8). These values were used as inputs for the COWPOLL model that was used to estimate enteric CH₄ emissions on the basis of predictions from rumen methanogenesis and hind-gut fermentation as described by Mills et al. (2001) and Reijs (2007), respectively. Excretion and composition (organic matter, C and N) of faeces and urine were estimated using an extended COWPOLL model based on static equations that describe intestinal and hind-gut digestion (Reijs 2007). For each component excreted in faeces and urine, a constant C and N fraction was adopted to estimate the amount of excretion. Urinary N balance was calculated by deducting the amount of N in faeces, milk (for lactating cows) and in the body (for growing animals) from the total N intake of the animal.

Emissions of N₂O and CH₄ from soil in CCM were estimated using a process-based model, manure–denitrification–decomposition (manure–DNDC) model (Version 2.0; Li et al. 2012). Manure–DNDC was simulated over 3 years (2004–2006 individually) to estimate N₂O (direct and indirect) and CH₄ emissions from soil, using the measured climate and soil characteristic data collected from the experimental site as an input to manure–DNDC (Tables 1, 3). The model simulated a 1-year production cycle and did not consider inter-year dynamics (Li et al. 2012). Indirect N₂O emissions were calculated from manure–DNDC estimates of N volatilised and leached and the IPCC (2006) emission factors for volatilisation (0.01 kg N₂O-N/kg gasses volatilised) and leaching (0.0075 kg N₂O-N/kg NO₃ leached; Table 4).

Emissions of CH₄ and N₂O (direct and indirect) from on-farm produced solid manure in CCM were estimated using IPCC Tier 2 methodology (IPCC 2006) because the virtual farm constructed in manure–DNDC contained only cow and veal animal categories and can accommodate only one animal category per simulation. However, the typical beef cow–calf operation in western Canada has cows, bulls, replacement heifers, backgrounded animals and calves (Basarab et al. 2005; Alemu et al. 2011). Manure management methods incorporated in the model were limited to compost, lagoon and anaerobic digester, which differ from the deep-bedding manure management system used in the majority of western Canadian beef operations (Beaulieu 2004). Methane emissions from fresh cattle faeces deposited on pasture during grazing were calculated using measured emission factors from the experimental site (0.085, 0.096 and 0.118 g CH₄/kg faeces for baseline, split and single scenarios, respectively (Tremorin 2009)). The excreted urinary urea-like components (urea, uric acid and allantoin) estimated by COWPOLL were assumed to be converted into ammonium and ammonia during manure storage and used to estimate indirect N₂O emissions from on-farm solid manure storage by applying the default IPCC volatilisation fraction of 30% (Table 4). Emissions of CO₂ from direct on-farm fuel use were calculated as the product of the size of land area and a unique energy use value associated with each crop type (Table 4).

Integrated Farm System Model (Version 3.4)

The IFSM is a farm-simulation model that estimates the performance, environmental impact and economic sustainability of beef, dairy and crop farms (Rotz et al. 2011a). The model integrates nine major submodels that represent crop and soil, grazing, machinery, tillage and planting, crop harvest, crop storage, herd and feeding, manure management and economic analysis. The model parameters reflect the management strategies used in the beef industry in Manitoba. The formulated management scenarios (split and single) were simulated by adjusting the duration of manure storage in the IFSM. Manure-storage options in the model were 6 months when manure was applied to the field twice yearly (early April and late October; split application) and 12 months when manure was applied to the field once per year (early April; single application). The model was simulated over 6 years (2005–2010) using environmental parameters (temperature, precipitation, solar
radiation) measured at the experimental site. Initial conditions were reset each year as the model does not consider inter-year dynamics. In a given year, IFSM simulated a sequence in a daily time step that began with manure handling, tillage, planting, growth and harvest operations, feed storage, feed utilisation and herd production. Animal feed intake, performance and manure production were modelled using the herd and feeding components of the model. Feed allocation and animal responses were related to the nutritive value of available feed and nutrient requirements of the animal groups, estimated using the Cornell Net Carbohydrate and Protein System, level 1 (Rotz et al. 2005).

