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Large eddy simulation of stably stratified open channel flow
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Dipartimento di Ingegneria Civile, Universita degli Studi di Trieste, 34127 Trieste, Italy

(Received 22 June 2005; accepted 5 September 2005; published online 21 November 2005)

Large eddy simulation has been used to study flow in an open channel with stable stratification
imposed at the free surface by a constant heat flux and an adiabatic bottom wall. This leads to a
stable pycnocline overlying a well-mixed turbulent region near the bottom wall. The results are
contrasted with studies in which the bottom heat flux is nonzero, a difference analogous to that
between oceanic and atmospheric boundary layers. Increasing the friction Richardson number, a
measure of the relative importance of the imposed surface stratification with respect to
wall-generated turbulence, leads to a stronger, thicker pycnocline which eventually limits the impact
of wall-generated turbulence on the free surface. Increasing stratification also leads to an increase in
the pressure-driven mean streamwise velocity and a concomitant decrease in the skin friction
coefficient, which is, however, smaller than in the previous channel flow studies where the bottom
buoyancy flux was nonzero. It is found that the turbulence in any given region of the flow can be
classified into three regimes (unstratified, buoyancy-affected, and buoyancy-dominated) based on
the magnitude of the Ozmidov length scale relative to a vertical length characterizing the large
scales of turbulence and to the Kolmogorov scale. Since stratification does not strongly influence the
near-wall turbulent production in the present configuration, the behavior of the buoyancy flux,
turbulent Prandtl number, and mixing efficiency is qualitatively different from that seen in stratified
shear layers and in channel flow with fixed temperature walls, and, furthermore, collapse of
quantities as a function of gradient Richardson number is not observed. The vertical Froude number
is a better measure of stratified turbulence in the upper portion of the channel where buoyancy, by
providing a potential energy barrier, primarily affects the transport of turbulent patches generated at
the bottom wall. The characteristics of free-surface turbulence including the kinetic energy budget
and pressure-strain correlations are examined and found to depend strongly on the surface

stratification. © 2005 American Institute of Physics. [DOI: 10.1063/1.2130747]

I. INTRODUCTION

Open channel flow is an important model problem with
relevance to many environmental and industrial applications.
In many cases, temperature gradients are large enough for
buoyancy effects to become dynamically important. The
present study considers open channel flow with stable strati-
fication imposed by a constant heat flux at the free surface
and an adiabatic lower wall. This choice of boundary condi-
tions allows us to contrast the flow behavior when buoyancy
effects are present at the turbulence generation site, with the
present case where such effects are absent. Specifically, since
the near-wall region remains unstratified, the interaction be-
tween wall-generated turbulence and an external stable strati-
fication is examined. In addition, the influence of stratifica-
tion on the well-known characteristics of unstratified
turbulence near the free surface is also considered.

Several previous studies have considered stratified chan-
nel flow, but in each case stratification was applied with fixed
temperature boundaries. Armenio and Sarkar' used a large
eddy simulation (LES) to study stratified closed channel flow
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with a fixed temperature difference AT across the channel. In
that study, the authors found that the turbulent momentum
and buoyancy fluxes and the turbulent Froude number can be
well described as functions of the gradient Richardson num-
ber, Ri,. For large AT, they observed a buoyancy-affected
region near the walls and a buoyancy-dominated region near
the centerline. In contrast, the present study considers open
channel flow and a larger Reynolds number, Re_.=400, ver-
sus 180, but as will be seen, the largest difference is due to
the choice of temperature boundary conditions that qualita-
tively changes the profile of N, the buoyancy frequency.
Komori ef al.? used steam to heat the surface of water in
an inclined open channel at relatively low Reynolds number.
Similar to the later results of Armenio and Sarkar,] it was
found by Komori et al.* that Ri, governs the effect of buoy-
ancy on the local turbulence. When the fluid became suffi-
ciently stratified, they also observed wavelike motion in the
interior accompanied by countergradient heat and momen-
tum fluxes. Although the mathematical representation of the
boundary conditions for this experiment is likely to be com-
plicated, it has been argued that they are best approximated
by a fixed temperature difference across the channel.” Na-
gaosa and Saito® reach similar conclusions from a direct nu-
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merical simulation (DNS) of open channel flow with fixed
AT across the channel. They considered a friction Reynolds
number of 150, a Prandtl number of 1, and friction Richard-
son numbers of 0, 10, and 20. When the Richardson number
is nonzero, turbulence is affected throughout the channel.
They also show that stratification reduces the skin friction.

Since all previous studies of open channel flow have
considered fixed temperature walls, the near-wall region be-
came stratified, and hence one of the major influences of
stratification was a reduction of the near-wall turbulence pro-
duction. When considering environmental flows, the results
of these studies may be analogous to the atmospheric surface
boundary layer under conditions of strong surface cooling
where a stably stratifying heat flux at the ground can lower
turbulent production in the surface layer.5 In contrast, our
proposed boundary conditions are more relevant to the oce-
anic bottom boundary layer where the bounding surface is
adiabatic. See Lien and Sanford® for a clear explanation of
the differences between atmospheric and oceanic boundary
layers.

The choice of the free-surface boundary condition has
been shown to be important even when applied to a passive

scalar. Handler ef al.’ compared the behavior of open chan-
nel flow with Neumann and Dirichlet boundary conditions
on a passive scalar at the free surface. They found that varia-
tions of the surface flux in the Dirichlet case were much
larger than variations of surface concentration when a Neu-
mann condition was used. The structure of the scalar field at
the free surface was also considerably different between the
two cases.

A number of studies have focused on the turbulent sta-
tistics and coherent structures at the free surface in unstrati-
fied open channel flow. It was originally conjectured that the
dynamics of free-surface turbulence would be quasi-two-
dimensional. However, Walker et al® asserted that turbu-
lence is three-dimensional up to the surface, and even at the
surface does not conform to two-dimensional dynamics. In
support of this, they demonstrated that vortex stretching is
maximal at the free surface, and the tangential vorticity van-
ishes only in a very thin layer. This conclusion was sup-
ported by Nagaosa,9 who cited the nonvanishing streamwise
wall-normal velocity correlation coefficient, R,,,,, as evidence
for the three-dimensionality of free-surface turbulence.

The dominant structures at a free surface have been
identified as upwellings (fluid impinging on the free surface),
downdrafts, and spiral eddies (see Pan and Banerjee10 and
Perot and Moin'"). Pan and BanelrjeeIO demonstrated that the
upwellings and downdrafts are driven by active turbulence
generated at the bottom of the channel. In numerical simula-
tions at Re,=171, after allowing the open channel flow to
fully develop, they replaced the no-slip bottom wall with a
rigid, no-stress surface and observed that the upwellings and
downdrafts near the upper free surface quickly decay leaving
the surface attached spiral eddies. Since the spiral eddies are
predominantly two-dimensional, they suggest that the three-
dimensionality and anisotropy observed in free-surface tur-
bulence is caused by impinging patches of three-dimensional
turbulence. Calhoun and Street'” conducted a computational
study of turbulence at a free surface with and without density
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stratification. They found that with stable stratification, the
upwellings seen at the surface are less frequent and weaker
relative to an unstratified case.

Two analogies are suggested between the present study
and environmental situations. The first is a bottom boundary
layer in the deep ocean subject to stable stratification im-
posed from above. In that problem, as in the present study, a
mean flow drives turbulence which creates a well-mixed
layer beneath an external stratification. In this analogy, the
free surface is an artificial representation of an open bound-
ary. Despite the simplified dynamics considered here com-
pared to an oceanographic setting, we hope to gain funda-
mental insights into the interaction between wall-generated
turbulence and an imposed stable stratification. This should
then provide a basis for comparison with studies that include
additional physical processes.

