Lawrence Berkeley National Laboratory

Recent Work

Title
EXPERIMENTAL RESULTS ON DEUTERIUM NMR IN THE SOLID STATE BY MAGIC ANGLE SAMPLE SPINNING

Permalink
https://escholarship.org/uc/item/0vm1x1qx

Author
Ackerman, J.L.

Publication Date
1979-03-01
Submitted to Chemical Physics

EXPERIMENTAL RESULTS ON DEUTERIUM A
SOLID STATE BY MAGIC ANGLE
SAMPLE SPINNING

J. L. Ackerman, R. Eckman, and A. Pines

March 1979

Prepared for the U. S. Department of Energy
under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
EXPERIMENTAL RESULTS ON DEUTERIUM NMR IN THE SOLID STATE BY MAGIC ANGLE SAMPLE SPINNING

(DEUTERIUM NMR IN SOLIDS BY MAGIC ANGLE SPINNING)

J. L. Ackerman,* R. Eckman, and A. Pines
Department of Chemistry
University of California
Lawrence Berkeley Laboratory
Berkeley, California 94720

Abstract

Magic Angle sample spinning has been applied to remove the first order quadrupole broadening in NMR spectra of deuterium in the solid state. The free induction decay of the rotating sample consists of a series of spatially induced echoes which were sampled in synchronism with the rotation to produce an isotropic decay. A minute adjustment of the axis of rotation with respect to the laboratory field direction was necessary since the spectra were narrowed by about three orders of magnitude. The resulting spectra exhibit resolved, isotropic, chemically shifted lines and indicate the feasibility of high resolution deuterium NMR in solids.

*Present address: Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221.
1. INTRODUCTION

The difficulty in attempting NMR on spin-1 deuterium is the enormous broadening of the powder spectrum by the anisotropy of the nuclear electric quadrupole interaction. The well known theoretical lineshape for the case of high magnetic field and axially symmetric electric field gradient, illustrated in Fig. 1, consists of overlapping powder patterns for each quadrupole satellite. Such a spectrum allows immediate measurement of the quadrupole anisotropy parameter

$$v_Q = \frac{1}{h} \frac{3e^2qQ}{4I(2I-1)} = \frac{1}{h} \frac{3}{4} e^2qQ$$

where h is Planck's constant, $I = 1$ for deuterium, eq is the electric field gradient, and Q is the electric quadrupole moment. However, it does not allow observation of chemical shift information. This problem was solved by the introduction of double-quantum Fourier transform NMR (DQFTNMR)\(^2\) which permits measurement of the anisotropic chemical shift powder pattern spectrum. The current problem is the extraction of the isotropic chemical shift spectrum when there exists many chemically or crystallographically inequivalent deuterium sites. In this case, the powder spectra usually overlap and the analysis can be difficult or impossible. Solving this problem is an important step in the direction of high resolution deuterium labeling studies.

It has been demonstrated that sample rotation about an axis inclined at $\beta = \arccos 3^{-1/2}$ to the external magnetic field, the "magic axis," can be used to remove the broadening due to the anisotropy of the chemical shift in spectra of powders.\(^3-7\) When the frequency of rotation
is less than the powder chemical shift anisotropic linewidth, the free induction decay (fid) after a single pulse consists of a series of spatially induced echoes. The separation between echoes is the period of sample rotation and the fid may be sampled in synchronism with the rotation to produce a "high resolution," isotropic decay. If the frequency of rotation can be made to exceed the anisotropic linewidth, the echoes merge to form the isotropic decay and the high resolution spectrum is available directly.

These statements also apply to the first order (truncated) quadrupole broadening in high magnetic field for nuclei with $I > \frac{1}{2}$. Thus we have two approaches to high resolution deuterium NMR in powders, i.e. DQFTNMR with magic angle spinning and magic angle spinning with synchronous sampling. In this paper we present the first examples of the application of magic angle spinning to deuterium in solids where the static powder linewidth can be over 255 kHz and synchronous sampling of the fid is mandatory. It also requires minute adjustment of the axis of rotation with respect to the laboratory field direction since the broadest deuterium spectra were narrowed by about three orders of magnitude. We believe that this work strongly complements measurement of the chemical shift anisotropy by double-quantum spectroscopy and that together they provide a useful tool for the study of deuterium in solids.

