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Contemporary Mathematics

Moving beyond averages: Individual-level variation in
disease transmission

James O. Lloyd-Smith, Sebastian J. Schreiber, and Wayne M. Getz

Abstract. It is common practice in disease modeling studies to characterize
groups or subgroups using population-average parameters, most importantly
the basic reproductive number, R0. This approach overlooks variation at the
individual level, which is caused by many factors. In this paper we show
evidence of significant individual-level variation in transmission patterns for
several diseases, and discuss how this can be incorporated into epidemiological
models. We introduce a natural generalization of R0: the ‘individual repro-
ductive number’, ν, which is the expected number of secondary cases caused
by a given infected individual. Individual reproductive numbers for a popu-
lation are drawn from a continuous probability distribution with mean equal
to R0 (or to the effective reproductive number, R, if the population is not
wholly susceptible). In this framework, superspreading events correspond to
extreme values from the right-hand tail of the distribution of ν, and we pro-
pose a precise and generalizable definition of superspreading events based on
probabilistic considerations. We analyze detailed transmission data for a range
of directly-transmitted diseases, and find that conventional models assuming
homogeneous transmission cannot account for observed patterns. Analysis of
a branching process model incorporating individual-level heterogeneity reveals
that observed levels of variation cause invasion dynamics to differ dramatically
from predictions based on population averages. We explore the implications
of these findings for outbreak control policies, demonstrating that individual-
specific control measures are more likely to stop an outbreak than population-
wide measures when both have the same effect on R0. We also highlight the
effectiveness of measures targeting highly infectious individuals, and discuss
how our results relate to recently-proposed surveillance methods for emerg-
ing diseases. We conclude by discussing future challenges in empirical and
theoretical studies.

1. Introduction

The accurate representation of population heterogeneity is one of the great on-
going challenges of epidemic modeling. While substantial progress has been made
over the years, we are sometimes reminded by nature that we have much still to
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learn. Such was the case during the global emergence of severe acute respiratory
syndrome (SARS) in 2003, when numerous ‘superspreading events’ (SSEs) were
reported in which certain individuals infected large numbers of secondary cases
[54, 77]. These individuals did not share obvious attributes that would have al-
lowed them to be identified in advance as potential superspreaders, particularly
given the broad spectrum of symptoms exhibited by SARS patients [72]. The SSEs
therefore focused attention on the important role of individual variation in disease
invasion dynamics, a topic which has historically received much less attention than
group-level heterogeneity [29]. Here we review established approaches to model-
ing heterogeneous infectiousness, then describe and expand upon our recent work
exploring the effect of individual variation in infectiousness on outbreak dynamics
[61].

In particular we focus on diseases that are transmitted by direct non-sexual
contact, such as SARS, smallpox or measles. Previous work on individual varia-
tion has focused largely on other classes of diseases, for which infectiousness can
be approximated by some surrogate measurable quantity. For helminthic diseases,
the aggregation of parasites within individual hosts is a well-known phenomenon
[76], and is linked to infectiousness via parasite egg density in host faeces (indeed
this is often how parasite aggregation is estimated). For vector-borne and sexually-
transmitted infections (STIs), host contact rates (i.e. rates of contacting other hosts,
or being bitten by vectors) are commonly used as surrogates for host infectious-
ness and susceptibility [4, 82]. As we discuss below, the total infectiousness of a
particular host individual—by which we mean the total number of secondary cases
infected by that host— can depend on many factors, so these surrogate measures
may leave a significant proportion of between-individual variation in infectiousness
unexplained.

Based on ten datasets of contact rates, Woolhouse et al. proposed a general
‘20/80 rule’ whereby 20% of individuals are responsible for 80% of transmission of
STIs and vector-borne diseases [82]. They conclude by speculating that this pat-
tern, based on heterogeneity in contacts alone, “may well apply to other infectious
agents where ‘contact’ is less easy to measure”, but that “additional heterogeneities
are also likely to contribute to the effects on R0”. In this paper we describe work
that begins to address other directly-transmitted diseases and additional sources of
heterogeneity.

2. Heterogeneity and disease transmission

Many dimensions of heterogeneity can impact disease spread [46, 4, 20, 82, 25,
38, 39]; we restrict our attention here to heterogeneity in infectiousness. We use in-
fectiousness as a term encompassing all factors that combine to determine the total
number of secondary cases caused by a given infectious individual (i.e. counting all
cases infected in the first generation of spread from the individual in question). We
emphasize the distinction from other usages, in which infectiousness describes the
rate at which individuals cause infections or the probability of transmission given
contact. Many factors will contribute to variation in the number of individuals
infected, including properties of (and interactions among) the host, pathogen and
environment. We discuss these factors more fully in Section 2.2.

It is useful to structure our thinking about disease transmission using the basic
reproductive number, R0, which is defined as the expected number of secondary
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cases caused by a typical infected individual in a wholly susceptible population,
and acts as a threshold parameter for disease invasion [4, 25]. R0 has important
fundamental and applied properties, and is central to our current understanding of
infectious disease dynamics. R0 can be regarded as the product of three factors:
χ, the rate at which infectious individuals contact others in the population; β, the
probability that the disease is transmitted to a susceptible individual, given contact;
and D, the duration of the infectious period1.

It is common practice to calculate R0 as the product of estimated mean values
E(·) for each of these parameters. An immediate problem with this approach is
that

R0 = E(χβD) 6= E(χ)E(β)E(D)

if any correlations exist among χ, β and D, as can easily be imagined. For example,
high viremia (due to low immunocompetence, say) may lead to increases in both the
probability of infection given contact (β) and the time required to clear an infection
(D). Some possible phenomenological relationships among these parameters have
been described elsewhere [71]. In most work on heterogeneity in disease spread such
correlations are incorporated implicitly, if at all, alongside a focus on the effects of
population structure.