The second analogy is an ocean thermocline formed by
surface heating in shallow water of nearly uniform depth. In
order to eliminate processes beyond the scope of this study,
the surface is assumed to be undeformed (the external
Froude number is small) and stress-free. Therefore, features
common to oceanographic flows such as surface waves,
Langmuir cells, and a mixed layer are excluded. The Coriolis
parameter is also neglected, corresponding to a large Rossby
number valid for the small-scale motions of interest here. It
should also be noted that this study does not attempt to
model the open ocean thermocline, which may be dominated
by large-scale horizontal inhomogeneities and along-
isopycnal transport. It is believed that in the open ocean,
many of the isopycnals outcrop to the surface (are “venti-
lated”), where mixing can readily occur via the wind stress.
The present study only considers the situation of a heated
free surface; radiative and evaporative heat transfer from the
ocean to the atmosphere is not accounted for, and therefore
the thin thermal sublayer (or “cool skin”) where stratification
can be unstable'* is not considered.

The paper is organized as follows. Section II gives the
equations to be solved and the corresponding laminar solu-
tion. Section III describes the computational method. Section
IV describes the results of the simulations with the mean
profiles in Sec. IV A, descriptions of various turbulent pro-
files and free surface effects in Secs. IVB and IV F, and a
direct comparison to a previous work by two of the authors
in Sec. IV G. Finally, Sec. V contains concluding remarks.

Il. FORMULATION

The geometry of the open channel considered here is
shown in Fig. 1. Flow is driven by a uniform pressure gra-
dient aligned with the x axis, and periodicity is applied in
both horizontal directions while flat no-slip and no-stress sur-
faces bound the bottom and top, respectively. The y axis is
aligned with the cross-stream direction, and the z axis is
normal to the wall. The velocities in the x, y, and z directions
are denoted by u, v, and w. The domain size in the x and y
directions is 27h and 7h, respectively, where  is the chan-
nel depth. The constant, negative density gradient imposed at
the free surface can be thought of as surface heating with a
constant heat flux if density changes are linearly related to
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FIG. 1. Model domain.

temperature changes. The total density is given by pr=pg
+p'(x,1), with p"<p,, allowing the Boussinesq approxima-
tion known to be appropriate for stratified water.

A. Governing equations

The governing equations are nondimensionalized with
the channel height &, friction velocity u,=(7,,/p,)"?, and the
absolute value of the imposed free-surface gradient |dp*/dz;.
The shear stress 7,, used to define the friction velocity is the
horizontally averaged value at the wall which must balance
the vertically integrated pressure gradient for steady state
(ITh={r,,)). With these choices, the nondimensional govern-
ing equations can be written as

Du \Y *+V2u Rip'k+1Ii (1)
—=- ——-Ri i,
pi P TRe,
Dp V' @
Dt Re Pr’
V-u=0, (3)
d*
2=0: u=v=w=0, Lo, (4)
dz
u dp’
Z:]: —u:—:W:O, i:—], (5)
Jdz oz dz

where IT is the imposed pressure gradient equal to unity with
the present nondimensionalization, p” is the deviation from
the hydrostatic pressure, and the hydrostatic pressure gradi-
ent has been canceled with the nominal gravitational force in
the usual way. The nondimensional Reynolds, Richardson,
and Prandtl numbers are defined as

u ap" | W v
Re,,: _Th’ RiT= —ii 3 Pr=-—, (6)
v Po 9z | u; K

where « is the molecular diffusivity. The bulk Richardson
number is defined by
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TABLE I. Physical parameters.

Ri, Ri, X 1073 Re, Re, Pr
0 0 400 6967 5
25 1.84 6976
100 8.80 7002
250 343 7071
400 76.9 7195
500 117.8 7310
. Apgh
Rlb - 2 (7)
poUy

where U, is the bulk (volume-averaged) velocity through the
channel. The parameters used for this study are listed in
Table I.

Notice that since the imposed surface density gradient is
used to make the density nondimensional, it appears in the
Richardson number defined in Eq. (6). This is the only vari-
able quantity in the definition of Ri; since we are consider-
ing a fixed forcing pressure gradient I1, the quantities 7,, and
u, are also fixed. Therefore, increasing Ri, is physically
equivalent to increasing the imposed surface stratification.
When Ri,=0, density acts as a passive scalar and the velocity
field can be checked against previous unstratified open
channel studies. When Ri.>0, a negative density gradient is
imposed at the free surface, corresponding to stable
stratification.

B. Laminar solution

We will briefly examine the properties of the laminar
solution, found by neglecting changes in the horizontal di-
rections, assuming that the velocity profile is independent of
time, and solving the nondimensional equations. The laminar
velocity is then given by

2
u=HReT<E—z>, v,w=0. (8)

The density profile is unsteady owing to the surface heat
flux. The laminar form of Eq. (2) in this flow is

w_ 1 7
o Re, Pr dz>

)

The density profile may be divided into the following
components:

p'(z.1) =f(z) + (1) + H(z.1), (10)

where H(z,t) is the solution to Eq. (9) with homogeneous
(zero gradient) boundary conditions, g(7) is the term owing
to surface heating, and f(z) satisfies the inhomogeneous
boundary conditions given in Egs. (4) and (5). The inhomo-
geneous problem is then

1

1. 1
&1 Re Pr’ ¥ (1)

with
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Re, Pr’

flz=1)= fz=0)=0, g(=0)=0, (12)

and the homogeneous problem is

H
H=—%- H(z=0,1)=0, H(=0)= . (13
= Re. Pr (z ) (t=0)=py(z). (13)

Solving Egs. (11) and (12) first for f(z) and g(z),

-1

g(t) = Re.Pr (14)
and
f(z)=7+B. (15)

Equation (13) is solved using separation of variables
with H(z,t)=@(z)y(r). Using this form and the appropriate
boundary conditions gives

2
W) = e,

with

#(z) = B, cos(\,.2), (16)
N,=nm, n=0,1,2,3,... (17)

so the homogeneous solution takes the form

o0

H(z,0) = D B, cos(\,2)e M. (18)
n=0
The constant can be found from the initial condition,
p(1=0) = polz) = —~ + 2 B, cos(\,2). (19)
n=0
Multiplying by cos(\,z) and integrating gives
1 2
B, = 2[ <P0(Z) + E)cos()\ﬂz)dz. (20)
0
The general laminar solution for the density is then
() = — Z2+§‘,B Nt cos(A,2) (21)
,1) = - L€ 22)-
PRl Repr 27 =2 ¢

Notice that when > 1 (and the dimensional time >h/u,) the
last term becomes small compared to the first two when n
#0. The choice of By=0 is made implying that p” (a nega-
tive quantity) is the nondimensional density departure from
the value at the bottom wall. Therefore, after sufficient time,
there is a linear (in time) heating trend which is uniform in
space and the solution reduces to

2
—t

L (22)
Re, Pr 2

p(z,0) =

The value of Ap=p (z=0)—p"(z=1)=1/2; i.e., in the lami-
nar case, the dimensional value of the density difference is
|dp/dz|sh/2 for a given free-surface gradient and channel
height.

Phys. Fluids 17, 116602 (2005)

C. Density flux balance

In view of the preceding discussion of the laminar den-
sity profile, we can separate the unsteady part from the den-
sity field as follows. Let

p =pi(t) + p(x.1), (23)

where p“=ps(x,1)—p,, the variable p, denotes the determin-
istic field that decreases in time owing to the imposed sur-
face heating, and p(x,7) is the turbulent density field that is
statistically steady. Substituting Eq. (23) into Eq. (2) gives

dp; 9 g 1 &
ﬂ+—p=—uj—p+ —g (24)
dt ot ox;  Re;Prox;

Taking the Reynolds average of Eq. (24),
dp, 4 1 #p)
Lo Zorw+ : 25
dt &z<p W Re,Pr dz* 25)

The right-hand side (rhs) is a function of space only [recall
that p(x,7) is a statistically steady field] while the left-hand
side (lhs) is a function of time only so that, for Eq. (25) to
hold, both sides must be constant. In order to evaluate the
constant, integrate Eq. (25) from z=0 to z=1,

1
J @dp—l { Ao e } (26)
o dt Re, Pr 0z =0

z=1 9z
Using the flux boundary conditions, Egs. (4) and (5), leads to

d 1
e 27)
dt Re, Pr
SO
(=-——+C (28)
P = Re,Pr '

and the final constant can be absorbed into p,. Inserting the
expression in Eq. (27) into Eq. (25) and integrating from z
=0, a useful equation that represents a local balance between
turbulent and viscous fluxes is obtained,

Re, Pr(p’'w’) - (29)

Xp) _

9 =2Z.
We will come back to the interpretation of this equation later.
Henceforth we will present results concerning p(x,?), the
statistically steady turbulent field. After each time integration
of Egs. (1)-(3), the density change owing to p,(z) is sub-
tracted, and the resulting density field becomes statistically
steady after an initial transient, at which point statistics are
collected.

lll. COMPUTATIONAL METHODS

In order to study the flow in the open channel described
above, we use a large eddy simulation (LES). The LES used
here is the same as that used by Armenio and Sarkar' and the
numerical methods are described in detail by Armenio and
Piomelli."”” Since the computational model has already been
extensively validated, this is not done here. The filtered
equations are integrated using a version of the fractional-step
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method of Zang et al.,16 which is second-order accurate in
space and time. The spatial derivatives are computed with
central finite difference. The convective terms are time-
stepped with the Adams-Bashforth scheme, and the diffusive
terms are stepped with the implicit Crank-Nicolson scheme.
The multigrid method is used to solve the Poisson equation
for the pressure.

