Title
Electronic Structure and Oxidation State Changes in the Mn4Ca Cluster of Photosystem II

Permalink
https://escholarship.org/uc/item/0st8v90z

Author
Yano, Junko

Publication Date
2010-02-02

Peer reviewed
Electronic Structure and Oxidation State Changes in the Mn₄Ca Cluster of Photosystem II

Junko Yano,¹ Yulia Pushkar,¹ Johannes Messinger,² Uwe Bergmann,³ Pieter Glatzel,⁴ Vittal K. Yachandra¹

¹Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
²Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, Germany, ³Stanford Synchrotron Radiation Laboratory, Menlo Park, CA 94025, USA
⁴European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France

Keywords: electronic structure, Mn₄Ca Cluster, oxygen-evolving complex, photosystem II, RIXS, X-ray spectroscopy.

ABSTRACT
Oxygen-evolving complex (Mn₄Ca cluster) of Photosystem II cycles through five intermediate states (Sᵢ-states, i =0-4) before a molecule of dioxygen is released. During the S-state transitions, electrons are extracted from the OEC, either from Mn or alternatively from a Mn ligand. The oxidation state of Mn is widely accepted as Mn₄(III₂,IV₂) and Mn₄(III,IV₃) for S₁ and S₂ states, while it is still controversial for the S₀ and S₃ states. We used resonant inelastic X-ray scattering (RIXS) to study the electronic structure of Mn₄Ca complex in the OEC. The RIXS data yield two-dimensional plots that provide a significant advantage by obtaining both K-edge pre-edge and L-
edge-like spectra (metal spin state) simultaneously. We have collected data from PSII samples in
the each of the S-states and compared them with data from various inorganic Mn complexes. The
spectral changes in the Mn 1s2p_{3/2} RIXS spectra between the S-states were compared to those of
the oxides of Mn and coordination complexes. The results indicate strong covalency for the
electronic configuration in the OEC, and we conclude that the electron is transferred from a
strongly delocalized orbital, compared to those in Mn oxides or coordination complexes. The
magnitude for the S_0 to S_1, and S_1 to S_2 transitions is twice as large as that during the S_2 to S_3
transition, indicating that the electron for this transition is extracted from a highly delocalized
orbital with little change in charge density at the Mn atoms.

INTRODUCTION

Most of the oxygen in the atmosphere which supports aerobic life on earth is generated by plants
and cyanobacteria by the photo-induced oxidation of water to dioxygen. The oxygen-evolving
complex (OEC), of the photosynthetic apparatus that catalyzes the oxidation of H_2O to O_2 contains
a Mn_4Ca cluster (Wydrzynski and Satoh 2005). Water oxidation in photosystem II (PSII) is a
stepwise process wherein each of 4 sequential photons absorbed by the reaction center powers the
advance of the OEC through the S-state intermediates S_0-S_4. Upon reaching the S_4 state, the
complex releases O_2 and returns to the S_0 state.

A promising approach to study the Mn oxidation states in the native S-states is to step samples
through the S-state cycle by the application of saturating single-turnover flashes and to
characterize these samples by X-ray spectroscopy.

A key question for the understanding of photosynthetic water oxidation is whether the four
oxidizing equivalents generated by the reaction center are accumulated on the four Mn ions of the
OEC during S-state turnover, or whether a ligand-centered oxidation takes place, especially, before the formation and release of molecular oxygen during the S_3 to (S_4) to S_0 transition. It is crucial to solve this problem, because the Mn redox states form the basis for any mechanistic proposal. The description of the Mn OEC in the various S-states in terms of the formal oxidation states is very useful, but it is also important to determine a detailed view of the electronic structure of the Mn cluster.

We have addressed these questions by using Mn K-edge XANES (1s-4p absorption), Kβ XES (3p-1s emission) (Glatzel et al 2004) and the recently introduced resonant inelastic X-ray scattering spectroscopy (RIXS) (1s to 3d/4p absorption followed by 2p-1s Kα emission) to obtain L-edge-like spectra (2p-3d absorption) (Fig. 1).

<Figure 1>

RESULTS and DISCUSSION

S_1 to S_2 transition

The 2D data are best shown as contour plots (Fig. 2A). The comparison of Mn(II), Mn(III), Mn(IV) complexes and PSII in the S_1 state and S_2 states shows that the S_1 and S_2 states contain a mixture of both oxidation states (Glatzel et al 2004). The integrated cross sections (Fig. 2B) along the Raman or energy transfer axis are the L$_3$-like edge (2p to 3d), and the integrated cross sections along the incident energy are the K-edge (1s to 3d) transition. It is clear from Fig. 2 that Mn in the S_1 state contains oxidation states III and IV; thus providing confirmation for the (III$_2$IV$_2$) assignment for the S_1 state.
We have focused on the 1s to 3d aspect of the RIXS spectra, where line splittings have been interpreted within a ligand field multiplet model. The spectral changes in the Mn 1s to 3d transition between the oxides, coordination complexes and PSII in the S_1 and S_2 states have been compared.

