Lawrence Berkeley National Laboratory

Recent Work

Title
THE FLUID MOTION DUE TO A ROTATING DISK.

Permalink
https://escholarship.org/uc/item/0tk2m2ts

Author
White, Ralph

Publication Date
1975-08-01
THE FLUID MOTION DUE TO A ROTATING DISK

Ralph White, Charles M. Mohr, Jr., and John Newman

August 1975

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
The Fluid Motion Due to a Rotating Disk

Ralph White,* Charles M. Mohr, Jr.,†* and John Newman**

Inorganic Materials Research Division, Lawrence Berkeley Laboratory, and Department of Chemical Engineering; University of California, Berkeley 94720

August, 1975

(A Brief Communication submitted to the Journal of the Electrochemical Society)

Key words: laminar flow

1 Present address: Aerojet Nuclear Company, Idaho Falls, Idaho 83401

* Electrochemical Society Student Member

** Electrochemical Society Active Member
The solution of the Navier-Stokes equation for fluid motion due to a rotating disk includes characteristic parameters as presented below. We report here the most accurate values available for these parameters and compare to them values obtained by a numerical integration technique developed by Newman3,5.

In 1921, von Karman2 presented a separation of variable solution technique for the motion of an incompressible, Newtonian fluid which transformed the Navier-Stokes equation into a set of coupled, nonlinear, ordinary differential equations. By defining the following dimensionless variables

\[
\zeta = \frac{z\Omega}{\nu}, \quad P = \frac{p}{\rho\Omega}, \quad G = \frac{v_{\theta}}{r\Omega}, \quad F = \frac{v_z}{r\Omega}, \quad \text{and} \quad H = \frac{v_z}{\sqrt{r\Omega}}.
\]

the transformed equations may be written as

\[
2F + H' = 0, \quad (1)
\]
\[
F^2 - G^2 + HF' = F'', \quad (2)
\]
\[
2FG + HG' = G'', \quad (3)
\]
\[
HH' + P' = H'', \quad (4)
\]

where the prime designates differentiation with respect to \(\zeta \). The boundary conditions are

\[
H = F = 0, \quad G = 1 \quad \text{at} \quad \zeta = 0, \quad (5)
\]
and
\[F = G = 0 \text{ at } \zeta = \infty. \] \hfill (6)

Cochran\(^1\) solved equations 1 through 3 (subject to boundary conditions 5 and 6) by expanding the components of the velocity field first in power series in the dimensionless distance from the disk, which were assumed to be valid near the disk:

\[F = \alpha \zeta - \frac{1}{2} \zeta^2 - \frac{b}{3} \zeta^3 + \ldots, \] \hfill (7)
\[G = 1 + b \zeta + \frac{1}{3} \alpha \zeta^3 + \ldots, \] \hfill (8)
\[H = -\alpha \zeta^2 + \frac{1}{3} \zeta^3 + \frac{b}{6} \zeta^4 + \ldots, \] \hfill (9)

and second in exponential series which were assumed to be valid far from the disk:

\[F = A e^{-\alpha \zeta} - \frac{(A^2 + B^2) e^{-2\alpha \zeta}}{2\alpha^2} + \frac{A(A^2 + B^2) e^{-3\alpha \zeta}}{4\alpha^4} + \ldots, \] \hfill (10)
\[G = B e^{-\alpha \zeta} - \frac{B(A^2 + B^2)}{12\alpha^4} e^{-3\alpha \zeta} + \ldots, \] \hfill (11)
\[H = -\alpha + \frac{2A}{\alpha} e^{-\alpha \zeta} - \frac{(A^2 + B^2)}{2\alpha^3} e^{-2\alpha \zeta} + \frac{A(A^2 + B^2)}{6\alpha^5} e^{-3\alpha \zeta} + \ldots. \] \hfill (12)

We\(^4\) followed Cochran's suggestion and required the two sets of expansions to yield, at \(\zeta = 1 \), the same values of the
functions as well as the derivatives of \(F \) and \(G \). In this manner we obtained the following values for the characteristic parameters:

\[
\begin{align*}
a &= 0.51023262, \\
b &= -0.61592201, \\
c &= 0.88447411, \\
A &= 0.92486353, \\
B &= 1.20221175. \\
\end{align*}
\]

(13)

To demonstrate the utility of Newman's solution technique, estimates of the parameters \(a, b, c, A, \) and \(B \) were obtained by solving this boundary value problem numerically. The governing equations 1 through 3 were first linearized about trial values and then cast in finite-difference form accurate to order \(h^2 \). The boundary conditions given by equations 5 were applied directly, whereas it was necessary to approximate those given by equations 6 at some finite value of \(\zeta, \zeta_{\text{max}} \). The following expressions, derived from equations 10 and 11, were used for that purpose:

\[
\begin{align*}
F' &= H_\infty F - \frac{(F^2 + G^2)}{2H_\infty} + \ldots, \\
G' &= H_\infty G + \ldots, \\
\end{align*}
\]

(14)

and

\[
G' = H_\infty G + \ldots, \\
\]

(15)

where \(H_\infty \) was our estimate of \(-\alpha\) according to
which was developed from equation 12. Equations 14, 15, and 16 were also linearized about trial values and expressed in finite-difference form accurate to order h^2. The resulting system of equations was solved by a technique developed\(^3\),\(^4\) and extended\(^5\) by Newman. Estimates of the five parameters obtained this way are

\[
a = 0.51023262,
\]

\[
b = -0.61592201,
\]

\[
c = 0.88447410,
\]

\[
A = 0.92486322,
\]

and

\[
B = 1.20221104
\]

Clearly, these are very accurate estimates of the parameters given by equation 13. The poorest estimate is for B, which is in error by only seven digits in the seventh significant figure.

The very attractive feature of Newman's solution technique, in addition to its accuracy, is its suitability for solving complicated boundary value problems directly without the development of specialized techniques, such as Cochran's for the present problem.

This work supported by the US Energy Research and Development Administration.
Nomenclature

\(a \) = characteristic parameter equal to \(F'(0) \)

\(b \) = characteristic parameter equal to \(G'(0) \)

\(A \) = characteristic parameter

\(B \) = characteristic parameter

\(F \) = dimensionless radial velocity

\(G \) = dimensionless velocity component in the tangential direction

\(H \) = dimensionless velocity component in the normal direction (from the disk)

\(h \) = dimensionless step size

\(p \) = dimensionless dynamic pressure

\(P \) = dynamic pressure, \(\text{dyne/cm}^2 \)

\(r \) = radial distance from the axis of the disk, \(\text{cm} \)

\(v_r \) = velocity component in the radial direction, \(\text{cm/sec} \)

\(\nu \) = velocity component in the tangential direction, \(\text{cm/sec} \)

\(v_z \) = velocity component in the normal direction, \(\text{cm/sec} \)

\(z \) = normal distance from the disk, \(\text{cm} \)

Greek Letters

\(\alpha \) = characteristic parameter equal to \(-H(\infty)\)

\(\zeta \) = dimensionless normal distance from the disk

\(\mu \) = viscosity of fluid, \(\text{g/cm} \cdot \text{sec} \)

\(\nu \) = kinematic viscosity of fluid, \(\text{cm}^2/\text{sec} \)

\(\Omega \) = rotation speed of the disk, \(\text{sec}^{-1} \)
References

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.