2.1. Group-level approaches to heterogeneous infectiousness. The vast
majority of studies considering heterogeneity in infectiousness treat the phenom-
enon at the level of groups. These studies assume that the host population is
structured into distinct groups, each of which is itself assumed to be homogeneous.
Often this approach is used to examine the effects of different mixing patterns
among groups (e.g. [46, 20, 74, 9, 5, 36, 6, 23]). This is not our current focus,
except inasmuch as mixing patterns induce heterogeneity in total numbers infected
by different individuals (for instance, due to certain groups being remotely located).
More important for the current discussion are models in which groups are assumed
to have different levels of infectiousness. Fundamental studies have addressed the
general problem of disease in multi-group populations, whether the grouping in-
fluences mixing, infectiousness, susceptibility, or other traits [46, 26, 1, 47, 80],
while other work has examined group-level heterogeneity in the context of specific
diseases [63, 20, 49, 48, 59]. An elegant series of papers has analyzed stochastic
multitype models, in which the population is assumed to consist of multiple ‘types’
of individuals in a single, well-mixed population [16, 10, 18] or in a structured
population [11]. In all of these studies, and many others not cited here, the host
population is divided into distinct groups corresponding to characteristics deemed
relevant to the situation at hand. These characteristics may be discrete (e.g. sex)
or continuous (e.g. age or promiscuity) but discretized into arbitrary classes. In
theoretical papers these details are typically subsumed into different parameters
for infectiousness or susceptibility for each group.

1We note that R0 is a concept that applies to a completely susceptible host population, in
the absence of disease control measures. In populations that are not wholly susceptible (because
some individuals are already infected, or have acquired immunity via vaccination or recovery from
infection) or where control measures are in place, the expected number of secondary cases caused
by a typical infected individual is defined as the effective reproductive number, R. Throughout
this paper, for conciseness, we mostly use the term R0 in general statements, but the reader should
understand that these statements generalize to R when appropriate.
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This body of work constitutes an integral part of epidemiological theory, and
provides valuable tools to address many important questions—particularly those
where mechanisms of disease spread, or disease control, are linked to identifiable
types of individuals. However, for the present task of quantifying the full extent of
heterogeneity in infectiousness from all sources using data from real epidemics, the
multi-group approach has certain shortcomings. First, and most crucially, multi-
group models of heterogeneity can be applied only when different groups can be
identified a priori according to some observable properties. As we argue below,
many factors act together to determine an individual’s total infectiousness, and only
in rare situations will the resulting levels of infectiousness fall into clean groupings at
the population scale. Second, the number of transmission parameters grows rapidly
(m2 transmission parameters for a model with m types, though this number can be
reduced to O(m) with simple assumptions) and their estimation is a major challenge
even with rich datasets [17, 11]. Third, there is no single measure that describes
the degree of heterogeneity present in a multitype epidemic. Instead, different
groupings of a host population may apply better for different diseases (e.g. the
distinction between healthcare workers and community members was important
for SARS [59]). This hampers comparison between diseases (real or simulated)
and hence obstructs development of insight about the prevalence or consequences
of heterogeneity. Some of these difficulties were noted in a review article by two
eminent infectious disease statisticians, which drew the distinction between group-
level and individual-level heterogeneity and emphasized the need for development
of new methods to treat individual-level variation [17].

2.2. Factors causing individual-level variation in infectiousness. As
emphasized above, we use infectiousness as a term that embraces the total number of
secondary cases caused by a given infectious individual. Variation in infectiousness
arises due to heterogeneity in properties of the host, pathogen and environment.

At the host level, social, behavioral and physiological factors will be important.
Contact rates, although difficult to quantify for diseases transmitted through ca-
sual interactions, are a source of substantial heterogeneity among individuals [81].
Certain occupations (e.g. cafeteria worker, teacher, bus driver) inherently involve
contact with many people, while other callings (e.g. disease modeler) may be soli-
tary at some times and gregarious at others. Individuals respond differently to
symptoms of illness, with regard to seeking medical care or altering contact behav-
ior [60]. The probability of transmission given contact depends on host hygiene,
social mores, or certain activities known to facilitate pathogen dispersion (such as
singing, which generates aerosols at an increased rate, or handling food). A recent
study found significant differences among individuals in the quantity and size of ‘ex-
haled bioaerosols’ (small droplets of fluid, which may carry respiratory pathogens)
produced during breathing [30].

Other important properties arise from host-pathogen interactions. Coinfection
with other respiratory pathogens can aid spread by aerosolizing pathogens that
aren’t ordinarily airborne [78, 12, 13]. Age, nutritional status, vaccination history,
and other factors influence host immunocompetence, which interacts with pathogen
properties to determine the intensity and duration of infection. Genetic factors for
both host and pathogen can modulate this interaction [75]. The net result is that
the duration of the infectious period varies among hosts [35], and the pathogen load
and shedding rates vary both within and among hosts [53, 70]. The presence of
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numerous pathogen strains in an outbreak (either simultaneously or due to pathogen
evolution) will increase the observed heterogeneity in the population of infected
hosts.

Disease transmission is also influenced strongly by environmental factors. High
densities of host individuals lead to increased contact rates, and may aid trans-
mission by forcing close or sustained contact, particularly in crowded or confined
settings. The relative susceptibility of an infectious individual’s contacts will de-
termine what fraction of them become infected, and there can be significant spatial
heterogeneity in susceptibility due to pockets of ill, aged, or unvaccinated indi-
viduals. Availability of medical care will influence how long a case continues to
transmit in the general community, and the extent to which hospitalization stops
transmission will depend on the state of medical knowledge regarding the disease.
Note that, particularly for newly-emerged diseases, misguided actions during hos-
pitalization can actually aid transmission [59, 14]; we view this as a normal aspect
of the ‘human ecology’ surrounding novel pathogens, and include it as a factor
contributing to variation in infectiousness. Background environmental or weather
conditions can influence pathogen survival, perhaps underlying observed seasonality
in transmission of some pathogens [52].