The IFSM tracked emissions of CH4, N2O and CO2 from different sources in the production system (i.e. crop, animal, manure) as well as emissions related to production and transport of resources used on the farm (Table 4). Enteric CH4 production was estimated using the non-linear equation developed by Mills et al. (2003) and CH4 emissions from solid manure storage were estimated using IPCC Tier 2 methodology. However, CH4 emissions from field-applied manure were based on manure volatile fatty acids, which were assumed to decline exponentially after application (Sherlock et al. 2002). A constant emission factor of 0.086 g CH4/kg faeces (Sommer et al. 2004) was applied for CH4 emission from fresh faeces deposited on pasture.

Direct N2O emissions from forage- and crop-land were estimated using a simplified model based on DAYCENT (Chianese et al. 2009a). However, for direct N2O emissions from manure storage, the model applied a constant emission factor of 0.005 kg N2O-N/kg excreted N (Table 4). Indirect N2O emissions were the product of default IPCC (2006) emission factors for volatilisation (0.01 kg N2O-N/kg N) and leaching (0.0075 kg N2O-N/kg N, Table 4) and model-estimated ammonia volatilisation (from animal housing, manure storage, field-applied manure, faecal- and urine-N deposited on the pasture) and soil N loss through leaching, respectively. The IFSM estimated CO2 emissions from feed production and on-farm energy use, as well as secondary emissions from the production of machinery, fertiliser and pesticide (Chianese et al. 2009b).

Results
GHG emission estimates from the different sources (farm components) and annual emission-intensity estimates are reported in Table 5. The relative proportional contribution (% of total farm emissions) of the various GHG sources within the production system are indicated in Fig. 2, whereas Fig. 3 shows the proportional contribution of each animal category to the total CH4 emissions from enteric fermentation.

Baseline scenario
Estimates of annual emission intensity for the baseline scenario were in close agreement, ranging from 17.7 kg CO2-eq/kg liveweight using CCM to 18.1 kg CO2-eq/kg liveweight using IFSM. When emission intensity was expressed per land basis, estimates were 1.06 t CO2-eq/ha using CCM and 1.08 t CO2-eq/ha using IFSM. Enteric CH4 was the primary contributor to total farm emissions (73–77%) followed by soil N2O (7.2–15.4%) and manure CH4 (3.7–9.1%; Fig. 2). Methane emissions from enteric fermentation were mainly from beef cows (69%) followed by backgrounded steers and heifers (14%; Fig. 3). Of the total farm GHG emissions for the baseline scenario, direct emissions from animal husbandry (enteric CH4, manure CH4 and N2O), accounted for 78% using IFSM and 90% using CCM.

Although the estimates of annual emission intensity for the two models varied on average by only 2%, their differences in estimating emissions from the different GHG sources were higher (Fig. 2). For example, the contribution of manure N2O to the total farm emissions was 4.1% using CCM compared with 1.2% using IFSM. Conversely, soil N2O contributed 7% of the total farm GHG emissions using CCM and 15% using IFSM. Of the total soil N2O emissions, CCM estimated 20% from indirect sources, whereas IFSM estimated 19% from the same sources (Table 5).

Manured (single and split) scenarios
Annual estimated emission intensities for the manured scenarios were 40–47% higher for single and 38–56% higher for split scenarios than those for the baseline scenarios (Table 5). Expressed in land-based emissions, intensity estimates were 3.57 and 4.04 t CO2-eq/ha for the single and split applications, respectively, using CCM, whereas IFSM estimated 3.64 and 3.66 t CO2-eq/ha for the split and single applications, respectively (Table 5). Given the addition of N from the hog manure application in these scenarios, the observed increase in emission intensity was expected. In addition to the increased emissions intensity, application of hog manure also improved farm productivity, expressed as liveweight per unit land (Table 5). Compared with the baseline scenario (0.06 t liveweight/ha), farm productivity was on average 134% and 146% higher in single and split applications, respectively. The models differ in estimating farm emission intensity by 3% for single application, with the highest estimate from IFSM (26.1 kg CO2-eq/kg liveweight), and by 11% for the split application, with the highest estimate from CCM (27.6 kg CO2-eq/kg liveweight).