The subgrid-scale (SGS) stresses are modeled with a dy-
namic mixed model,

7= gty — uat; — 2CA7[S]

(30)

ij>
where the overbar denotes the filtering operation, A is related

to the transformation Jacobian J by A=2J73, and S;; is the
rate of strain tensor. The model coefficient C is determined
using a dynamic eddy-viscosity model. The first two terms in
Eq. (30) represent the scale-similar part of the model. To
model the subgrid density flux, a dynamic eddy diffusivity
model is used,

__c R5P

N=-C,A |S] o (31)
where the constant C,, is evaluated dynamically (see Armenio
and Sarkar' for more details).

For simplicity, the free surface is assumed to be unde-
formed, an approximation good for low Froude number. In a
DNS of unstratified open channel flow with a deformable
free surface, Komori ef al.'” found that at Re, =160, the sur-
face is displaced by about 0.01% of the channel depth. Al-
though we are considering a larger Reynolds number, it is
expected that any displacements would remain small. Indeed,
when Re,=7550, its maximum value here, the external
Froude number,

Fr=—=, (32)

is less than 0.1 as long as the dimensional channel height is
greater than 8.3 cm, which is the case for all applications
considered here.

Free-surface flow presents a number of challenges for
turbulence modeling. It has been shown that the flow at the
free surface is highly anisotropic.18 Also, as mentioned in the
Introduction, Walker et al.® found that the vertical gradient of
the horizontal vorticity vanished only in a very thin layer
near the free surface, requiring a fine grid to resolve the
mean profile in that region. Shen and Yue'® show that the
energy backscatter (transfer from subgrid scales to larger
scales) is maximal at the free surface. It can be expected that
these unique factors would make it difficult to apply a ge-
neric turbulence model to the free-surface region. Indeed, as
shown by Salvetti and Banerjee19 using DNS data for open
channel flow, the dynamic Smagorinsky model performs
quite poorly. They find that a dynamic mixed model (the
class used here) is a significant improvement, but is not per-
fect. We attempt to bypass these concerns by using a
stretched grid in the vertical with very high resolution at the
free surface. As shown in Fig. 2, the vertical grid spacing in
the top 20% of the channel is smaller than the Kolmogorov
length. It should be noted, however, that even in the upper
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R Ri=0

...... n/h Ri =100

—— n/h R?T=250

-~ nm/h R11=500
8 Az

0 0.01 0.02 0.03 0.04
n/h, Az

FIG. 2. Kolmogorov scale and vertical grid spacing.

region the model cannot be considered a DNS since the hori-
zontal grid spacing, Ax*=40 and Ay*=20, is much larger
than the vertical.

Stratification presents another difficulty in numerical
modeling since it acts to decrease the vertical length scales of

. .. . . . . 20
motion, requiring higher resolution. The density microscale
is

7
=", (33)
Tp Jpr

where again 7 is the Kolmogorov length. This scale sets the
distance over which density fluctuations can be expected in a
turbulent flow and therefore is the limiting resolution for a
DNS with Pr>1. Since we are not attempting to fully re-
solve the diffusive scales of motion, this requirement does
not strictly apply here. However, for accuracy of the LES
results, the direct effect of stratification on the subgrid scales
is limited here by ensuring a sufficiently small grid spacing.
The smallest scale at which buoyancy effects are felt is the
Ozmidov scale, defined as

172

where € is the dissipation rate and N is the Brunt-Viisild
(buoyancy) frequency. In all of the cases presented here, the
vertical grid spacing is kept smaller than L, although since
they are of the same order near the free surface when Ri,
=500, we cannot increase Ri, further with the computational
resources available to us.

In order to resolve the details of the turbulence at the
free surface, a fine grid must be used in the vertical direction.
The grid spacing used here at the top and bottom walls is
Azt=1/2 and Az*=2, respectively. The present numerical
method solves the equations with second-order accuracy on a
uniform computational grid. In order for the discretization
scheme to be second-order accurate on the physical grid, the
vertical grid stretching parameter, r,, must obey21
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S 14 0(A7). (35)
Zj

\
i

~

The restriction on the grid stretching factor is therefore more
stringent at the boundaries where Az is very small. In order
to account for this, an exponential function is used to set the
vertical grid spacing so that the grid stretching is maximum
in the center of the domain where the Az is large. In addition,
five uniformly spaced grid points are placed at the lower wall
and 16 are placed near the free surface. With these restric-
tions, more points are needed in the vertical direction, and
the grid size is 64X 64X 128 in the x, y, and z directions,
respectively. The maximum vertical grid spacing is Az*
=11.5. In order to ensure that the anisotropy of the grid does
not introduce numerical errors, a case with more points in the
horizontal was conducted and no significant differences were
found.

The bulk Reynolds number after spin-up for each case is
listed in Table I, where Re,, is defined as

h
Re, = ML, up = f (u)dz, (36)
and nondimensional time is
t,=—. (37)

The case with Ri,=0 is started by interpolating from the
velocity and density fields in half of the full-channel simula-
tions of Armenio and Sarkar.! The first two stratified cases,
Ri,=25 and 100, are both initialized with the Ri,=0 fields at
t,=4.4, while the latter two, Ri,=250 and 500, are both ini-
tialized with the Ri,=100 data at r,=51.8. Each case has a
spin-up period where Re, increases, indicating that the mean
flow initially accelerates owing to an initial imbalance be-
tween the wall shear stress, reduced by stratification, and the
driving pressure gradient. Eventually all cases tend to an
equilibrium where Re =400, the mean wall shear stress, and
dp/dx are in balance, and Re, is steady in time. Once a
statistically steady state is reached (at 7,=96.8 for the Ri,
=500 case), each simulation is continued for at least 507, to
obtain a sample size sufficiently large to obtain converged
statistics.

IV. RESULTS
A. Mean profiles

We begin by describing some mean flow properties. Av-
erages over the horizontal plane and time are denoted by (-).
The average streamwise velocity profile, nondimensionalized
by u,, is shown versus z/h in Fig. 3(a). It has already been
seen that u,,, the bulk-mean velocity, increases with Ri, . This
increase of (u) is seen to occur only in the region near the
free surface. Note also that the mean shear in the pycnocline
increases with Ri, . The spanwise and wall-normal velocities
(not shown) are nominally zero. The log-law behavior is
shown in Fig. 3(b). A log profile exists in the passive scalar
case from z*=40 to near the free surface. Increasing Ri,
causes the profile to deviate from the log law in the upper
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(a) (b)
T 25

1
I
091 [ — Ri=0 /
0.8 RirZIOO 20F
-~ Ri =250
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/
/
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o 5 10 15 20 25 10° 10" 10° 10°
u/u z"

FIG. 3. Mean velocity profiles.

portion of the channel. The location of the deviation from the
log-law correlates well with the location where the density
gradient begins to diverge from the case of Ri,=0. For ex-
ample, the location where (u) becomes 1% larger than when
Ri,=0 is very close to the location where d{p)/dz is twice
the passive scalar value. When Ri, =500 the region of log-
law validity is relatively small, approximately 50 wall units.