This summary of factors influencing infectiousness is far from complete, but
already we see the dizzying complexity of the process. Myriad factors interact to
determine infectiousness, many of which cannot be measured or predicted for a
given individual’s infectious history. If the goal is to capture the full extent of
heterogeneous infectiousness in a model, then the approach of dividing a popula-
tion into distinct groups based on levels of infectiousness—and of inferring group
membership and parameter values from data—seems insurmountable under many
circumstances. Instead, it seems appropriate as a first approximation to think of in-
fectiousness as a continuously distributed quantity, incorporating all factors (host,
pathogen, environmental) that influence infectiousness into a univariate population
distribution.

2.3. Prior work incorporating continuous individual variation. Some
previous studies have treated heterogeneity in infectiousness using continuously-
varying parameters instead of group-level population structure. Many studies have
assumed that particular parameters are drawn from continuous distributions while
treating others as averages. Network models of disease, in which edges of a graph
depict contact relationships among host individuals, commonly represent hetero-
geneity in contact behavior using degree distributions [66, 58, 67], and sometimes
estimate these distributions from empirical data [31, 22, 64]. The distribution of
infectious periods has been analyzed in depth, motivated by the observation that
the exponentially distributed periods assumed in conventional models (with con-
stant per capita rates of leaving the infectious state) are overdispersed relative to
data [2, 51, 57, 56]. A recent analysis of SARS dynamics assumed that the trans-
mission rate (equivalent to χβ in our notation) is exponentially distributed [21].
Many other quantities, such as host age [27] or spatial location [65], are commonly
represented as continuous variables in models formulated using partial differential
equations or integro-differential equations.

A small number of authors have considered continuous variation in overall infec-
tiousness. The concept is intuitive and has been discussed qualitatively, particularly
with reference to the SARS epidemic with its abundance of SSEs [29, 3]. Several
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studies have introduced a distributed reproductive number for purposes of theoret-
ical exposition [25, 32]. Chain binomial models have been used to study stochastic
outbreaks in finite populations (such as households), under various assumptions
regarding heterogeneous infectiousness [8, 15], including some work on individual
variation. Bailey [8] analyzed measles transmission data for households with three
members, and “unequivocally rejected” the hypothesis that infectiousness varies
significantly at the individual level. Becker reexamined this question for common
cold data in households with five members, and concluded that a model with indi-
vidual variation fit marginally better than a Reed-Frost chain binomial model, but
that individual variation was “not an essential characteristic” for these data [15].
In any case, while the dynamical and statistical analyses of chain binomial models
are well developed, these methods apply best to small, bounded populations, and
do not address the population-wide scales of most interest for outbreak dynamics
and control.

Finally, a few studies have analyzed data from particular diseases in the context
of individual-level variation in infectiousness. Lipsitch et al. [55] used a branching
process to evaluate extinction probabilities of SARS outbreaks in the context of
data-driven levels of variation. Gani & Leach [37] showed that pneumonic plague
transmission data are described better by a geometric than a Poisson distribution,
and explored resulting impacts on control measures. ‘Epidemic trees’ reconstructed
from the 2001 outbreak of foot-and-mouth disease in Britain allowed direct esti-
mation of farm-level reproductive numbers (i.e. treating farms as individuals), and
emphasized the importance of variation in farm-level infectiousness [45]. Observed
prevalence patterns of Escherichia coli O157 in Scottish cattle farms were explained
better by models incorporating individual-level variation in transmission than those
with farm-level differences [62].

These are all ground-breaking studies, but each of them is focused on particular
questions surrounding a particular disease. Our study [61] builds on this work,
presenting empirical evidence integrated with theoretical modeling to demonstrate
the universality and practical relevance of individual variation in infectiousness.

3. A framework for individual variation in infectiousness

3.1. Theoretical basis. The basic reproductive number, R0, is a fundamen-
tal quantity in epidemic theory, but by its essence it is a population average mea-
sure. To account for individual variation in infectiousness, we introduce the ‘indi-
vidual reproductive number’, ν, which is the expected number of secondary cases
caused by a particular individual in the course of their infection. We emphasize
that ν is determined by all of the host, pathogen and environmental factors that
join to comprise a case’s infectious history (and as a result, ν is not a fixed property
for each individual, but rather will be determined by circumstances during their
infectious period). Values of ν are drawn from a continuous probability distribution
with population mean R0 (or R, when appropriate), hence this framework is the
natural extension of R0 from an average value to a population distribution.

Let Z be a discrete random variable representing the number of secondary
cases caused by a given infectious individual. The probability distribution of Z,
Pr(Z = j), is called the ‘offspring distribution’. Variation in Z arises from the
combined influences of individual variation and demographic stochasticity in the
transmission process. The effect of stochasticity is modeled using a Poisson process
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Figure 1. Probability density functions for the gamma distribu-
tion with mean 1.5 and seven different values of the dispersion
parameter, k, as shown. Lower values of k correspond to more
overdispersed distributions.

[25], with intensity given by the individual reproductive number, ν, so the offspring
distribution is given by a Poisson mixture, Z ∼ Poisson(ν) [69] (see Section 4.1,
below, for more details). We now generate three candidate models for the offspring
distribution, based on different assumptions about ν:

1. In generation-based models that neglect individual variation, all
individuals are characterized by the population mean, yielding
Z ∼ Poisson(R0).

2. In models with constant per capita rates of leaving the infectious
state, the infectious period is exponentially distributed. If the
transmission rate is assumed to be identical for all individuals,
then ν is exponentially distributed, yielding Z ∼ geometric(R0).

3. We introduce a more general formulation to allow for individual
variation from multiple sources. If ν follows a gamma distribu-
tion with mean R0 and dispersion parameter k, yielding Z ∼ neg-
ative binomial(R0,k) (henceforth abbreviated Z ∼ NegB(R0,k)).

The mean of all three distributions is R0 (and for clarity of notation we have
used the mean as the scale parameter), but the variance differs greatly. The
variance-to-mean ratio equals 1 for the Poisson model, 1 + R0 for the geometric
model, and 1 + R0/k for the negative binomial, so smaller values of k indicate
greater individual heterogeneity (Figure 1). The negative binomial model includes
the Poisson (k →∞) and geometric (k = 1) models as special cases.