Addition of hog manure significantly increased soil N2O emissions, to the point where the combination of direct and indirect N2O emissions matched enteric CH4 emissions (Fig. 2). For the manured scenarios, total farm emissions were mainly contributed by enteric CH4 (47–54%) and soil N2O (33–41%). For both the single and split hog manure-application scenarios, the greatest proportion of soil N2O emissions were from direct emissions in CCM (19–24%) and indirect emissions in IFSM (23–24%; Table 5). Overall, the average contribution of direct emissions from animals (enteric CH4, manure CH4 and N2O) were 61% in single and 57% in split scenarios.

Discussion
Baseline scenario
Given the differences in production systems, farm boundaries and assumptions, mathematical models used to estimate emissions and global-warming potential factors of GHGs (Myhre et al. 2013), comparison of emission-intensity estimates with previously reported values is challenging. However, some comparisons can still be made between model estimates and literature values for similar production systems. Estimates of farm GHG intensity for the baseline scenario (17.7–18.1 kg CO2-
Table 4. Assumptions, equations and emission factors (EFs) used in the Coupled Components Model (CCM) and Integrated Farm System Model (IFSM) to estimate greenhouse gas emissions from the cow–calf production system

CF, conversion factor; EF_{liquid}, emission factor for liquid manure application; EF_{solid}, emission factor for solid manure application; MCF, methane conversion factor (by manure handling system); n.a., not applicable; NLEAP, nitrate leaching and economical analysis package model, VFA, volatile fatty acid