2. EXPERIMENTAL

The powder samples were rotated with a turbine of the Henriot-Huguenard type first used by Andrew (see Fig. 2). The probe head pieces
and rotors were made from Delrin and Kel-F polymers. Stable spinning frequencies between one and four kHz could be maintained with Delrin, limited mainly by the large rotor diameter. Kel-f would not rotate faster than about 1.7 kHz. The powders were simply tamped into the rotor chamber with plaster plugs formed over them if necessary. Measurement of the spinning frequency and synchronization of the data acquisition were accomplished with a digital tachometer employing a lamp, phototransistor, and optical fiber cables which monitored reflected light from the rotor surface.

The probe employed a single, double-tuned coil for deuterium detection with continuous high power proton decoupling, fixed in space just outside the sample chamber (Fig. 2). The spectrometer was of homebuilt design with quadrature phase-sensitive detection, 200 watt transmitter, and widebore Bruker superconducting solenoid operating at 182 MHz for 1H and 28 MHz for 2D. Maximum deuterium pulse amplitudes of 32G or $\nu_1 = 21$ kHz were used. Spectra were obtained by application of a single pulse off-resonance with respect to the isotropic chemical shifts followed by phase-sensitive detection of the free induction decay with proton decoupling for the partially deuterated samples. The spectrometer audio bandpass filters were set almost to the width of the static quadrupole powder spectrum to pass the higher frequency components of the rotational echoes. Recycle times of up to two minutes were used due to long spin-lattice relaxation times in the solids. All spectra were taken at room temperature.
3. RESULTS AND DISCUSSION

In Fig. 3 are shown the on resonance fids of perdeutero-hexamethylenbenzene-d$_{18}$ (hmb-d$_{18}$) rotating at 4.0 kHz. The upper fid consists of a series of rotational echoes and the lower fid is obtained by sampling the peaks of these echoes. Fids of the hmb-d$_{18}$ under the same condition, but 0.4 kHz off resonance, are shown in Fig. 4. The first isotropic solid state spectrum of an equal deuterium mole mixture of hmb-d$_{18}$ and 20%-deutero-ferrocene-d$_{10}$ is shown in Fig. 5. The top spectrum is the non-spinning case and consists of the overlapping powder patterns of the two components. The inner peaks are the singularities of the hmb-d$_{18}$ pattern and the outer peaks are those of the ferrocene pattern. From these we can immediately measure ν_Q (hmb-d$_{18}$) = 14 kHz and ν_Q (ferrocene-d$_{10}$) = 73 kHz. The shoulders of the hmb-d$_{18}$ pattern are just visible, but those of the ferrocene pattern are not. The middle spectrum shows the distribution of the total powder spectrum into a set of spinning sidebands when the sample is rotated at 4.0 kHz. The sidebands are separated by that frequency and their envelope approximates the non-spinning pattern since the frequency of rotation, ν_r, is much less than ν_Q. Sampling in synchronism with the rotation effectively folds in the sideband spectrum in such a way as to produce the lower spectrum; the isotropic chemical shift spectrum.

The isotropic chemical shift spectra of the perdeuterated dimethyl- and diethylesters of terephthalic acid are shown in Figs. 6 and 7, respectively. In both cases the narrower, more intense line arises from the -CO$_3$ position and the broader and less intense lines from the rigid
-CD$_2$ and -D$_4$ positions. Approximate absorption line integrals show that these latter positions contributed only about half of their expected intensity relative to the -CD$_3$ position. This intensity loss is also evident in Fig. 8, the spectrum of succinic acid monomethyl ester, deuterated as shown. The -CD$_4$ and -CD$_3$ lines overlap and only a very small line is observed for the -OD position.