3.2. Statistical estimation. We wish to draw inference about the offspring
distribution, and hence about the underlying distribution of ν, from disease trans-
mission data. Two types of data can be used. Ideally, the empirical offspring
distribution can be determined from detailed contact tracing of a particular out-
break, or from surveillance data covering multiple introductions of a disease. Such
datasets constitute lists of the number of infections traced to each index case,
and thus comprise estimates of the full offspring distribution, Pr(Z = j). In this
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case, parameters for the three candidate models can be estimated using maximum-
likelihood methods [73], and Akaike’s information criterion (AIC) or other model
selection techniques can be used to assess which models are supported by the data
[19].

Sometimes the entire offspring distribution is not available, but estimates of the
average infectiousness, R0, and the proportion of individuals who do not transmit
the disease (Pr(Z = 0), which we denote p0) can be obtained. This is often the
case for surveillance reports, which may list the total number of second-generation
cases in a known number of disease introductions, and the number of introductions
that led to no secondary transmission, but not give further details. In this case,
the negative binomial dispersion parameter k can be estimated as the solution to
the equation p0 = (1 + R0/k)−k. This approach is less efficient than maximum-
likelihood estimation, and does not allow AIC model comparison (which applies only
for maximum-likelihood estimates), but is reasonably accurate for disease datasets
we have tested [61].

Whether or not formal model selection approaches can be applied, a secondary
means of comparing the candidate models is to estimate confidence intervals for
k and determine whether the Poisson (k → ∞) or geometric (k = 1) models are
excluded. Calculation of confidence intervals for k is a challenging problem, but we
have shown that five separate methods give consistent results for disease datasets
we have analyzed [61].

3.3. Empirical levels of individual variation. We applied this analytical
approach to 12 datasets corresponding to eight different directly-transmitted infec-
tions, and found that the influence of individual variation in infectiousness differs in
degree among diseases and outbreak settings. Representative results are shown in
Table 1; full results are in [61]. SARS exhibits a high degree of variation (low values
of k) for two traced outbreaks, in keeping with its reputation for frequent SSEs.
Model selection unequivocally favored the negative binomial model for the SARS
offspring distribution, indicating that Poisson variation alone (or combined with
exponential variation in infectious period) cannot account for the observed varia-
tion in Z. Two datasets for measles in highly vaccinated populations also show
high variation, probably resulting from rare outbreaks in non-immunized commu-
nities. Formal model selection was not possible for these surveillance datasets, but
the 90% confidence intervals for k are bounded well away from k = 1, indicating
that the negative binomial distribution is the only one of our candidate models
that can describe these data. Monkeypox and smallpox (both Variola major and
Variola minor) exhibit intermediate variation, with k < 1 but 90% confidence in-
tervals encompassing k = 1 in most cases. Pneumonic plague appears slightly
less variable. In results not shown here, which should be interpreted with caution
due to shortcomings in the source data, Ebola hemorrhagic fever exhibited still
less variation, and an unusual outbreak of hantavirus (the first ever reported with
human-to-human transmission) showed intermediate variation in Z.

We compared our findings for directly-transmitted infections to the general
20/80 rule proposed for STIs and vector-borne diseases [82]. In Figure 2, the
proportion of transmission due to the most infectious 20% of the population (here
called t20) is plotted versus the dispersion parameter k. Overlaid points correspond
to best-estimate values of k for our ten datasets, showing that these diseases exhibit
values of t20 both above and below 80%. Interestingly, estimates from independent
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Disease Model ∆AICc Akaike wt. R̂ k̂
SARS P 250.4 0 1.63 0.16
Singapore 2003 G 41.2 0 0.54–2.65 0.11–0.64
N = 57 NB 0 1

Measlesv95 P - - 0.63 0.23
U.S. 1997–1999 G - - 0.47–0.80 0.16–0.39
N = 165s,pz NB - -

Smallpox (V. major)v60−90 P 129.3 0 3.19 0.37
Europe 1958–1973 G 7.4 0.02 1.66–4.62 0.26–0.69
N = 32s NB 0 0.98

Smallpox (V. minor)v50−70 P 16.4 0 1.60 0.65
England 1966 G 0 0.71 0.88–2.16 0.34–2.32
N = 25 NB 1.7 0.29

Monkeypoxv70 P 10.6 0 0.32 0.58
Zaire 1980-1984 G 0 0.62 0.22–0.40 0.32–3.57
N = 147s NB 1.0 0.37

Pneumonic plague P 15.5 0 1.32 1.37
6 outbreaks G 0 0.67 1.01–1.61 0.88–3.53
N = 74 NB 1.5 0.33

Table 1. Results of model selection for the offspring distribution
and negative binomial parameter estimates (with 90% confidence
intervals, generated by bias-corrected non-parametric bootstrap-
ping). These results are selected from a broader analysis cover-
ing 12 datasets for 8 diseases [61]. Data describe periods before
specific outbreak control measures were imposed. Abbreviations:
∆AICc, Akaike information criterion, modified for small sample
size, reported relative to the lowest AICc score; Akaike wt., the
Akaike weight is interpreted as the probability that each model
is the best of the candidate models considered; P, Poisson; G,
Geometric; NB, negative binomial. Superscripts: vXX population
is vaccinated with XX% coverage; s surveillance dataset; pz only
mean(Z) and proportion of Z = 0 values are known.

datasets form clusters for several diseases (and for the poxviruses as a group),
building confidence that this analysis may be uncovering patterns arising from
disease properties. More datasets, ideally with greater detail, will be needed to
evaluate this possibility properly.