<table>
<thead>
<tr>
<th>Greenhouse gases</th>
<th>CCM Models, equations and EFs used</th>
<th>Reference<sup>A</sup></th>
<th>IFSM Models, equations and EFs used</th>
<th>Reference<sup>A</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane (CH₄)</td>
<td>Model and equations used to estimate methane emissions from different sources.</td>
<td>Reference<sup>A</sup></td>
<td>Model and equations used to estimate methane emissions from different sources.</td>
<td>Reference<sup>A</sup></td>
</tr>
<tr>
<td>Enteric fermentation</td>
<td>Based on rumen fermentation and rumen VFA stoichiometric models</td>
<td>9, 19</td>
<td>Non-linear Mitscherlich (Mits 3) equation</td>
<td>1</td>
</tr>
<tr>
<td>Deep-bedding manure<sup>B</sup></td>
<td>Based on volatile solids and MCF</td>
<td>4</td>
<td>Based on volatile solids and MCF</td>
<td>2</td>
</tr>
<tr>
<td>Field applied manure</td>
<td>n/a</td>
<td>21</td>
<td>Linear equation based on manure VFA concentration<sup>C</sup></td>
<td>2</td>
</tr>
<tr>
<td>Fresh cattle faeces on pasture</td>
<td>EF = 0.085, 0.096 and 0.118 g CH₄/kg faeces for the baseline, split and single scenarios, respectively</td>
<td>21</td>
<td>EF = 0.086 g CH₄/kg faeces</td>
<td>2</td>
</tr>
<tr>
<td>Soil emission or uptake</td>
<td>Fermentation submodel of manure–DNDC</td>
<td>11</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Nitrous oxide (N₂O)</td>
<td>Model and equations used to estimate nitrous oxide emissions from different sources.</td>
<td>Reference<sup>A</sup></td>
<td>Model and equations used to estimate nitrous oxide emissions from different sources.</td>
<td>Reference<sup>A</sup></td>
</tr>
<tr>
<td>Direct N₂O</td>
<td>N excretion values were from COWPOLL; EF = 0.01 kg N/kg N</td>
<td>4, 22</td>
<td>EF = 0.02 kg N/kg excreted N (floor); EF = 0.005 kg N/kg excreted N (stacked manure)</td>
<td>4</td>
</tr>
<tr>
<td>Soil or cropping nitrogen</td>
<td>Denitrification and nitrification submodel of manure–DNDC</td>
<td>11</td>
<td>Simplified DAYCENT submodel</td>
<td>5</td>
</tr>
<tr>
<td>Indirect N₂O</td>
<td>Model and equations used to estimate indirect nitrous oxide emissions from different sources.</td>
<td>Reference<sup>A</sup></td>
<td>Model and equations used to estimate indirect nitrous oxide emissions from different sources.</td>
<td>Reference<sup>A</sup></td>
</tr>
<tr>
<td>Deep bedding manure</td>
<td>Manure NH₃-N concentration was estimated using COWPOLL; EF = 0.01 kg N₂O-N/kg N</td>
<td>4</td>
<td>Diffusion, dissociation, aqueous to gas partitioning and mass transport equations</td>
<td>2</td>
</tr>
<tr>
<td>Soil or cropping nitrogen</td>
<td>Hydrological submodel of manure–DNDC; EF = 0.0075 kg N₂O-N/kg NO₃ leached</td>
<td>12, 4</td>
<td>NLEAP submodel EF = 0.0075 kg N₂O-N/kg NO₃ leached</td>
<td>6</td>
</tr>
<tr>
<td>Volatilisation<sup>E</sup></td>
<td>Decomposition submodel of Manure-DNDC; EF = 0.01 kg N₂O-N/kg gases volatilised</td>
<td>11, 4</td>
<td>NLEAP submodel; EF = 0.01 kg N₂O-N/kg gases volatilised</td>
<td>6, 4</td>
</tr>
<tr>
<td>Carbon dioxide (CO₂) – CO₂ from energy use</td>
<td>Model and equations used to estimate carbon dioxide emissions from energy use.</td>
<td>Reference<sup>A</sup></td>
<td>Model and equations used to estimate carbon dioxide emissions from energy use.</td>
<td>Reference<sup>A</sup></td>
</tr>
<tr>
<td>On-farm energy use and cropping<sup>F</sup></td>
<td>Unique energy use coefficients for different crops</td>
<td>14</td>
<td>Fuel consumption and CF of 2.637 kg CO₂/L</td>
<td>7</td>
</tr>
<tr>
<td>Manure application</td>
<td>EF<sub>liquid</sub> = 0.42 kg CO₂/kg N; EF<sub>solid</sub> = 0.27 kg CO₂/kg N</td>
<td>13</td>
<td>Fuel consumption and CF of 2.637 kg CO₂/L</td>
<td>2</td>
</tr>
<tr>
<td>Barley production</td>
<td>EF = 107 kg CO₂/ha</td>
<td>14</td>
<td>Fuel consumption and CF of 2.637 kg CO₂/L</td>
<td>2</td>
</tr>
<tr>
<td>Hay production</td>
<td>EF = 60.8 kg CO₂/ha</td>
<td>14</td>
<td>Fuel consumption and CF of 2.637 kg CO₂/L</td>
<td>3</td>
</tr>
<tr>
<td>Soybean meal production</td>
<td>EF = 0.46 (for production and processing) and 0.0016 kg CO₂-eq/kg soybean meal DM basis (for transportation)</td>
<td>18, 23</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>
Hog manure application in cow–calf production system

Animal Production Science 1

Table

<table>
<thead>
<tr>
<th>Year</th>
<th>Annual use of electricity (kW)</th>
<th>Annual use of CO2 (kg)</th>
<th>Annual use of NH4-N (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>80</td>
<td>3.34</td>
<td>2.7</td>
</tr>
<tr>
<td>15, 16</td>
<td>47.1</td>
<td>3.30</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Electricity use is used to estimate electric consumption.

Nitrification of NH4-N releases CO2 and/or NH3.

For CCM, 25% NH4-N volatilisation loss from surface applied manure was assumed (Tri-Provincial Manure Application and Use Guidelines 2006).}

For IFSM, fuel consumption was estimated by using fuel use factor (average amount of fuel used to produce and deliver a unit of feed to the herd or remove a unit of manure) and total farm fuel use was calculated by summing the fuel use over all operations. Engine CO2 emissions = fuel use (L/h) \times 2.637. Fuel use is a function of fuel consumption rate (L/kWh), engine power (kW), fuel use efficiency, engine load and fuel use index (Rotz 2011).
Table 5. Greenhouse gas emissions from different sources in the farm and emissions intensity for baseline, single and split scenarios estimated using the Coupled Components Model (CCM) and Integrated Farm System Model (IFSM)