Two important observations must be discussed: 1) the rigid molecular positions which retain the full anisotropic quadrupole coupling range contribute much less relative intensity than expected, 2) the absorption line widths are from 1.5 to 3.5 ppm at half maximum height. The first observation is in part the result of applying a pulse for which $v_f < v_Q$. Under this condition, the pulse does not excite equally over the spectrum. For the rigid positions, $v_Q = 130$ kHz and v_1 of at least 100 kHz or 155G would be required to produce more uniform excitation.

The second observation is the result of two effects. First, the absorption linewidth in the isotropic spectrum should have an inhomogeneous contribution from the anisotropy of the quadrupole coupling taken to second order as a perturbation on the Zeeman energy. This interaction does not average to zero under magic angle spinning since it has a different angular dependence. It's contribution to the linewidth is on the order of

$$4 \times 10^{-2} \frac{v^2_q}{v_0}$$

or about 1 ppm for the rigid positions. Second, the axis of sample spinning was not exactly "magic" and could sometimes be seen to wobble with the unaided eye. Thus the quadrupole broadening is not completely removed even in first order. In fact, the fid varied significantly from shot to shot and in Fig. 9 is shown the spectrum of the diethyl-ester of terephthalic acid obtained by visually selecting those shots.
with long decays for averaging. Clearly, rotor instability was the major factor in linewidths and resolution obtained and must be improved to employ signal averaging. Since the spectra were narrowed by the factor $\frac{1}{2} (3\cos^2\beta - 1)$, a deviation of a few hundredths of a degree from $\beta = \arccos 3^{-1/2}$ gives broadening of hundreds of Hz and makes chemical shifts unobservable. Even lesser deviations cause enough broadening of the lines from rigid positions (those with large v_Q) to create an apparent intensity loss as cited in the first observation.

Summarized in Table I are the measured isotropic chemical shifts using hmb-d$_{18}$ as internal standard and for comparison, the corresponding values for protons in liquid. The solid values are significantly downfield from the liquid values due to a downfield shift of the solid absorption line position from second order quadrupole effects. This shift depends on the ratio v_Q^2/v_0 and is negligible for the standard hmb-d$_{18}$ which has the unusually small value $v_Q = 14$ kHz due to rapid molecular motions in the solid. The second order quadrupole effects will be discussed in more detail in a forthcoming paper.

4. SUMMARY

Relatively slow magic angle sample rotation has been applied to remove the first order quadrupole broadening from spectra of deuterium in powders. Perdeuterated and selectively and partially deuterated samples have been used. Stability and control of the axis of rotation is crucial since the spectra were narrowed by about three orders of magnitude. Resolution of lines from isotropically shifted positions in a molecule has been demonstrated and a downfield shift due to second
order quadrupole effects has been observed. The availability of these isotropic chemical shift spectra is an attractive alternative to the study of protons in solids when this becomes difficult and for isotropic labeling studies. Experiments to combine sample rotation with double-quantum FTNMR and to reduce second order quadrupole effects are in progress.

ACKNOWLEDGEMENTS

We are grateful to Sidney Wolfe and Herbert Zimmerman for synthesis of sample compounds. We acknowledge John Waugh for providing a model sample rotor and for communicating results before publication.

This work was supported by the Division of Fossil Energy, Office of Assistant Secretary for Energy Technology, U. S. Department of Energy under contract No. W-7405-ENG-48.
REFERENCES