Nagaosa and Saito* also observe an increase in the
streamwise velocity when they apply a fixed temperature dif-
ference across the channel to produce stable stratification.
The region of increased velocity in their case extends from
the surface to about 10 wall units from the lower wall, a
much thicker region than is seen here. A convenient measure
of the bulk change in streamwise velocity is the skin friction
coefficient,

Cf=27'W/pu§. (38)

Table II gives C; for each case of Ri,. For comparison, the
values found by Nagaosa and Sa1t0 and Armenio and
Sarkar' are also shown. Ri,  defined with the density differ-
ence across the channel,

ghAp

RiT,A = 2 (39)
Pout

T

is introduced to measure stratification on a similar basis in all
studies. Clearly C,decreases with Ri_, in all studies, but the
dependence observed here is much weaker than the 31% de-
crease between Ri, =0 and 20 observed by Nagaosa and
Saito* and the 22% decrease between Ri, ,=0 and 18 ob-
served by Armenio and Sarkar.' This can be explained by the
relatively limited region affected by stratification in the
present study, a qualitative difference with respect to the pre-
vious fixed AT cases.

The averaged density profile for each case is plotted as a
function of nondimensional height in Fig. 4(a) where the
density is made nondimensional by Ap, the difference be-
tween wall and surface values as in Komori.” The laminar
solution, the term —z>/2 in Eq. (22), is also shown. Unlike
the gradual variation of p(z) in the laminar case, the turbulent
flow exhibits a strongly stratified region, or pycnocline, near
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TABLE II. Friction coefficient: The present study has an imposed surface heat flux at the upper surface and an
adiabatic lower wall. Nagaosa and Saito have an upper free surface and a lower wall, both being isothermal.
Armenio and Sarkar have upper and lower walls, both being isothermal.

Taylor et al.

Nagaosa and Saito (Ref. 4)

Armenio and Sarkar (Ref. 1)

Ri, Ri, Cyx10° Ri, Crx10° Ri, Cyx 10
0 0 6.593 0 8.71 0 8.18
25 0.56 6.579 10 7.06 18 6.37
100 2.7 6.535 20 6.03 60 4.99
250 10.7 6.397 120 3.71
400 24.8 6.183 240 3.19
500 39.4 5.989 480 240
the free surface that overlies a relatively well-mixed region dp L
near the lower wall. The presence of the mixed region must dz* =Ae™ ", (40)
depend on the existence of active turbulence since the den-
sity gradient of the laminar solution vanishes only near the ~ With the boundary conditions
wall. The thickness of the pycnocline increases with Ri,, dp . dp .
implying that the turbulence generated near the lower wall is &= 0)=1, e (z —)=0. (41)

less effective at mixing for large Ri, . It should be noted that
the density gradient is small but nonzero and nearly constant
in the lower portion of the channel and only vanishes in a
very thin layer within about five wall units from the wall.
Figure 4(b) shows the variation of Ap between cases. Ap
tends to increase with increasing Ri, (increasing stabiliza-
tion) but, even for the largest Ri,=500 considered here, Ap
is much smaller than in the laminar case, another indication
that the bottom wall continues to strongly generate
turbulence.

The scaling of the pycnocline thickness as a function of
the imposed stratification can be seen by considering a
simple model. From Fig. 4(a) it might be expected that an
exponential function will provide a good first-order represen-
tation to the density profile. First, for convenience, a nondi-
mensional vertical coordinate is defined from the free sur-
face, z'=1-z/h. Then, the density gradient is approximated
with an exponential,

(b)

AP/Ap]aminal'

: s 0.02
—— Laminar Solution
-1 -08 -06 -04 -02 0 0 100 200 300 400 500
(P-p,_)/ AP Ri_

FIG. 4. Mean density profiles and density difference across the channel.

The characteristic length scale of the pycnocline is L. Apply-
ing the boundary condition at the free surface gives A=1.
Figure 5 shows that the density gradient vanishes well before
the wall, so the zero flux boundary condition at z"=1 can be
approximated to occur at z'— oo, which is satisfied by Eq.
(40). Integrating Eq. (40) gives

p(z") = p(0) = L(1 — e 1h).

Evaluating as 7 — o0,

(42)

Ap

p() = p(0) = p(1) = p(0) = 0 =L.
@)

Therefore, the nondimensional characteristic length of the
pycnocline is L=Ap/(dp/dz|;h). Since Ap increases with

(43)

1 oy
0.9}
0.8}
0.7t
0.6
S 0.5}
0ar |~ Ri=0
e Rirzl()()
03F | ._._ Ri =250
02k | Ri=400
—— Ri =500
0.1t .
. . .
5 0.5 .

dp/dz / |dp/dz|s

FIG. 5. Mean density gradient.
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FIG. 7. rms density profiles normalized by (a) free-surface gradient and (b)
density jump across channel.
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Ri,, the model correctly predicts the same to be true for L.
The model fit to the density profiles is shown in Fig. 6. The
model captures the qualitative behavior of the data, however
the decay of dp/dz is overestimated for small Ri .

B. Turbulence characteristics

Figure 7(a) shows p,,, nondimensionalized with the sur-
face gradient and the channel height. In all cases, the maxi-
mum occurs in the pycnocline where the density gradient is
largest. Nondimensionalized in this way, the magnitude of
Prms increases with Ri., and the location of the maximum is
very close to the free surface in all cases but deepens slightly
with Ri,. However, from Fig. 7(b), it is apparent that the
ratio p.,s/Ap decreases with increasing Ri,, a sign that tur-
bulence is somewhat suppressed by the stable stratification
when Ri, is large.

Figure 8 shows the profile of the rms vertical velocity
components. In the lower portion of the channel, the profiles
collapse and are consistent with unstratified closed channel
flow. In the upper region, w,,, decreases monotonically with
increasing Ri.. Since w,, corresponds to the vertical turbu-
lent kinetic energy, and Ri, is linked to the size of the buoy-
ancy suppression term in the turbulence kinetic energy
(TKE) budget, the observed decrease might be expected. In-
terestingly, near the free surface where w,, is suppressed by
the geometry in the unstratified case, the dependence on Ri,
is lost. The profiles of u,,,, and v, are more complicated. In
the region between about 0.5 <z/h <0.85, the horizontal rms
velocity increases with Ri., consistent with the increase of
mean shear in that region. Then, in the near-surface region,
the horizontal rms first increases from Ri,=0 to Ri,=250,
then decreases sharply in the most stratified cases.

We can begin to trace the cause of the increase in (u)
with Ri, by looking at the Reynolds shear stress, (u'w’),

(b) (c)
1 F B 1 FT U I L N\ el l F ¥ T T T T T T T T E|
4
0.9¢ 1 09¢ 1 0.9f AN 1
N
\\\
0.8 1 0.8f 1 0.8} \\\\‘ 1
AN
0.71 1 071 1 0.7f \\ 1
\
0.6F 1 0.6r 1 0.6F \\\ 1
\
< 0.5¢ 1 0.5¢ 1 0.5} \ 1
N W\
0.4 1 o4} 1 04 \
0.3 1 0.3r 1 0.3F 1
0.2 1 0.2f 1 0.2 1
0.1} { 0.1} \{ 0.1F T
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0 4 0 02 04 06 08 10 12 O 02 04 06 08 1.0
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FIG. 8. rms velocity profiles.
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FIG. 9. Reynolds shear stress and mass flux.

shown in Fig. 9(a). Also shown is the total shear stress,
1(z)=7,(1-2z/h). It can be shown (e.g., Popezz) that the vis-
cous shear stress is the difference between this line and
(u’'w"). Thus, the increase in the mean vertical shear (equiva-
lently viscous shear stress) in the pycnocline, and therefore
(u) at the free surface, occurs because of the stratification-
induced decrease in the magnitude of (u'w’), which is espe-
cially strong when Ri_=500. The drop in («'w’) magnitude
will be explained using energy arguments in Sec. IV C.

Contributions to the Reynolds stress can be seen by plot-
ting u’ vs w' as shown in Fig. 10 for z/h=0.84. In each
quadrant of the plots is a label showing its contribution to
(u'w')/u®. The upwelling events can be clearly seen for
Ri,=0 by an anisotropic tail extending to the upper left.
When Ri,=500, the strength of the upwellings is diminished,
and the distribution becomes more isotropic. In both cases,
downwelling events are not as energetic as upwelling bursts,
and contribute less to (u'w’).