Baseline, no application of hog manure on forage land; Single, application of hog manure on forage land in spring (100% spring application); Split, application of hog manure on forage land in fall and spring (50% of the hog manure is applied in fall and 50% in spring). n.a., not applicable

<table>
<thead>
<tr>
<th>Greenhouse gases</th>
<th>Baseline</th>
<th>Emissions (t CO2-eq)</th>
<th>Single</th>
<th>Emissions (t CO2-eq)</th>
<th>Split</th>
<th>Emissions (t CO2-eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCM</td>
<td>IFSM</td>
<td>CCM</td>
<td>IFSM</td>
<td>CCM</td>
<td>IFSM</td>
</tr>
<tr>
<td>Enteric CH4</td>
<td>770.2</td>
<td>742.1</td>
<td>775.6</td>
<td>768.2</td>
<td>734.0</td>
<td>737.0</td>
</tr>
<tr>
<td>Manure CH4</td>
<td>91.0</td>
<td>37.6</td>
<td>102.3</td>
<td>77.3</td>
<td>95.2</td>
<td>75.7</td>
</tr>
<tr>
<td>Manure N2O</td>
<td>40.7</td>
<td>11.9</td>
<td>33.7</td>
<td>24.1</td>
<td>38.1</td>
<td>20.9</td>
</tr>
<tr>
<td>Direct N2O</td>
<td>36.7</td>
<td>10.0</td>
<td>31.3</td>
<td>20.7</td>
<td>34.9</td>
<td>18.3</td>
</tr>
<tr>
<td>Indirect N2O</td>
<td>4.0</td>
<td>1.9</td>
<td>2.4</td>
<td>3.4</td>
<td>3.3</td>
<td>2.6</td>
</tr>
<tr>
<td>Soil CH4A</td>
<td>-8.3</td>
<td>n.a.</td>
<td>-3.4</td>
<td>n.a.</td>
<td>-4.8</td>
<td>n.a.</td>
</tr>
<tr>
<td>Soil N2O</td>
<td>72.6</td>
<td>157.0</td>
<td>474.5</td>
<td>536.7</td>
<td>648.1</td>
<td>531.9</td>
</tr>
<tr>
<td>Direct N2O</td>
<td>58.4</td>
<td>128.0</td>
<td>267.7</td>
<td>194.5</td>
<td>372.9</td>
<td>191.6</td>
</tr>
<tr>
<td>Indirect N2O</td>
<td>14.2</td>
<td>29.0</td>
<td>206.8</td>
<td>342.2</td>
<td>275.2</td>
<td>340.3</td>
</tr>
<tr>
<td>Leaching and runoff</td>
<td>3.5</td>
<td>25.5</td>
<td>28.9</td>
<td>4.0</td>
<td>17.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Volatilisation</td>
<td>10.7</td>
<td>3.5</td>
<td>177.9</td>
<td>338.2</td>
<td>257.7</td>
<td>336.5</td>
</tr>
<tr>
<td>CO2 from farm energy use</td>
<td>39.0</td>
<td>71.2</td>
<td>47.9</td>
<td>63.4</td>
<td>53.8</td>
<td>42.7</td>
</tr>
<tr>
<td>Total farm GHG emissions</td>
<td>1005.3</td>
<td>1019.8</td>
<td>1430.6</td>
<td>1469.7</td>
<td>1564.4</td>
<td>1408.3</td>
</tr>
<tr>
<td>Farm emissions intensity (kg CO2-eq/kg liveweight)</td>
<td>17.7</td>
<td>18.1</td>
<td>25.3</td>
<td>26.1</td>
<td>27.6</td>
<td>25.0</td>
</tr>
<tr>
<td>Farm emissions intensity (t CO2-eq/ha)</td>
<td>1.06</td>
<td>1.08</td>
<td>3.57</td>
<td>3.66</td>
<td>4.04</td>
<td>3.64</td>
</tr>
<tr>
<td>Farm productivity (kg liveweight/ha)</td>
<td>60.0</td>
<td>59.5</td>
<td>146.2</td>
<td>145.4</td>
<td>141.1</td>
<td>140.5</td>
</tr>
</tbody>
</table>

Overall, the close agreement between model-estimated enteric CH4 values (0.4–4%) as well as between model estimates and previously reported literature values in the current study might suggest the current advances in enteric CH4 prediction-model accuracy and the little opportunity for improvement.