3.4. Superspreading events. When individual infectiousness is viewed as
a continuously-distributed quantity, as we are proposing, SSEs correspond to rare
but important events drawn from the right-hand tail of a skewed distribution of ν.
This approach seems more self-consistent, and less subjective, than the alternative
of treating SSEs as anomalous events. Moreover, our framework leads naturally to
a general but unambiguous definition of what constitutes an SSE, in terms of the
number of cases Z caused by a given individual. Such a definition was previously
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predicted by a gamma-distributed individual reproductive number,
ν, with different values of the dispersion parameter k (t20 is inde-
pendent of R0). The points correspond to k̂ values estimated in Ta-
ble 1, for outbreak (squares) and surveillance (triangles) datasets.
Superscript ‘v’ indicates a population with substantial vaccination
coverage for the disease in question. Figure adapted from [61].

lacking—for SARS at least four arbitrary SSE definitions were published [61], and
certainly different thresholds in Z will be needed for different diseases.

We propose the following general protocol for defining an SSE:

1. Estimate the effective reproductive number, R, for the disease
and setting in question, including immunization levels.

2. Construct a Poisson distribution with mean R, representing the
expected range of Z due to stochastic effects in the absence of
individual variation.

3. Define an SSE as any case that infects more than Z(n) others,
where Z(n) is the nth percentile of the Poisson(R) distribution.
Thus a 99th percentile SSE is defined as any case that causes
more secondary cases than would occur in 99% of infectious his-
tories in a homogeneous population.

In addition to clarifying the terminology surrounding SSEs, this definition enables
prediction of the frequency of SSEs once R0 and k are estimated for a disease.

A review of reported SSEs provides further evidence that infectiousness varies
among individuals for all diseases. We have compiled 37 published accounts of SSEs
for 11 directly-transmitted infections [61]. Certainly many more accounts could be
found, as this was simply an opportunistic survey of the infectious disease litera-
ture. Consideration of SSEs also allows further testing of our negative binomial
model for the offspring distribution. The observed proportion of cases that caused
SSEs, denoted Ψobs, can be compared to the expected values and 95% confidence
intervals under Poisson and negative binomial models for Z. The predictions and
confidence intervals were calculated as follows. If Z ∼ Poisson(R), the expected
proportion of cases causing SSEs in a given dataset is ΨP = 1 − FP(Z(99)), where
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from Table 1.

FP(x) is the cumulative distribution function of the Poisson(R) distribution, and
Z(99) is the smallest integer satisfying FP(Z(99)) ≥ 0.99. For a dataset with Z ∼
Poisson(R) and N infectious cases, the number of SSEs will be binomially dis-
tributed, NSSE ∼ binomial(N, ΨP). To calculate the 95% confidence interval for
the predicted proportion of SSEs, we find the 2.5 and 97.5 percentiles of NSSE ∼
binomial(N, ΨP) and divide by N . Then 95% of datasets with N source cases and
Z ∼ Poisson(R) will have an observed proportion of SSEs (Ψobs) in this range,
assuming no significant selection bias in favor of SSEs. The predicted values and
confidence intervals for Z ∼ NegB(R, k) were calculated in a precisely analogous
manner.

In all datasets for which SSEs were observed, Z ∼ NegB(R, k) gives a closer
estimate of Ψobs than Z ∼ Poisson(R) (Figure 3). Furthermore in five of eight
instances Ψobs lies outside the 95% confidence interval for the homogeneous Poisson
assumption, while in all cases it lies within the negative binomial confidence interval.
This finding corroborates the statistical support for negative binomial models in
Section 3.3, showing that they provide a reasonable estimates of the high-Z tail of
the offspring distribution. Further support (accessible even when the total number
of cases is unknown) comes from considering the size of SSEs, which often greatly
exceeds R. For example, Z = 84 for one measles SSE in a highly vaccinated school
environment [61]. If R = 20 (a very generous estimate given vaccination levels of
US schoolchildren exceeding 80%), then Pr(Z ≥ 84|Z ∼ Poisson(R))=3.8 × 10−15

under the assumption of homogeneous ν; even if R = 40 then Pr(Z ≥ 84|Z ∼
Poisson(R))=9.0 × 10−10. In contrast, for crude estimates R = 6 and k = 0.5
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then Pr(Z ≥ 84|Z ∼ NegB(R, k))= 2.5 × 10−4. While we cannot make inferences
based on the probability of single events, the accumulated evidence is a strong case
against the assumption of homogeneous infectiousness.

4. Stochastic modeling

Evidence from outbreak reports, surveillance data and SSEs shows that individ-
ual variation in infectiousness is a universal phenomenon for directly-transmitted
infections, and that the degree of variation can differ markedly between diseases
and outbreak settings. To explore the impact of individual variation on dynamics of
disease invasion, we analyze a stochastic branching process model with a negative
binomial offspring distribution. This corresponds to an underlying gamma distri-
bution of the individual reproductive number, ν, encompassing a diverse family of
distributions (including the exponential and constant cases) depending on the value
of the dispersion parameter k (Figure 1).

4.1. The branching process model of disease invasion. We present a
brief summary of modeling disease invasion as a branching process (also known as
a Bienaymé-Galton-Watson process). For details we refer the reader to definitive
references on branching processes [7, 43], or a discussion of their application to
epidemics [25].

This branching process is a linear formulation of disease invasion, in the sense
that it assumes an infinite supply of susceptible individuals so the incidence of
new cases depends only on the number of infectious individuals. This allows the
assumption that the number of secondary cases, Z, generated by each infectious
individual is an independent and identically distributed (iid) random variable drawn
from some specified offspring distribution, pj = Pr(Z = j) for j=0,1,2,3,. . . . The
analysis of branching process models relies on the probability generating function
(pgf) of the offspring distribution, here denoted g(s) and defined as

(4.1) g(s) =
∞∑

j=0

pjs
j , |s| ≤ 1.

Within our analytic framework, we assume that each individual’s infectious
history has an associated individual reproductive number ν, drawn from some dis-
tribution with probability density function fν(u). Stochasticity in transmission is
represented by a Poisson process with mean ν, yielding the pgf

g(s) =
∫ ∞

0

e−u(1−s)fν(u)du.