The results (see below) indicate strong covalency for the electronic configuration in the OEC and we conclude that the electron is transferred from a strongly delocalized orbital for the S_1 to S_2 transition, in accordance with the assignment of the formal oxidation states of Mn(III,IV) to the S_2 state (Messinger et al 2001).

<Figure 2>

S_2 to S_3 and S_0 to S_1 transitions

Although there has been general agreement with respect to the increasing oxidation of Mn in the cluster during S_0 to S_1 and S_1 to S_2, there is a lack of consensus concerning Mn oxidation during S_2 to S_3. It is also not clear whether the S_0 state contains any Mn(II).

The XANES results showed that there is a larger shift in the inflection point energy between the S_0 to S_1 and S_1 to S_3 transitions compared to that occurring between the S_2 to S_3 transition (Messinger et al 2001). The Kβ emission spectroscopy results based on the shifts, or lack thereof, of the 1st moments, also showed that a Mn-centered oxidation does not occur during the S_2 to S_3 transition (Messinger et al 2001). At the same time it is worth noting that this need not be an all-or-none situation. If the Mn is not oxidized, presumably some other species (a protein side-chain ligand or bound water) is oxidized. The delocalization of a small amount of
electronic charge from a Mn atom to the ligand could account for the small residual changes seen in the X-ray energies (Messinger et al 2001).

1st Moment Analysis

The 1st moment of the spectrum integrated along the incident energy axis was calculated for all the S-states and compared with the 1st moments obtained from Mn oxides and Mn coordination compounds in formal oxidation states of (II), (III) and (IV). The changes per oxidation state in the first moment positions are more pronounced between the Mn oxides than between the Mn coordination complexes, due to stronger covalency in the coordination complexes. Mn oxidation between the S_1 and S_2 states of PSII is even less pronounced than in the coordination complexes. The spectral change per Mn ion between Mn^{III} (acac)_3 and Mn^{IV} (salicylate)2(bipy) is by a factor of 2 more pronounced than between S_1 and S_2. In other words, the orbital population change $\Delta n_{3d}^{\text{eff}}$ per change in oxidation state is largest between the Mn oxides and smallest between S_1 and S_2. The reason is an increased covalency or delocalization of the Mn valence orbitals. We thus find that the electron that is transferred from the OEC in PSII between S_1 and S_2 is strongly delocalized.

The orbital population change $\Delta n_{3d}^{\text{eff}}$ per change in oxidation state between the S_2 and S_3 states is half as much as that between S_0 and S_1, and S_1 and S_2 transitions indicating that the electron is removed from a more covalent form or a more delocalized orbital with little change in charge density at the Mn atoms.

These results are in agreement with the earlier qualitative conclusions derived from the shifts in the XANES inflection point energies and the Kβ emission peaks from the S-states.
Acknowledgments-- This work was supported by the NIH Grant GM-55302, and by the Director, Office of Science, Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences, and Biosciences of the Department of Energy (DOE) under Contract DE-AC02-05CH11231. Synchrotron facilities were provided by SSRL, supported by DOE, BES. The SSRL Structural Molecular Biology Program is supported by the DOE, OBER, and by the NIH, NCRR, Biomedical Technology Program, and at the BioCAT, APS, Argonne supported by DOE, BES under contract W-31-109-ENG-38. BioCAT is a NIH-supported Research Center RR-08630.

REFERENCES

FIGURE LEGENDS
Figure 1. A two-dimensional plot showing the RIXS spectrum from a Mn(II)acetylacetonate complex. The 1s-3d K-edge spectrum is plotted in the back in black. A cross-section of the 2D plot parallel to the Y-axis yields L-edge like spectra, the more intense feature at 640 eV corresponds to transitions to J=3/2 like states (L_3 edges) and transitions to 655 eV correspond to J=1/2 final states (L_2 edges). Cross sections parallel to the energy transfer axis sort the spectrum according to the final state.

Figure 2. A. Contour plots of the 1s2p_{3/2} RIXS planes for three molecular complexes Mn^{II}(acac)_2(H_2O)_2, Mn^{III}(acac)_3, and Mn^{IV}(sal)_2(bipy) and PSII in the S_1- and S_2-state. One axis is the excitation energy and the other is the energy transfer axis. The L-edge like spectra are along the energy transfer axis and the 1s to 3d transition is along the excitation energy. The assignment of Mn(III,IV) for the S_1 state is apparent in these spectra. B. Integrated spectra along the incident energy axis, (K-edge, 1s to 3d) (right), and energy transfer axis, (L_3 edge, 2p to 3d) (left) of the contour plot shown in Fig. 2A for Mn^{III}(acac)_3 and Mn^{IV}(sal)_2(bipy) and S_1-state of PSII. The spectra show that the Mn oxidation state of S_1 is a combination of (III) and (IV).
Excitation Energy

\[E_B = \nu - f \]

Continuum States

Fluorescence (a.u.)

Excitation Energy

XANES 1s to 3d

Figure 1
Figure 2