Evaluation of the addition of hog manure

There is a paucity of information on the impact of animal-manure application on whole-farm GHG emissions from beef production systems (Petersen et al. 2007). As such, it is challenging to compare the estimated farm intensity values for single and split scenarios, with previously reported values. Casey and Holden (2006a, 2006b) examined application of on-farm cattle slurry twice per year at a rate of 50 t/ha, combined with synthetic fertiliser and reported emission intensities ranging from 8 to 11 kg CO2-eq/kg liveweight. These values are lower than the intensity estimates for single and split scenarios in our study, in which all the required N in the farm for the forage field was sourced from imported hog manure. Higher soil N2O emissions have been reported from soils that received livestock manure than from those that received synthetic fertiliser. Smith et al. (2008) reported 0.23 kg/ha of N2O emissions for a maize field that received synthetic fertiliser (150 kg/ha) and 1.21 and 3.1 kg/ha for the field that received pig slurry at the rates of 60 and 120 t/ha, respectively. Therefore, the higher GHG-intensity estimates for split and single scenarios in our study could be associated with the use of hog manure on grassland causing increased soil N2O emissions.

Conversely, estimated emissions per unit land for single (3.6–3.7 t CO2-eq/ha) and split (3.6–4.0 t CO2-eq/ha) scenarios were comparable to values (3.3–5.9 t CO2-eq/ha) reported by Flessa et al. (2002), Casey and Holden (2006b) and Foley et al. (2011) for European beef production systems that applied on-farm produced slurry to forage and crop land. The addition of hog manure greatly increased soil N2O emissions and had similar proportional contribution with enteric CH4 to the total farm emissions (Fig. 2). Johnson et al. (2002) conducted a whole-farm analysis of GHG emissions for a cow–calf through to the feedlot production system in the USA, where on-farm-produced solid manure was deposited on pasture. In their study, enteric CH4 contributed 36% and N2O 52% of farm GHG-emission intensity. As much as 54% of the N2O emissions were from manure application or manure deposition during grazing. Furthermore, Flessa et al. (2002) reported that N2O emissions contributed 60% of emissions for a conventional beef farm that applied on-farm produced slurry to the cropland. Hence, our estimates of increased soil N2O emission with the application of manure are consistent with these other studies.

Although the application of animal manure on grassland increases land productivity (Wilson et al. 2010; Bork and Blonski 2012), it is apparent that the concurrent increase in emissions of soil N2O occur through enhanced nitrification and denitrification (Ellis et al. 1998; Chadwick et al. 2000; Tenuta et al. 2010). Therefore, the sustainability of manure application requires implementation of management practices that reduce soil N2O emissions. One of the management strategies is timing of manure application to favour plant uptake of N (Chadwick 1997; Rochette et al. 2004). Furthermore, application of manure at two different times of the year (i.e. spring and fall) has also been practised (Tenuta et al. 2010). This practice provides the same total amount of N and may have the potential to reduce the large flush of ammonium and nitrate in the soil that leads to increased soil N2O emissions. In the current study, although annual emission intensity was higher for both single and split applications than was the baseline, there was disagreement between models regarding which scenario has lower emissions. However, farm productivity was smaller in the single than split scenario by 3–4%. Variation in
pasture quality and dry matter productivity is reported for pastureland that received hog manure (Wilson et al. 2010). The increased pastureland productivity in split applications (Table 3) reduced the total land required to support the production cycle (387 ha) compared with the single application (401 ha), which may contribute to the observed higher farm productivity for the split scenario.