If ν is gamma distributed, with mean R0 and dispersion parameter k, the result-
ing offspring distribution is negative binomial, also with mean R0 and dispersion
parameter k, with pgf

(4.2) g(s) =
(

1 +
R0

k
(1− s)

)−k

.

Two quantities of interest are represented simply by the pgf. The basic repro-
ductive number, R0, is by definition the mean value of Z and is equal to g′(1).
The probability that an infectious individual will cause no secondary infections,
p0 = Pr(Z = 0), is g(0).
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We define a major outbreak to correspond to the branching process growing
without bound and a minor outbreak to correspond to the ultimate extinction of the
branching process. The branching process exhibits a major outbreak with positive
probability if and only if

g′(1) = R0 > 1

Thus if R0 ≤ 1, the probability q that the disease goes extinct following introduction
of a single infectious individual is 1. If R0 > 1, then q is given by the unique solution
to

(4.3) g(q) = q 0 < q < 1.

In general this equation can only be solved numerically. However, when ν is expo-
nentially distributed (k = 1), it is well-known that the solution is given by

q = 1− 1
R0

.

Further results can be derived regarding the size of minor outbreaks (i.e. how
many cases arise before the disease dies out) [61], a quantity we discuss in Section
5.2 in the context of disease surveillance.

4.2. Effect of individual variation on outbreak dynamics. We analyzed
a branching process with negative binomial offspring distribution, with different
degrees of individual variation represented by different values of the dispersion
parameter k.

We first consider the probability of outbreak extinction, q, calculated using
equations 4.2 and 4.3. Figure 4a shows q as a function of the population-average
infectiousness R0. When R0 < 1 all invasions go extinct. When R0 > 1, the
extinction probability increases markedly as the degree of individual variation in
infectiousness increases. This finding, also reported by Lipsitch et al. [55] in the
context of SARS, follows from the higher Pr(Z = 0) resulting from the overdis-
persed distribution of ν. (Note that for g(s) as in equation 4.2, ∂p0

∂k < 0 for all
R, k > 0). Overdispersion of the offspring distribution can overpower the effect of
arbitrarily high R0 to cause high extinction probabilities: q → 1 as k → 0 for any
R0 > 1 (Figure 4b).

In Section 3.3 we used AIC model selection to determine that the negative
binomial model for the offspring distribution has better support from data than
the Poisson and geometric models, for many disease datasets. However, we did
not compare the negative binomial model against other two-parameter distribu-
tions with the capability of fitting varying degrees of dispersion; the Akaike weights
reported in Table 1 describe only the probability that each model is the best of
the three models under consideration. It is possible that we are misrepresenting
the transmission data by imposing the negative binomial form for the offspring
distribution, and that the negative binomial model is chosen only for its ability to
generate overdispersed distributions. To assess this possibility we calculated ex-
tinction probabilities using the empirical offspring distributions corresponding to
the raw data,i.e. the pgf for each dataset was calculated from equation 4.1 with
pj equal to the proportion of Z values equal to j. In Figure 5, these empirical ex-
tinction probabilities are compared with probabilities calculated using the negative
binomial pgf (equation 4.2) with k and R0 from Table 1. The values are strongly
correlated (R2 = 0.986) with least-squares slope equal to 0.999, indicating that
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Figure 4. Probability of stochastic extinction, q, following intro-
duction of a single infectious individual. Values were calculated
using a branching process model with negative binomial offspring
distribution, for values of R0 and k as shown. Figures adapted
from [39].

the assumption of negative binomial form for the offspring distribution does not
introduce significant bias (at least for extinction calculations).

When the disease avoids stochastic extinction, the growth rate of major out-
breaks is strongly affected by variation in individual reproductive number (Figure
6). Outbreaks in homogeneous populations grow at a measured pace, with each
infectious individual contributing roughly equally to the incidence of new cases.
In contrast, outbreaks with highly overdispersed offspring distributions grow explo-
sively, reaching high numbers of cases within a few disease generations. The pattern
of high extinction probability juxtaposed with rapid epidemic growth is reminiscent
of SARS, for which many settings did not experience sustained transmission despite
exposure to SARS (e.g. [41, 68]), while a few cities suffered dramatic, fast-growing
outbreaks [14, 40]. From our findings, it appears that the difference between suc-
cess and failure for SARS is the presence or absence of high-ν individuals in the
early generations of the outbreak. This important role for superspreaders has been
suggested before for several directly-transmitted diseases [44, 77, 42], and is eas-
ily and intuitively included in modeling analyses using a continuously distributed
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Figure 5. Extinction probabilities generated using empirical and
negative binomial (NB) probability generating functions (pgf’s).
Results are shown for all disease datasets for which we have com-
plete empirical offspring distributions. Circles show results from
outbreak datasets; solid line shows perfect equality.
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Figure 6. Simulation results show the effect of individual vari-
ation on epidemic growth rates, when the disease avoids extinc-
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of the first disease generation to have 100 cases. Whiskers show
the largest value within 1.5× IQR and crosses show outliers. The
percentage values show the fraction of 10,000 simulated outbreaks,
each starting with one infectious case, that reach 100 cases. Figure
adapted from [61].
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individual reproductive number. Conventional models assuming individual-level
homogeneity in transmission (i.e. with k = 1 or k → ∞) cannot replicate the
transmission patterns observed for these diseases without introducing group-level
heterogeneity that is often difficult to parameterize. Accurate characterization of
the stochastic dynamics of disease invasion requires both R0 and some measure
of individual variation (such as t20, Ψ, p0 or k), where the latter determines the
relative frequency with which introductions lead to explosive outbreaks via SSEs.

5. Implications for disease control and surveillance

Beyond improving our understanding of observed patterns of disease invasion,
accounting for individual variation in infectiousness can usefully inform planning
of disease control interventions and surveillance measures.