The buoyancy flux, B=—g/py(p'w’), couples the vertical
component of turbulent kinetic energy and the turbulent po-
tential energy. Figure 9(b) shows the mass flux, (p'w’), non-
dimensionalized by the free-surface density gradient, the
channel height, and u,. Vertical motion under the negative
mean density gradient implies a positive mass flux (negative
buoyancy flux) for the usual case of cogradient transport.
The mass flux decreases everywhere with increasing Ri,. and
has a small countergradient value near the surface when
Ri,=500. Countergradient transport is associated with falling

(a) er:()

(b) Ri =500

FIG. 10. u’ vs w' at z/h=0.84.
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FIG. 11. Absolute value of the velocity-density phase angle. (a) Ri,=0,
z/h=0.927, where (p’w’) is maximum; (b) Ri,=0, z/h=0.99 near the free
surface; (c) Ri,=500, z/h=0.825, where (p’w’) is maximum; (d) Ri,=500,
z/h=0.99, where (p’w’) is minimum and negative.

heavy fluid that releases potential energy to kinetic energy.
Komori et al.” also find a countergradient heat flux, although
they report it being much larger and appearing at lower Ri,
than in the present simulations. The difference is presumably
due to the boundary conditions, since in the Komori et al?
experiments, the wall and free surface were roughly held at
fixed temperature. Large countergradient buoyancy fluxes
were also seen in the study by Armenio and Sarkar' in a
closed channel with fixed temperature boundary conditions
at the walls.

The source of the countergradient buoyancy flux can be
seen by examining the phase angle of the velocity-density
spectra. By defining the cospectrum, Co,,,(«,,z), and quadra-
ture spectrum, Qu,,,(«,,z), as the real and imaginary parts,
respectively, of

D WKy, ky 2)P (Ko Kyn2), (44)

K. y

the phase angle ¢(k,,z) can be defined by

tan( ) = 2o (45)
Co

pw

The absolute value of the phase angle is shown for Ri,=0
and Ri,=500 in Fig. 11. The phase angle is averaged over
data at several time instants and linearly weighted by the
absolute value of the energy at the corresponding «, and ¢,
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FIG. 12. Energy of the velocity-density cospectrum at (a) Ri, =0, z/h
=0.927; (b) Ri,=0, z/h=0.99; (c) Ri,=500, z/h=0.825; and (d) Ri,=500,
2/h=0.99.

E,(kuz,t)= 2 (P +p'W), (46)

which is shown in Fig. 12. When 0 <|¢| < 77/2, the flow acts
to mix the density field, (p'w’) is positive, and energy is
extracted from the turbulent kinetic energy by buoyancy.
When /2 <|¢| <, the value of (p'w’) is negative, and
buoyancy is a source of turbulent kinetic energy since, on
average, heavy fluid is falling and light fluid is rising. It is
known that linear internal waves are associated with a phase
angle || =7/2, see, e.g., Gill.”* The horizontal wave number
K, in Fig. 11 has been nondimensionalized by the channel
height. For all cases, most of the energy is contained in wave
numbers k,<15 as seen in Fig. 12. Figures 11(a) and 11(b)
show that when Ri,=0, all wave numbers are in the range of
active mixing as would be expected for a passive scalar.
When Ri, =500, and at the location of maximum buoyancy
flux, z/h=0.825 [see Fig. 11(c)], the large energy-containing
scales have |¢|< /2, indicating mixing, while the small
scales exhibit a countergradient buoyancy flux of small mag-
nitude, see Fig. 12(c). Near the free surface where the buoy-
ancy flux is minimum and negative, most of the energy-
containing scales appear to be associated with linear internal
waves (|¢p|=m/2) or mild countergradient fluxes, while the
small scales are more strongly countergradient but of small
magnitude. From Fig. 12(d) it can be seen that the dominant
contribution to the countergradient buoyancy flux comes
generally from the large scales of motion.

Although the influence of Ri, on the bulk Reynolds
stress is rather small as also reflected in small changes to the
friction coefficient, the local turbulent diffusion is strongly
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FIG. 13. Normalized eddy viscosity and eddy diffusivity.

affected in a significant portion of the channel, as can be seen
by defining the eddy viscosity, vy,

—u'w'y= VTM.

dz “7)

The mean streamwise stress balance can then be written

( z) d<u>< 1 )
Tl\l——|=—|—+v;|,
h dz \Re,

so any change in the mean shear between cases must also be
reflected in the eddy viscosity, plotted in Fig. 13(a). Eddy
viscosity decreases very significantly with Ri_, even in the
interior of the open channel where stratification is relatively
low. The mass diffusivity «, defined as

<W’P/> == KT@’

dz

(48)

(49)

also decreases very significantly with Ri, at nearly every
vertical level as shown in Fig. 13(b).
The buoyancy or Brunt-Viisild frequency, N defined as

_—8g&p)

N2
po 9z

(50)
is shown in the left panel of Fig. 14. This plot makes clear
the deepening and strengthening of the pycnocline with in-
creasing Ri,. A local measure of the relative importance of
stratification and shear, the gradient Richardson number can
be defined using N and the mean shear, S=d(u)/dz, so that
Ri,=N?/S?, also shown in Fig. 14. The gradient Richardson
number measures the relative importance of turbulent pro-
duction by the mean shear, and suppression by the stable
stratification. As such, it is associated with the stability of the
flow, with linear instability possible only if Ri,<1/4 some-
where in the domain. Since N increases with Ri_, it is sur-
prising that above the linear stability threshold, Ri, tends to
decrease with Ri.. Evidently an increase in mean shear more
than compensates for the increase in N.
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FIG. 14. Brunt-Viisild frequency and gradient Richardson number.

C. Turbulence-surface interactions

The increase in (u) seen near the free surface in the
highly stratified cases can be attributed to a potential energy
barrier created by the presence of the pycnocline. It has been
shown previously10 that a large portion of the Reynolds
stress near an unstratified free surface in open channel flow is
due to impinging of low-speed fluid advected from the near-
wall region. While the wall-generated low speed streaks do
not maintain coherence over distances comparable to the
channel height in this study, low-speed ejections from the
wall boundary layer are observed to directly impact the free
surface in the low stratification cases.

That the upward advection of low speed fluid to the sur-
face is inhibited for large Ri, is implied by the drop in cor-
relation between u’ and w’ in the Reynolds stress of Fig.
9(b). To determine the fate of turbulence generated near the
lower wall more directly, it is useful to consider an energy
balance. Traditionally, the buoyancy scale w,,/N gives a
measure of how far a fluid parcel would travel vertically if
all of its vertical turbulent kinetic energy were converted to
potential energy. For the situation considered here, this is not
accurate since N is highly variable in the vertical direction.
For instance, in the highly active region near the lower wall,
Wi 18 large while N is small, so the buoyancy scale may be
very large. However, the presence of a strong pycnocline
near the surface adds to the potential energy barrier, and may
prevent direct interaction with the surface.

As a more accurate measure of the ability of local tur-
bulence to reach the free surface, we compare the vertical
turbulent kinetic energy to the potential energy deficit rela-
tive to the free surface. This ratio, shown in Fig. 15, is

h
g f [{p)(2) = {p)(z")]dz’

% vy (51)
As expected, this ratio is largest when Ri,=500 since this
case has a stronger, deeper pycnocline, requiring more en-
ergy to reach the free surface. The cases with the lowest
stratification, namely Ri.=25 and Ri,=100, have small val-
ues of this ratio. Since the pycnocline is weak in relation to
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FIG. 15. Ratio of potential energy needed to reach the upper surface from a
given location to the vertical TKE at that location.

the vertical TKE, the cases with Ri,=25 and Ri,=100 are
quite similar to the passive scalar case, Ri,=0. The strength
of the pycnocline dominates over the vertical TKE when
Ri,=500. As the low-speed fluid near the wall, on average,
does not have sufficient energy to reach the surface in the
latter case, a drop in {u'w’) is observed near the surface and,
correspondingly, there is an increase in (u). It should be
noted that, since this ratio is an average measure, it does not
preclude the instantaneous advection of bottom fluid to the
surface, but does indicate that it is much less likely when a
strong pycnocline exists.