TABLE I: Isotropic solid state 2D chemical shifts and corresponding values for 1H in liquid (ppm δ).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Position</th>
<th>2D solida</th>
<th>1H liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>ferrocene</td>
<td></td>
<td>3.1</td>
<td>1.9b</td>
</tr>
<tr>
<td>terephthalic acid</td>
<td>(1)</td>
<td>2.4</td>
<td>1.7c</td>
</tr>
<tr>
<td>dimethylester</td>
<td>(2)</td>
<td>7.5</td>
<td>5.8</td>
</tr>
<tr>
<td>$($D$_3$CO$_2$CD$_3$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>terephthalic acid</td>
<td>(1)</td>
<td>0.0</td>
<td>-0.8d</td>
</tr>
<tr>
<td>diethyl ester</td>
<td>(2)</td>
<td>4.4</td>
<td>2.2</td>
</tr>
<tr>
<td>$($D$_3$CD$_2$CO$_2$CD$_3$)</td>
<td>(3)</td>
<td>8.3</td>
<td>5.9</td>
</tr>
<tr>
<td>succinic acid monomethyl ester</td>
<td>(1)</td>
<td>1.7</td>
<td>0.5c</td>
</tr>
<tr>
<td>$($DOOCCDHCDICOOCD$_3$)</td>
<td>(2)</td>
<td>1.7</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>13.8 (?)</td>
<td></td>
</tr>
</tbody>
</table>

a) Internal reference solid perdeutero-hexamethylbenzene-d_{18}. Uncertainty in solid values \pm0.4 ppm.

b) In CCl$_4$ with internal reference protonated hexamethylbenzene.

d) In CHCl$_3$ with internal reference protonated hexamethylbenzene.
FIGURE CAPTIONS

1. Theoretical powder absorption lineshape for spin-1 deuterium in an axially symmetric electric field gradient in high magnetic field. The overlapping patterns arise from the orientation dependence of the frequencies of the two quadrupole satellites. Zero frequency is the nuclear Larmor frequency.

2. NMR sample spinning probe head: 1) NMR coil, 2) rotor, 3) air drive flute, 4) rotor axis angle (β) adjust screw, 5) rotor air drive air outlet.

3. On resonance free induction decays of hmb-d₁₈ rotating at 4.0 kHz: (top) rotational echoes without synchronous sampling, (bottom) isotropic decay produced by synchronous sampling.

4. 0.4 kHz off resonance free induction decays of hmb-d₁₈ rotating at 4.0 kHz: (top) rotational echoes without synchronous sampling, (bottom) isotropic decay produced by synchronous sampling.

5. Solid state deuterium spectra of an equal deuterium mole mixture of perdeutero-hexamethylbenzene-d₁₈ and 20%-deutero-ferrocene-d₁₀: (top) non-spinning quadrupole powder pattern; total width of trace 200 kHz. The inner peaks are the singularities of the hmb-d₁₈ pattern and the outer peaks are the singularities of the ferrocene-d₁₀ pattern. (middle) Rotational sideband spectrum from Fourier transform of rotational echo fid (see Fig. 3, top) with sample spinning at 4.0 kHz; total width of trace 200 kHz. Envelope of sidebands approximates non-spinning lineshape above when ωₑ<ω₉. (bottom) Isotropic chemical shift spectrum from Fourier transform of synchronously sampled fid (see Fig. 3, bottom); total width of trace 2 kHz. Ferrocene-d₁₀ is
6. Solid state isotropic chemical shift spectrum of perdeutero-terephthalic acid dimethyl ester, 1 kHz trace width.

7. Solid state isotropic chemical shift spectrum of perdeutero-terephthalic acid diethyl ester, 1 kHz trace width.

8. Solid state isotropic chemical shift spectrum of selectively deuterated succinic acid monomethyl ester, 1 kHz trace width.

9. Isotropic spectrum of perdeutero-terephthalic acid diethyl ester produced by visually selecting shots with long decays for signal average, 1 kHz trace width. The selection procedure partially compensates for rotor instability and shows that the instability is a dominant factor in resolution obtained.
FIGURE 2: Diagram of a rotor with an external magnetic field labeled. The diagram includes annotations for various parts of the system labeled as 1, 2, 3, 4, and 5. The scale bar indicates 1 cm.
FIGURE 3 (BOTTOM)
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.
TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720.