5.1. Outbreak control. Health measures, and public awareness of an out-
break, may increase or decrease individual heterogeneity. The population as a whole
may alter social mixing and contact patterns (as in cities affected by the 2003 SARS
outbreak), or governments may impose isolation, quarantine or infection control on
individuals (either traced at random or targeted in groups more likely to produce
SSEs). Due to limited facilities and the costs of control, authorities must seek to
maximize curtailment of disease spread for a given degree of control effort.

We explored several idealized classes of control measure for an outbreak with
offspring distribution Z ∼ NegB(R0, k) before control [61]. The level of control
effort is denoted by c, where c = 0 reflects a completely uncontrolled outbreak and
c = 1 reflects an outbreak where all transmission is blocked. One idealized class of
control is population-wide control, which acts on every individual in the population,
reducing their infectiousness by a factor c (i.e. νpop

c = (1 − c)ν for all infectious
individuals). The distribution of ν is rescaled but its dispersion is not changed, so
the pgf under control is

gpop
c (s) =

(
1 +

(1− c)R0

k
(1− s)

)−k

with variance-to-mean ratio 1 + (1− c)R0
k .

At the other end of the spectrum is individual-based control, in which a pro-
portion c of infected individuals are located and placed in complete isolation such
that they cause zero infections, while the remainder of the population is unaffected
(i.e. νind

c = 0 for a proportion c of infected individuals, and νind
c = ν for the rest).

If the controlled individuals are chosen at random, the pgf is

gind
c (s) = c + (1− c)

(
1 +

R0

k
(1− s)

)−k

with variance-to-mean ratio 1 + R0/k + cR0.
Random individual-specific control raises the degree of heterogeneity in the out-

break, as measured by the variance-to-mean ratio of Z, while population-wide con-
trol reduces it. Both approaches yield effective reproductive number Rc = (1−c)R0,
so the threshold control effort for guaranteed eradication is c ≥ 1 − 1/R0 as in
conventional models. For intermediate levels of control, the individual-specific ap-
proach always yields better results in terms of preventing major outbreaks. In [61]
we prove the following claim:
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Figure 7. Probability of outbreak containment under different
control strategies, for outbreaks with R0 = 3 and different values
of the dispersion parameter k. The control policies are population-
wide (solid lines), random individual-based (dotted lines) and tar-
geted individual-based (dashed lines) in which half of all individ-
uals controlled are drawn from the most infectious 20% of cases.
Containment is defined as preventing the outbreak from reaching
the 100-case threshold, following disease introduction by a single
infected individual, with control measures beginning in the sec-
ond disease generation. For k → ∞ targeting has no effect so
the dashed line does not appear. Results are the mean of 10,000
simulated stochastic outbreaks. Figure adapted from [61].

Claim: For all c ∈ (0, 1 − 1/R0), the probability of extinction is always greater
under individual-specific control than under population-wide control.

It should be noted, though, that when control measures fail to eradicate an
outbreak, the increased heterogeneity due to individual-specific control will cause
the outbreak to grow more explosively than it would under population-wide control
(see Figure 6).

Incorporating knowledge of individual variation into control efforts offers the
possibility of increasing efficiency by targeting highly-infectious individuals. If in-
dividuals or situations with higher ν can be identified a priori then the probability
of outbreak containment for a given level of control effort can be increased greatly
(Figure 7). The following claim is proven in [61]:

Claim: Let C1, C2 : [0,∞) → [0, 1] be Lebesgue measurable functions representing
the probability of controlling an individual with infectiousness ν under two different
control scenarios. Assume that

∫∞
0

Ci(u)fν(u) du = c and

(5.1)
∫ ∞

x

C1(u)fν(u) du >

∫ ∞

x

C2(u)fν(u) du

for all x > 0, so that C1 targets higher-ν individuals to a greater degree. Then the
reproductive number under strategy 1 is less than that under strategy 2. Moreover,
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if the reproductive number under strategy 2 is greater than one, then the probability
of extinction is always greater under strategy 1.

5.2. Surveillance for disease clusters. A recent series of innovative studies
has advanced surveillance methods for diseases with effective reproductive number
below 1, based on the distribution of the total sizes of minor outbreaks (i.e. the
total number of cases before disease extinction) [33, 50]. Related work has proposed
using a threshold outbreak size, or ‘cluster size’, as an indicator of possible genetic
reassortment of avian influenza strains [34]. These analyses employ branching
process methods with Poisson or geometric offspring distributions (i.e. constant or
exponentially-distributed ν), and thus incorporate less individual variation than we
find for most diseases in our analysis.

Re-examining these issues using a branching process with negative binomial
offspring distribution may yield further important insights. In particular, such an
analysis could help to grapple with the complications and potential false alarms
caused by SSEs when using a threshold cluster size as a surveillance marker (ac-
knowledged by the authors [34]). We applied our methods of parameter estimation
to the limited transmission dataset for H5N1 avian influenza presented in [34]2,
and found a maximum-likelihood estimate k̂ = 0.026 (with very broad 90% confi-
dence interval, 0.013–∞), while the geometric offspring distribution applied in the
original analysis assumes k = 1.

Finally, the results presented in Figure 4 indicate that surveillance data need
to be interpreted with care, in terms of how frequently disease introductions may
be occurring. Higher probabilities of stochastic extinction mean that many intro-
ductions may go unnoticed. For a zoonotic disease with R0 ≈ 3, if we assume
homogeneity we would expect major outbreaks following roughly 95% of instances
when the virus jumps the species barrier to humans, whereas if k = 0.16 as esti-
mated for SARS then only about 25% would succeed.

6. Discussion & Conclusions

Individual variation in infectiousness arises from the combined action of many
factors, and influences all transmission datasets we have analyzed for directly-
transmitted diseases. This often-neglected phenomenon exerts dramatic influences
on outbreak and emerging disease dynamics: disease invasions die out faster and
more often, or else grow more explosively, compared to predictions when all indi-
viduals are assumed to exhibit population-average infectiousness. These findings
mean that public health systems need built-in surge capacity, and that rapid action
by health authorities is essential once an outbreak is recognized. Exploring control
measures further, we found that for a given reduction in R0, measures focusing on
particular individuals (and hence increasing variation) are more likely to eradicate
an outbreak than those applying partial measures to everyone, and that targeting
the most infectious individuals can yield substantial gains in control efficacy [61].