The observed inconsistency between models in estimating emission intensity for the single and split applications may partly be attributed to their difference in estimating soil N$_2$O emissions. Direct emissions of soil N$_2$O were quantified using manure–DNDC in CCM and the simplified DAYCENT model in IFSM (Rotz et al. 2011a). The major proportion of the total soil N$_2$O emissions was contributed from direct emissions using CCM and indirect (ammonia volatilisation loss from field-applied manure) emissions using IFSM for both single and split scenarios (Fig. 2, Table 5). Several local- and global-scale studies have compared DNDC and DAYCENT models and observed differences in estimated N loss (Del Grosso et al. 2006, 2009; Smith et al. 2008; Abdalla et al. 2010). Furthermore, on a farm-component scale, inconsistencies have been reported in field studies designed to measure the impact of timing and amount of manure application on GHG emissions. Allen et al. (1996) reported greater soil N$_2$O emissions for animal manure applied on grassland in the UK during fall than during spring application, whereas Chadwick et al. (2000) reported greater soil N$_2$O and CH$_4$ emissions for slurry applied on grassland in spring than for those applied in fall and summer. Similarly, Rochette et al. (2004) reported a two-fold increase in soil N$_2$O emissions for spring application of hog slurry on maize compared with fall application (1.74% of total hog slurry-applied N). Rochette et al. (2000) observed an increase in N loss as N$_2$O (from 1.23% to 1.65%) when the application rate of hog slurry was doubled. Combining rate and time of application, Tenuta et al. (2010) reported a 0.51% loss of total hog slurry-applied N when applied on grassland in a single spring application, compared with 0.29% loss when applied as a split application. Generally, the observed inconsistencies may indicate the need for further component and whole-farm assessments to fully understand the impact of time and amount of livestock manure application on farm GHG emissions from beef production system.

Implications and future study

Various mitigation strategies have been proposed and implemented to minimise GHG from animal agriculture (Beauchemin et al. 2009; Eckard et al. 2010). However, often the strategies are applied to a single farm component (e.g. animal,
soil) and, therefore, it is difficult to evaluate their impact from a whole-farm perspective. A whole-farm modelling approach is a powerful tool for the development of cost-effective GHG mitigation options because relevant interactions among farm components are revealed (Schils et al. 2007). In the current study, the two models used to analyse the whole-farm GHG emissions from the cow–calf operation are not consistent in estimating GHG-emission intensity from the split and single scenarios (Table 5). Although differences among models were expected as a result of their difference in approaches, assumptions and algorithms used to estimate GHG emissions, there was general agreement in the baseline scenario. However, the observed difference in manured scenarios may indicate the need for further model improvement.

Estimated emissions contributed by the different farm components identified the sources that should be targeted in developing beneficial management practices to reduce the carbon footprint of the beef operations. For the baseline scenario, total emissions were mainly contributed from direct emissions of livestock enteric CH$_4$, whereas for the manured scenarios, enteric CH$_4$ and soil N$_2$O were the main contributors (Fig. 2). Thus, strategies to minimise emissions might best be aimed at targeting these farm components.

The simulated cow–calf production system in the current study followed a common practice in those areas with high livestock density where hog manure was applied to forage land without incorporation, which may have increased N loss through volatilisation (Rochette et al. 2008). Incorporation or injection of hog manure may reduce N loss through volatilisation (Rotz et al. 2011b) and increase N$_2$O and CH$_4$ emissions from soil (Velthof et al. 2003; Rodhe et al. 2006), which may result in a greater difference between the application scenarios.

In the current study, beef cattle were assumed to be managed in confined lots during the winter period (Period 2). However, the trend in the past decade indicates that cow–calf farmers in western Canada are moving away from overwintering cows in a confined lot to an in-field wintering system, in which beef cattle are fed on pasture with manure deposited directly in the field (Agriculture and Agri-Food Canada 2011; McCartney 2011). This management practice reduces the contribution of emissions from manure management, by avoiding accumulation of manure in the confined lots. It also reduces enteric CH$_4$ emissions because animals managed outdoors under cold temperatures produce less enteric CH$_4$ (Kennedy and Milligan 1978; Takahashi et al. 2002; Bernier et al. 2012), there is increased nutrient recycling efficiency (Jungnitsch et al. 2011; Kelln et al. 2012) and a reduction in winter feeding costs (Kelln et al. 2011). Therefore, integration of management practices such as in-field overwintering management of beef cattle with amount and timing of hog manure application on grassland needs to be evaluated, so as to assess their impact on the total farm GHG emissions.

