Lawrence Berkeley National Laboratory

Recent Work

Title
MUON SHIELDING: DOOR HARDWARE STRUCTURAL CALCULATIONS

Permalink
https://escholarship.org/uc/item/0vm6035m

Author
Purgalis, Peter.

Publication Date
1981-02-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE "DOORS" ARE RESTRAINED AT THE BOTTOM
BY THE FLOOR CHANNELS & SEISMIC STOPS AND AT
THE TOP BY THE DOOR HANGERS WHICH ATTACH TO
THE FIXED FRAME OR SUPERSTRUCTURE

CALCULATIONS SHOW THAT, FOR A .7g EARTHQUAKE,
THE STRESSES IN THE ATTACHMENT HARDWARE
ARE WITHIN THE ALLOWABLE VALUES SPECIFIED
BY AISC.
LARGE DOOR

DOOR WEIGHT = 78.5 k

MUON CHAMBERS = 11.1 k @ 10 lb/ft²

HARDWARE = 2.0 k

\[
91.6 \geq 92 \text{ k} = W
\]
Small Door

Door Weight = \(54.5\, \text{kN} \)

Muon Chambers = \(7.0\, \text{kN} \) @ 1012/ft²

Hardware = \(2.0\, \text{kN} \)

\[
\frac{63.5}{64} = W
\]
LOAD ACTING ON LARGE DOOR C.S ALONG BEAM LINE IS DUE TO EARTHQUAKE AND PEP-Q MAGNET

\[F_2 = EARTHQUAKE \]
\[= 0.7(9.8) \quad = 64.4 \text{kN} \]

FORCES AT TOP \(F_t \) AND BOTTOM \(F_b \) OF DOOR

\[F_t = \frac{148.3}{311.5} \quad P = 0.48P \quad 0.48(64.4) = 31\text{kN} \]

\[F_b = 0.52P \quad 33.5\text{kN} \]

FORCE ACTING ON WEST ROLLER \(F_{bw} \)

\[F_b \]
\[F_{bw} = \frac{625}{111.5} \quad F_b \quad 0.56F_b \quad 0.56(33.5) = 18.8\text{kN} \]

\[F_{be} = 0.44F_b \quad 14.7\text{kN} \]

FORCE ACTING ON WEST HANGER \(F_{tw} \)

\[F_t \]
\[F_{tw} = 50F_t \quad 80.5 \quad 0.62F_t \quad 0.62(31) = 19.2\text{kN} \]

\[F_{te} = 0.38F_t \quad 11.8\text{kN} \]
LOAD ACTING ON SMALL DOOR C.G. ALONG BEAM LINE IS DUE TO EARTHQUAKE AND PEP-9 MAGNET.

\[P_2 = \text{EARTHQUAKE} = 0.7 \times 64 \text{k} = 45 \text{k} \]

Forces at Top Ft and Bottom Fb of Door

\[F_t = \frac{1569 \text{(P)}}{311.5} = 50 \text{P} \]

Earthquake

\[F_t = 22.5 \text{k} \]

\[F_b = 50 \text{P} \]

Earthquake

\[F_b = 22.5 \text{k} \]

Force acting on West Roller Fbw and East Roller FeE

\[F_{bw} = 26.4 \frac{F_b}{58.25} \]

Earthquake

\[F_{bw} = 14.5 \frac{F_b}{58.25} \]

\[F_{bw} = 10.1 \text{k} \]

\[F_{bw} = 55 \frac{F_b}{58.25} \]

\[F_{bw} = 12.4 \text{k} \]

Force acting on West Hanger Ftw and East Hanger Fte

\[F_{tw} = 34.6 \frac{F_t}{71.5} \]

Earthquake

\[F_{tw} = 48 \frac{F_t}{71.5} \]

\[F_{tw} = 10.3 \text{k} \]

\[F_{tw} = 52 \frac{F_t}{71.5} \]

\[F_{tw} = 11.7 \text{k} \]
FORCES IN X DIRECTION (PERPENDICULAR TO BEAM)