To extend and capitalize on these insights, more detailed data collection on
transmission patterns is required. Because the datasets presented here were col-
lected from published sources, they may be skewed toward unusual (hence ‘publish-
able’) instances such as SSEs rather than typical disease behavior. Another, more

2Note that this dataset is subject to considerable and unquantifiable uncertainties related to
the surveillance process, as noted by the authors.
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insidious problem is that large outbreak datasets must necessarily come from large
outbreaks, so there may be some selection bias for large-ν individuals. Surveillance
datasets are free from this issue, but may undercount the true number of cases,
particularly so-called sporadic cases that do not lead to further transmission. A
simulation study to examine the possible effects of selection bias and missed spo-
radic cases on estimation of k is underway; preliminary results indicate that the
results presented in Section 3.3 are robust. We strongly urge that detailed trans-
mission datasets be collected and published whenever possible, so that more can
be learned about the important influence of individual variation on disease emer-
gence. At the least, we encourage authors of outbreak reports to include a new
measure alongside R0 and the secondary attack rate: the proportion of infectious
individuals who cause no secondary infections (p0), which with R0 is sufficient to
estimate the dispersion parameter k for the outbreak. To be amenable to detailed
tracing, a disease must be relatively rare in a population, be directly-transmitted,
and have distinctive symptoms and few subclinical cases. To date, the intense effort
required to collect such data has been expended only for diseases of particular pub-
lic health interest. Availability of detailed data for a broader suite of diseases may
reveal interesting patterns in the degree of variation present. Empirical patterns
have already begun to emerge (see Figure 2), but understanding their causes will
yield valuable insights. For instance, does the degree of heterogeneity vary among
different modes of spread, different interactions with the host immune system, or
different histories of adaptation to the host species (e.g. zoonotic emerging diseases
versus human-adapted diseases)? How do different social settings affect these pat-
terns? Preliminary results indicate that outbreak control measures often increase
individual variation [61], but further research (with more data) is needed to confirm
this finding and understand its causes.

Our analysis makes several significant assumptions. A fundamental assumption
of branching process models is that cases are independent of one another, hence
we have ignored the possibility that values of ν could be correlated within chains
of transmission. It would be fascinating to analyze detailed transmission patterns
over many generations of spread, to search for changes in ν within transmission lin-
eages that arise from pathogen evolution. However, such analyses probably require
data derived under experimental conditions, because human epidemics subject to
detailed contact tracing are typically (and fortunately) subject to control measures
within a few generations of spread. Our analysis is founded on non-overlapping gen-
erations of transmission, and time is not modeled explicitly. This does not affect
the main questions we address (of ultimate extinction probability or outbreak size),
but could misrepresent the potential role of long infectious periods or asymptomatic
carriers of infection. Analysis of continuous-time branching processes [43] could re-
veal influences of individual variation on the estimation of R0 from outbreak data.
Our statistical analysis is limited to the negative binomial family of offspring dis-
tributions, which we interpret as a Poisson mixture model with gamma-distributed
mean ν. While Figures 3 and 5 reassure us that the negative binomial model does
not badly misrepresent the transmission data, it may be fruitful to consider other
models (or other underlying mechanisms) for the offspring distribution, such as the
Neyman type A distribution or various zero-truncated or zero-inflated alternatives
[69, 28]. We have highlighted the importance of variable infectiousness, but vari-
able susceptibility (of an individual’s contacts) is treated only as a potential factor
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influencing ν. Theoretical links should be explored between these findings and pre-
vious work in which contact rates are assumed to cause 100% correlation between
infectiousness and susceptibility [63, 82]. In reality, each individual’s susceptibility
and infectiousness for a given disease probably are correlated to some intermediate
degree, driven by contact rate, immunocompetence, genetics, and other factors.
This topic demands further study, both empirical and theoretical (though see [16]
for a group-level treatment of the problem).

Our findings suggest other fruitful directions for future work. Implications for
outbreak dynamics could be explored using more elaborate branching process for-
mulations, incorporating the effects of a temporally varying environment [79] that
may represent changing control measures or population awareness of an outbreak,
or multiple types of individuals with distinct R0 and k values for each type (repre-
senting healthcare workers and the community members, for instance [59]). Beyond
addressing particular applied questions, such multi-type models would allow explo-
ration of how outbreak dynamics are affected by various mixing patterns among
groups with different levels of infectiousness (or degrees of variation in infectious-
ness). Of central interest for emerging diseases is the impact of individual variation
on adaptive dynamics of host-pathogen evolution [24], including mutual invasibility
of strains with different k. Established theories of disease control could be revisited
in light of the distinction found between population-wide and individual-specific
control, and the benefits of targeting high-ν individuals should be explored more
deeply. To implement such targeting in practice, much research is needed to un-
derstand observable factors that drive variation in infectiousness, and potentially
lead to SSEs.

Given the litany of contributing factors outlined in Section 2.2, the marked
individual variation evident in outbreak data is unsurprising. The Poisson model for
the offspring distribution was rejected soundly for almost all transmission datasets
analyzed, indicating that describing the infectiousness of all individuals by the
population mean R0 is inconsistent with observations for the diseases examined
here. Furthermore the dynamical behavior of mean-based models can differ sharply
from that predicted when data-driven levels of variation are incorporated, and
from observations in the field: real outbreaks often grow too fast, or die out too
frequently, compared to predictions of models assuming homogeneous R0. We argue
that a continuously-distributed individual reproductive number, ν is a logical and
necessary extension to the concept of R0. Data show that individual variation is a
universal feature of disease transmission, if not always in a fixed 20/80 proportion,
and epidemiological theory should reflect that reality.
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