Conclusions

The use of a whole-farm approach to analyse GHG emissions from a beef production system is essential in evaluation of a beneficial management practice. In the current study, farm productivity and environmental impact (GHG emissions) of the timing and amount of hog manure application on forage land (i.e. in spring or in spring and fall) in a cow–calf operation were assessed using whole-farm models. Farm emission-intensity estimates for a baseline scenario ranged between 17.7 and 18.1 kg CO$_2$-eq/kg liveweight. The application of hog manure on grassland showed a mean emission increase of 7.8 and 8.4 kg CO$_2$-eq/kg liveweight above baseline for single and split scenarios, respectively. The baseline scenario would rarely be recommended, regardless of the low GHG-emission intensity, because the soil nutrient reserves in this scenario would eventually be depleted, challenging its long-term productivity and sustainability. Conversely, farm productivity, expressed as liveweight per unit land, was higher (134–146%) in manured scenarios than in baseline scenario. The advantage of applying manure during a single spring application compared with split applications was not conclusive because of the inconsistency between model estimates, where CCM estimated a higher emission intensity for the split and IFSM for the single scenario. Given their higher proportional contribution to the total farm GHG emissions, management strategies designed to minimise emissions need to target enteric CH$_4$ emissions in the baseline scenario and enteric CH$_4$ and soil N$_2$O emissions in the manured scenarios. Generally, further whole-farm analyses are required to evaluate the environmental impacts of livestock manure application in beef production systems and to identify best management practices that minimise the environmental footprint of these systems.

Acknowledgements

We acknowledge Dr C. Alan Rotz for his assistance on IFSM, Drs Changsheng Li and William Salas for providing manure–DNDC and assistance with the model and Dr J. Dijkstra for his assistance with COWPOLL. This research received funding from the Agriculture and Agri-Food Canada Agricultural Greenhouse Gas Program, University of Manitoba Graduate Fellowship, MITACS ACCELERATE and the Sesnon Endowed Chair Program (UC Davis).

References

Agriculture and Agri-Food Canada (2011) Sustainable management on farmlands (i.e. in spring or in spring and fall) in a cow–calf operation are assessed using whole-farm models. Farm emission-intensity estimates for a baseline scenario ranged between 17.7 and 18.1 kg CO$_2$-eq/kg liveweight. The application of hog manure on grassland showed a mean emission increase of 7.8 and 8.4 kg CO$_2$-eq/kg liveweight above baseline for single and split scenarios, respectively. The baseline scenario would rarely be recommended, regardless of the low GHG-emission intensity, because the soil nutrient reserves in this scenario would eventually be depleted, challenging its long-term productivity and sustainability. Conversely, farm productivity, expressed as liveweight per unit land, was higher (134–146%) in manured scenarios than in baseline scenario. The advantage of applying manure during a single spring application compared with split applications was not conclusive because of the inconsistency between model estimates, where CCM estimated a higher emission intensity for the split and IFSM for the single scenario. Given their higher proportional contribution to the total farm GHG emissions, management strategies designed to minimise emissions need to target enteric CH$_4$ emissions in the baseline scenario and enteric CH$_4$ and soil N$_2$O emissions in the manured scenarios. Generally, further whole-farm analyses are required to evaluate the environmental impacts of livestock manure application in beef production systems and to identify best management practices that minimise the environmental footprint of these systems.

Acknowledgements

We acknowledge Dr C. Alan Rotz for his assistance on IFSM, Drs Changsheng Li and William Salas for providing manure–DNDC and assistance with the model and Dr J. Dijkstra for his assistance with COWPOLL. This research received funding from the Agriculture and Agri-Food Canada Agricultural Greenhouse Gas Program, University of Manitoba Graduate Fellowship, MITACS ACCELERATE and the Sesnon Endowed Chair Program (UC Davis).

References

Agriculture and Agri-Food Canada (2011) Sustainable management on farmlands.

Agriculture and Agri-Food Canada (2011) Sustainable management on farmlands.

Hog manure application in cow–calf production system