LARGE DOOR

\[P_x = \text{EARTHQUAKE} = 0.7(92k) = 64.4 \, k \]

Find force at top \(F_{Tx} \) for \(R_2 = 0 \) (to keep door from lifting \(R_2 \))

\[\sum F_x = F_{Tx} + F_{Bx} = P_x \]
\[F_{Bx} = P_x - F_{Tx} = 64.4 - 16.2 = 48.2 \, k \]

Or \[\frac{R_1}{W} = \frac{24.1 \, k}{192 \, k} \]

\[R_1 = W = 92k \]

Rollen has so\'t capacity

SMALL DOOR

\[P_x = \text{EARTHQUAKE} = 0.7(64k) = 45k \]

Find \(F_{Tx} \) so \(R_1 = 0 \)

\[\sum F_x = P_x - R_2 - F_{Tx} = 0 \]
\[F_{Tx} = \frac{P_x (156.9) - 26.4(W) - (311.5 \, k)}{311.5} \]
\[= 17.2 \, k \]

\[\sum F_x = F_{Bx} = P_x - F_{Tx} = 45 - 17.2 = 27.8 \, k \]

Or \[\frac{R_2}{W} = \frac{13.9 \, k}{64 \, k} \]

\[R_2 = W = 64 \, k \]
SEE PREVIOUS PAGE P 1965984 FOR CHANNEL LAYOUT

CHECK CHANNEL ATTACHMENT TO FLOOR

CHECK WORST CASE

DOORS CLOSED

SMALL DOOR WEST ROLLER AND LARGE DOOR EAST ROLLER

\[F_{sw} = 10.1 \quad F_{sw} = 14.7 \]

\[F_1 = \frac{F_{sw} (1.5) + F_{sw} (4.75)}{48} \]

\[= \frac{1}{3} (14.7) + 1 (10.1) = 15.0 \text{ k} \]

\[F_2 = F_{sw} + F_{sw} - F_1 \]

\[= 14.7 + 10.1 - 15 = 9.8 \text{ k} \]

ALLOWABLE = 21 k

FROM PREVIOUS PAGE

CHECK CHANNEL BENDING

\[M = \frac{F_{sw} (0.5) (4.75) + F_{sw} (1.0)(3)}{48} = \frac{10.1 (1.5)(4.75) + 14.7 (1.0)(3)}{48} \]

\[= 161 \text{ k-ft} \]

\[\theta = \frac{M s}{2 a.7} = \frac{161 \text{ k-ft}}{20.7} = 7.8 \text{ ksi} \]

ALLOWABLE = 21.6 ksi

FROM PREVIOUS PAGE

0 k
CHECK ROLLER ATTACHMENT TO DOOR

MAX FORCE = EARTHQUAKE IN X DIRECTION FOR LARGE DOOR (PAGE 6)

\[\text{Max Force} = 24.1 \text{k} \]

2 in. Dia Pin 1018 Cold Rolled

\[F_u = 65 \text{kpsi}, \quad \tau_u = 0.65F_u = 42.2 \text{kpsi} \]

\[F_y = 55 \text{kpsi} \]

TOTAL WELD LENGTH

\[10 + 10 + 7 + 7 = 34 \text{ in} \]

20C1836 ROLLER DAMPER (RUBBER)

1-6" UNC 4 PL

20C1836 SOUTH LARGE DOOR ASSY

10X30 CHANNEL

20C1856

100 T HILLMAN ROLLER

CHECK SHEAR ON 2 IN. DIAM PIN

\[A = 3.14 \text{ in}^2 \]

\[\tau_u = \frac{24.1 \text{k}}{3.14 \text{ in}^2} = 7.6 \text{kpsi} \]

\[F_s = 5 \]

2 IN. PIN FITS INTO NEMA G-10 INSULATING BUSHING BEARING ON BUSHING

\[\text{Bearing} = \frac{24.1 \text{k}}{2 \text{in} \times 0.75 \text{in}} = 16 \text{kpsi} \]

\[F_s = 3.8 \]