The strength and frequency of upwelling events can be
quantified with a joint probability density function (PDF) of
the vertical velocity, w, and density anomaly, p’(x,?)
=p(x,1)—{p)(z), as shown in Fig. 16 for Ri,=0 and 500 at
z/h=0.975. The figure caption lists the values of p’ corre-
sponding to the mean density at the top and bottom for com-
parison. The plot indicates that when Ri,=500, it is very rare
for fluid with density equal to the mean at z=0 (correspond-
ing to p’=0.056 and well out of the plotted region) to be

(a) Rig=0 (b) Rig=500
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FIG. 16. Joint PDF between vertical velocity, w, and density anomaly,
p'(x,0)=p(x,1)—(p)(z), at z/h=0.975 for (a) Ri,=0, (b) Ri,=500. The den-
sity anomalies corresponding to (p) at the top and bottom, respectively, are
—0.013 and 0.008 for Ri,=0, and —0.023 and 0.056 for Ri,=500.
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FIG. 17. Instantaneous height maps of vertical velocity with density pertur-
bation in grayscale.

seen at this height. In the case of Ri,=0 it is common to see
p'=0.008, the mean at z=0, and the free surface value p’
=-0.013 is somewhat less likely. The tails of the w distribu-
tion are wider when Ri,=0 and p’>0; a large w and p’
>(.008 is associated with the strong upwelling events seen
when Ri =0 and mentioned previously. For the case of Ri,
=0, large w events of both signs are associated with positive
density anomaly and the distribution is nearly symmetric
about w=0. Evidently, at this location, the downwellings of
dense fluid are as strong and frequent as the upwellings.
When Ri,=500, the largest vertical velocities are no more
likely to be associated preferentially with either heavy or
light fluid, indicating that events with upwelling of dense
fluid are not dominant.

The effect of stratification on dense fluid upwellings at
the free surface can also be clearly seen by examining instan-
taneous visualizations of the velocity and density fields. Fig-
ure 17 shows p’ and w', the deviation from the horizontal
mean, at z/h=0.999 for Ri,=0 and Ri,=500 at the last simu-
lation time in both cases. The height of the surface mesh
denotes the vertical velocity with the tall peaks indicating
rising fluid (w’>0). The corresponding grayscale shows p’
with dark gray denoting heavy fluid with positive p’. Notice
that for Ri,=0, each region of upwelling is associated with a
positive density anomaly indicating an upwelling of dense
fluid from the bottom. When Ri,=500, none of the positive
w' patches at this particular time are associated with large
positive p’. These snapshots are typical of those seen
throughout the simulation; while the existence of dense fluid
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FIG. 18. (a) Ozmidov scale with Kolmogorov scale and geometric con-
straints, (b) ratio of Ellison to Ozmidov scales.

upwellings cannot be precluded for the strongest stratifica-
tion cases, they are much less common than when Ri =0.

D. Classification of buoyancy effects

It will be useful for the remaining discussion to precisely
define regimes according to the relative influence of stratifi-
cation. Since part of our flow remains unstratified, a local
measure of buoyancy effects is desired. It would be possible
to follow Armenio and Sarkar,1 who, based on qualitative
changes in mean flow profiles, correlation coefficients, and
the buoyancy flux at Ri,=~0.25, defined a buoyancy-
dominated region in the outer flow where Ri,(z) >0.25, and
a buoyancy-affected region near the wall where Ri,(z)
<0.25. From an examination of mixing diagnostics as a
function of Rig presented later in Sec. IV F, it is clear that a
classification based on Ri, would not work in the present
case. Instead, it is suggested that the stratification may be
classified by comparing turbulent length scales with the
Ozmidov scale as reported in Itsweire et al® They use the
Ellison length scale, Lg, to characterize the large scales of
turbulence and the Kolmogorov scale, 7, to characterize
small scales, and find that the buoyancy-affected region (the
beginning of departure from passive scalar behavior also
called buoyancy control by these authors) begins when L,
~ L, and buoyancy domination begins when L,= 97, where
7 is the Kolmogorov scale. We find that Ly overestimates the
large scale of turbulence and we propose that, for the
bounded flow considered here, use of the distance to the
nearest boundary gives a more direct estimate of the length
characterizing the large vertical scales of turbulence. We de-
fine this geometric scale by L.=min[2z,2(h—z)]; the factors
of 2 have been added to give a peak to crest overturning
scale.

Figure 18(a) shows profiles of the Ozmidov scale along
with nine times the Kolmogorov scale, and the geometric
scale, L. This figure can be used to classify the relative
importance of buoyancy. When L,> L, and >9, the depar-
ture from unstratified flow is expected to be small. When
Lo<L, but >97, the flow is buoyancy affected, and when
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Lo<9m, the flow is buoyancy dominated. It should be
stressed that the demarcation between regimes is not sharp
and that the definition of the length scales is only approxi-
mate. For instance, the geometric constraints on the upper
and lower walls clearly should not be symmetric, and large
eddies will not be isotropic. Nevertheless, the flow does ap-
pear to be qualitatively different in each regime. In particu-
lar, notice that Ri,=25 would be classified as unstratified,
and Ri,=100 is only marginally buoyancy affected in the
pycnocline, and we will see that these cases are qualitatively
different from the others.
It is evident by reexamining the turbulent profiles that
the flow behaves qualitatively different in each buoyancy
regime. In each case, in the region with L, <L, the profiles
of rms velocity, Reynolds stress, and buoyancy flux collapse
to the unstratified case, Ri,=0. For Ri,=500, this corre-
sponds to z/h<<0.4. Note that, in this region, N and p,,
remain dependent on Ri,, indicating that, although density
changes remain, they are too weak for buoyancy to signifi-
cantly influence the turbulence. Stratification starts to play a
dynamical role in the buoyancy-affected regime when 9%
<Ly <L,. This regime applies to the flow region generally
below the pycnocline, and the strength of buoyancy effects
additionally depends on Ri, e.g., the horizontal rms velocity
increases and w,,, decreases with increasing Ri,.. As will be
shown, the turbulent kinetic energy budget also changes sig-
nificantly with Ri,. The location when L, becomes less than
97 roughly corresponds to the start of the pycnocline, except
in the cases with Ri,=0 and 25 where L, is never a limiting
length scale. In the buoyancy-dominated regime, the depen-
dence of Uy, Upms, and Ri, on Ri, reverses compared to that
of buoyancy-affected flow. We will see that this is also true
for the mixing efficiency and the turbulent Prandtl number.

E. Turbulent energy budgets

The profiles of the Reynolds averaged turbulent kinetic
energy,

(ky = 3(uu),

are shown in Fig. 19. Several regions with distinct behavior
can be identified. First, below z/h =~ 0.4 all cases behave like
the passive scalar case, Ri, =0, and stratification is not felt.
Then in the region 0.4<z/h<0.85, the value of (k) in-
creases with increasing Ri, . Finally, in the near-surface re-
gion where the more stratified cases become buoyancy-
dominated, the behavior is more complicated, first increasing
with Ri,. when Ri <250 and then decreasing in the largest
stratification cases.

At statistically steady state, the Reynolds averaged tur-
bulent kinetic energy budget can be written

(52)

! ! ! ! ! 1 &2<k> ! !
- E&_Z<W uiu)— ﬁ—z(w py+ _ReT PN (SN uju;)
1/ du! du] d
——\ —L—L ) _Rilw'py = —ul 7
RCT (9Xj (9Xj T(W P > (?Z<ul 7-31>
du; k)
+\ 77— )=—"=0, 53
e ot (53)
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FIG. 19. Nondimensional turbulent kinetic energy.

where all terms are made nondimensional with u., |dp/dz
and h. The terms are the turbulent transport, pressure trans-
port, viscous diffusion, production, dissipation, buoyancy
flux, subgrid transport, and subgrid dissipation, respectively.
These terms are shown in Fig. 20 in the upper portion of the
channel, and normalized by u*/v. Near the free surface, the
production decreases while the turbulent and pressure trans-
port increase to balance the viscous loss. Such behavior is
similar to that shown by Calmet and Magnaudet25 for an LES
of unstratified open channel flow at Re.=1280. In the lower
portion of the channel, the dominant balance is between pro-
duction and dissipation, and this behavior can still be seen in
the lower portion of Fig. 20.

The diagonal components of the pressure-strain tensor
are shown in Fig. 21 where

53
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FIG. 20. Turbulent kinetic energy budgets for (a) Ri,=0 and (b) Ri,=500,
normalized by u?/v.
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FIG. 21. Pressure-strain correlations over (a) whole channel and (b) near-
surface region. Lines denote Ri,=0, symbols denote Ri,=500.

du;  Ju;
I, = I—’<ﬁ+—”l) . (54)
p\dx; ox;

Since the trace of the tensor, I1;=0, it does not contribute to
the budget for (k), but is important for the redistribution of
energy among the rms velocity components. For example, as
is well known and seen in Fig. 21(a), near the wall I1,; is a
large sink for u,,, and a source for v, and w,,. In this
region, the pressure-strain terms act to isotropize the Rey-
nolds stresses. This behavior holds until about z/2=0.9. Fig-
ure 21(b) shows the upper portion of the channel in more
detail. Again, solid lines denote Ri,=0 and lines with sym-
bols denote Ri,=500. In both cases, near the free surface 1155
becomes negative and I1,; and I1,, become positive, indicat-
ing energy transfer from the wall-normal component to the
horizontal directions. Since u,,,, and v, are larger than w
in this area, this transfer promotes anisotropy, a behavior that
has been associated with the “splatting” of fluid on the free
surface.*™™ Nagaosa and Saito* report that increasing the
fixed temperature difference between the top and bottom of
open channel flow decreases the transfer from vertical to
spanwise directions through the pressure strain. Interestingly,
here with a fixed temperature gradient at the free surface we
find the opposite effect. Increasing Ri, increases the energy
transfer from the vertical to horizontal directions. One expla-
nation for the reduction of II; with increasing stratification
found by Nagaosa and Saito is the partial relaminarization of
the near-wall turbulence in their simulations, which results in
a drop in each rms velocity component throughout the chan-
nel. The level of turbulent kinetic energy impacting the sur-
face is therefore significantly smaller, as is the pressure-
strain correlation. The effect on pressure strain in the present
study need not be the same as in Nagaosa and Saito, since
here the turbulent production at the lower wall is unaffected
by stratification.

0.9
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S 05 i
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03 |- - Ri=500 ozl
0.2 N
0.1} T--
0.1
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R Ri
uw g

FIG. 22. Streamwise, wall-normal velocity correlation coefficient.

As was mentioned in Sec. I, previous studies®® have
shown that turbulence at a free surface without the presence
of stratification cannot be well represented by two-
dimensional dynamics. It is generally thought that stratifica-
tion tends to make turbulence more two-dimensional, so it
might be anticipated that, with sufficient stratification, the
dynamics at the free surface might be approximated by a
two-dimensional model. However, the turbulent kinetic en-
ergy budget at the free surface shows that vertical gradients
are important. It is therefore apparent that knowledge about
the subsurface three-dimensional turbulence is necessary to
model the dynamics at the free surface.

Although the pressure-strain transfer from w to u and v
becomes larger with increasing Ri,, it is interesting that the
x-z velocity correlation coefficient defined as

! !
Ruw == M (55)
urmswrms

decreases with increasing Ri,, dropping to zero at the free
surface in the case with Ri,=500, as seen in Fig. 22(a). Our
results with Ri,=0 compare well to those of Nagaosa9 in
unstratified open channel flow, except for a few minor dif-
ferences that can be explained by the fact that we use a larger
friction Reynolds number, Re.=400 compared to Re,=150.
When Ri =0, the value of R,, at the free surface is nearly
half of the maximum value. However, we see that R, de-
creases at the surface with increasing Ri,, and when Ri,
=500, it becomes very small. When plotted as a function of
Ri, as in Fig. 22(b), it appears that the behavior is well
separated into two regions by Ri,=0.25. When Ri, <0.25,
the buoyancy-affected cases (Ri,=250) appear to collapse to
one function of Ri,. For Ri,>0.25, R,,, decreases with in-
creasing Ri,.

F. Mixing diagnostics

The mass flux is plotted as a function of Ri, in Fig.
23(a). The maximum occurs near Rig=0.25, and the cases
with larger Ri, exhibit a decrease of mass flux with increas-
ing Ri,. Although this dependence on Ri, is consistent with
Armenio and Sarkar,1 it should be emphasized that there is
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FIG. 23. Nondimensional mass flux vs (a) Ri, and (b) vertical Froude
number.

an important difference: when plotted as a function of Ri,,
the buoyancy flux is still strongly dependent on Ri,. An al-
ternate stratification parameter is the vertical Froude number,

Wrms
Fr,=—"m

: 56
NL, (56)

where Lp=—(p;ms)/(d{p)/dz) is the Ellison scale, and Fig.
23(b) gives the mass flux, replotted as a function of Fr,. The
three largest Ri, cases, where buoyancy has been seen to
play an important role, show much less dependence on Ri,
when plotted against Fr,, compared to Ri,. The parameter Fr,
is a direct measure of the state of stratification of the turbu-
lence itself. Collapse between cases using Fr, indicates that
buoyancy affects turbulent transport, not solely the shear
production as measured by Ri,. The vertical Froude number
has been used here instead of the isotropic turbulent Froude
number, Fry=(2(k))""?/(NLg), since a better collapse of the
data is obtained using only the component of the TKE di-
rectly responsible for vertical mixing. A vertical profile of
Fr, in Fig. 24(a) reveals that it is largest near the bottom wall
and decreases monotonically with Ri,.. At any given z, the
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FIG. 24. Vertical Froude number vs (a) z/h and (b) Ri,.
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FIG. 25. Mixing efficiency, —B/(-B+€).

value of Fr,(z) decreases with increasing Ri,, and it is this
decrease in Fr,(z) between cases that is responsible in part
for the observed buoyancy effects. From Fig. 24(b) it can be
seen that the peak in Fr, occurs at very small Ri,, about
1072-107*, although Fr, is still O(1) near the linear stability
threshold, Ri,=0.25.

Ivey and Imberger26 define a “generalized flux Richard-
son number,”

-B
Rf_

= , 57
-B+e 57

where B=—Ri{p'w’) is the buoyancy flux seen in Eq. (53)
and e is the viscous dissipation. This definition is generalized
from the definition R;=—B/P to be useful for flow regions
where shear production is not the dominant source of local
turbulence. This quantity, limited to be between 0 and 1, is
also called the mixing efficiency since it represents the ratio
of the power expended in working against stratification to the
total kinetic energy sink (and hence an upper limit for the
energy available for mixing). This quantity is shown in Fig.
25. The maximum mixing efficiency is slightly lower than
0.2 in the highly stratified cases and does not appear to in-
crease with Ri, beyond Ri,=250. As can be seen, the behav-
ior is qualitatively different in the cases with smallest Ri, .
When the flow is in the buoyancy-dominated regime, the
mixing efficiency appears to collapse to one function of z/h.
Figure 26(a) shows —B/(—B+€) plotted as a function of the
gradient Richardson number. It is evident that even when Ri,
and Ri, are large, the mixing efficiency is not well described
by a single function of Ri,. A much better collapse is ob-
tained by plotting the mixing efficiency as a function of the
vertical Froude number. As a function of Fr,, the largest
stratification cases collapse quite well, except perhaps when
Fr, is small and the buoyancy flux becomes negative for
Ri,=400 and 500.

The turbulent Prandtl number, defined as Pry=«q;/vp,
where k; and vy are the turbulent diffusivity and turbulent
viscosity, respectively, is shown in Fig. 27. For Ri,<0.25,
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the value of Pry in all cases grows rapidly with Ri,, but
dependence on Ri, is nonmonotone. For 0.25<Ri, <1, Pry
and its growth rate decrease with Ri, . For even larger values
of Ri,, however, as seen in Fig. 27(b), the cases with Ri,
=400 and 500 begin to grow very rapidly before Pr; be-
comes negative (the eddy diffusivity concept fails) when a
countergradient buoyancy flux develops. This is qualitatively
different from what is seen by Armenio and Sarkar' (see their
Fig. 17). For Ri, <0.2, they report that Pr;~ 1 and is nearly
constant with Ri, and Ri_ 5. For Ri,>0.2, the less stratified
cases continue growing slowly. When Ri, is large and Ri,
>(.2, they report a very rapid increase of Pry, which even-
tually becomes negative when countergradient buoyancy
fluxes are seen. In the present study, Pr; becomes singular at
much larger values of Ri,. It is difficult to draw a direct
comparison since Armenio and Sarkar' considered much
larger values of Ri,, than are possible here. However, in
their case 2, with Ri ,=60, they show that the buoyancy flux
stays positive, and Pry grows slowly with Ri, and does not
become singular. In the present study, cases Ri,=400 and
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FIG. 27. Turbulent Prandtl number vs Ri,.
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500 correspond to Ri ,=24.8 and 39.4, yet both of these
cases have a countergradient buoyancy flux and a singular
turbulent Prandtl number.

Buoyancy effects on mixing are sometimes ascertained
by examining the ratio of the Ozmidov to Ellison scales,
where the Ellison scale,

prms

- d{p)ldz’

. (58)
is an indicator of the size of turbulent overturns. With in-
creasing N, the value of L, decreases, and when L, becomes
less than Ly, stratification is expected to become dynamically
important. Note that Lz is only an approximation to the tur-
bulent overturning scale, and in particular will be an overes-
timate when internal waves are present and contribute to
Prms- The ratio of Lg/L, is shown in Fig. 18(b) as a function
of z/h. The vertical profile maintains a similar shape, but
increases in magnitude with Ri,.. The maximum value occurs
just above z/h=0.9 and decreases close to the free surface.
Lg/Ly is seen to vary significantly with Ri, even when plot-
ted as a function of Ri, (not shown), and the peak value
varies from about 0.25 to 2.2 at Ri,~ 1. This is contrary to
the results of multiple studies of stratified shear layers where
it has been observed that for Ri,>0.25, Lg/L, is maximum
and remains constant with increasing Rig.27 The behavior
seen here is qualitatively different since as the free surface is
approached where Ri,> 1, Lg/L, decreases to about 1, half
of its maximum value. At a given Ri,, Ly/L, decreases with
Ri,.. As with the mixing efficiency and the buoyancy flux,
the length-scale ratio found here cannot be well described by
a single function of Ri,.

G. Comparison to Armenio and Sarkar

In order to put the present results on stratification effects
in perspective, it is helpful to make a brief direct comparison
with the stratified channel flow simulation of Armenio and
Sarkar.' Among the differences between the two studies are
the following features of the current study: a free surface, a
larger Reynolds number (increased to 400 from 180), a larger
Prandtl number (5 vs 0.71), and the thermal boundary con-
ditions (zero heat flux at the bottom and imposed heat flux at
the top instead of imposed bottom and top temperatures).
The primary goal of this paper is to examine how the change
in thermal boundary conditions, and equivalently the manner
by which stratification is imposed, affects the turbulence and
its interaction with the temperature field. As was mentioned
in Sec. I, this should provide some insight into the difference
between an oceanic bottom boundary layer with no heat flux
at the sea floor and a stable atmospheric boundary layer
where the ground cools the surrounding air. While many fea-
tures of a true oceanic boundary layer such as rotation, bot-
tom roughness, and oscillatory forcing have not been consid-
ered here, any insights could be significant since the benthic
boundary layer is notoriously difficult to observe in the field,
and often parametrizations are developed by borrowing from
knowledge of turbulence in the atmosphere.

It has been shown that the difference between the choice
of boundary conditions has a very significant impact on the
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physics of the turbulence and mixing of the density field. In
the present study, the near-wall region where production is
large remains unstratified for all cases considered. This is
also true in the benthic boundary layer where a well-mixed
boundary layer of variable thickness is nearly
ubiquitous.zg_30 That the dominant region of turbulence pro-
duction is relatively unaffected by stratification is why the
gradient Richardson number, often used in parametrizations
of stratified turbulence, is less useful in the present study.
Indeed, as has been shown, many turbulence and mixing
quantities, when plotted as a function of Rig, do not show
collapse between cases to a universal dependence on Ri,
observed in previous studies of flow with vertical shear. In-
stead, it has been argued that stratification has an additional
effect that acts to limit the vertical transport of turbulent
patches by imposing a potential energy barrier. The vertical
Froude number, Fr,, constructed by using the vertical rms
velocity and the mean density gradient, is a better indicator
of such a buoyancy effect on turbulent transport and, conse-
quently, in the upper stratified region of the channel, Fr,
provides a better collapse of the mixing efficiency and buoy-
ancy flux than Ri,.

One consequence of the influence of stratification on tur-
bulent production at the lower wall in the study by Armenio
and Sarkar' is that the skin friction coefficient decreases
sharply with Ri, s, much more so than in the present study,
where stratification does not significantly affect turbulent
production at the lower wall. The reverse is seen, however,
when considering the dependence of the buoyancy flux on
Ri, . Here, the buoyancy flux becomes countergradient in
the pycnocline when Ri =400, which corresponds to Ri, A
=248, while Armenio and Sarkar! do not observe counter-
gradient buoyancy fluxes in the steady state until Ri, A
=240. The relatively strong sensitivity of the buoyancy flux
to Ri, 4 in the present case is likely due to the fact that nearly
all of the density change across the channel occurs in the
pycnocline where the countergradient buoyancy fluxes are
seen. Armenio and Sarkar' also find the countergradient
buoyancy flux near the channel centerline, but the mean den-
sity gradient is more uniformly distributed throughout the
channel.

V. CONCLUSION

Turbulent open channel flow with an imposed density
gradient at the free surface corresponding to surface heating
and an adiabatic bottom boundary was investigated and the
effects of changing the friction Richardson number, Ri,,
have been examined. In all cases, a stably stratified pycno-
cline overlies a lower region that is well mixed by turbulence
generated at the lower wall. As Ri, is increased, the turbu-
lence in the mixed region remains unchanged while the tur-
bulence in the pycnocline is affected by buoyancy, but never
completely suppressed. It is possible that by sufficiently in-
creasing Ri,, the flow in the pycnocline could relaminarize,
although this limit is not obtained here. It is observed that
increasing Ri, results in an increase in the bulk Reynolds
number, Re;,, and a deepening and strengthening of the pyc-
nocline. The mean velocity deviates from the log law with
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the extent of the deviation systematically increasing with
Ri, . Since the mean shear is too small in the pycnocline for
local turbulent production, the influence of increasing the
surface stratification can be explained by a potential energy
barrier affecting the interaction of bottom boundary layer
turbulence with the surface region. Visualizations and joint
PDFs of p’ and w show that upwelling of dense bottom fluid
to the surface becomes rare in the large Ri, cases.

As has been shown in Sec. IV F, the gradient Richardson
number is not enough to parametrize the buoyancy flux.
Since this is contrary to some previous results, it warrants
further discussion. Komori er al.? found that Ri, is the best
parameter for describing the local effect of stratification in
their heated, open channel experiments. Armenio and Sarkar'
reach the same conclusion in a closed channel with a fixed
temperature difference between the walls. The important dif-
ference between these results and the present study is that the
turbulence generation region remains unstratified in our case.
The boundary conditions used here separate the influence of
stratification near the free surface from the flow elsewhere.
The previously observed dependence on Ri,, therefore,
seems to be due to the stratification of the near-wall region
where turbulence is produced, with this region in turn affect-
ing the outer region. The vertical Froude number, a direct
measure of the state of stratification of the turbulence, is
found to be a better indicator of buoyancy effects on turbu-
lent transport in the present configuration. Another conse-
quence of the difference in boundary conditions is that the
decrease in skin friction with increasing Ap observed here is
significantly smaller than that observed with constant density
boundaries. Finally, we have seen that even when the density
gradient becomes very large, free-surface turbulence is not
well-represented by two-dimensional physics since terms in-
volving vertical gradients remain important in the balance of
turbulent kinetic energy.
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