COMPRESSIVE STRENGTH

NEMA G-10

\[60 \text{kpsi} \]
Weld shear stress roller mounting bracket
to "door"

\[
\text{Shear} = \frac{24.1k}{5in \times 34in} = 1.4 \text{ksi}
\]

Allowable =

\[
= 0.4 \times F_y = 0.4(16 \text{ksi}) = 10.4 \text{ksi}
\]

Roller to channel seismic stop - parallel to channel

20C2114 door lower seismic Assy

F = Earthquake = 24.1 k

3-8 UNC bolts, 4 per side

A-307 allow = 1.33 x 7.8 k = 10.3 k

10x30 channel

1.0x3 slot 1/4 fillet all around

Weld allowable = 2.5 k/in x 6 slots x 7 in/slot = 105 k

Bolt allowable

8 bolts x 10.3 k/bolt = 82.4 k

Shear lip area = 1in x 3in /side

A = 3C \quad F_y = 36 ksi

Allowable = 0.4 \times F_y \times A = 0.4(36 \text{ksi}) \times (2)(3 \text{ in})

= 86.4 k

Max. Load = 24.1 k -> 0 k
Roller and Channel Seismic Stop - Perpendicular to Channel

Worst Side Force: \(F_{BW} = 18.8 \, k \)

(Large Door)

\[
F_{BOLT} = \frac{5.8}{6.06} \cdot \frac{F_{BW}}{2} = \frac{96}{2}(F_{BW})
\]

Earthquake

\[
F_{BOLT} = 18.8 \, k(0.48) = 9.0 \, k
\]

Allowable

A 307 Bolt: \(1.33 \, (12.1k) = 16k \)
Door Hangers

1 in Dia Pin

4140

Fu = 90 ksi

Fy = 65 ksi

A36 Plate

Fu = 58 ksi

Fy = 36 ksi

See Dust 20C.2026 Door Hanger Assy

1/2

6 x 6 x 3/8 Tube I = 40.5

A-A

Plate I = I0 + Ad2

= 2 (.083) + 2 (.5)(3)(3)2

= 72

I_{tot} = 40.5 + 72 = 112.5 in^4

S = \frac{I}{c} = \frac{112.5}{3} = 37.5 in^3

Check Bending & Shear at A-A

F = Earthquake

= 19.2 k
BENDING
\[\frac{C}{E} = \frac{M}{E} = \frac{19.2k(14in)}{37.5in^3} \]
\[= 7.2ksi \]
ALLOWABLE = 0.6F_y = 0.6(21.6ksi) = 12.96ksi

CHECK WELD STRENGTH.

WELD IS FULL PENETRATION ALL AROUND
FOR LARGE DOOR WEST HANGER

\[\begin{align*}
\text{TOP BENDING} & : Sw = \frac{b \cdot d^4}{4} = \frac{8(6)}{4} = 144 in^2 \\
\text{TORSION} & : Sw = \frac{b}{2} (b^2 + 3d^2) = 229 in^3 \\
\text{SIDE BENDING} & : Sw = 360 in^2 \\
\text{TORSION} & : Sw = 1693 in^2 \\
\end{align*} \]

SEE BLODGETT "DESIGN OF WELDMENTS"
F = F_1w = 19.2 k

\[
\begin{align*}
\text{TOP} \\
M & = 14 \text{in} \times 19.2 \text{k} = 269 \text{k-in} \\
T & = 7 \text{in} \times 19.2 \text{k} = 134 \text{k-in} \\
\Rightarrow f & = \frac{M}{5w} = \frac{269}{144} = 1.87 \text{k/in} \\
\Rightarrow f & = \frac{T_c}{4w} = \frac{134}{214} = 0.63 \text{k/in} \\
\text{SIDE} \\
M & = 3 \text{in} \times 19.2 \text{k} = 57.6 \text{k-in} \\
T & = 24 \text{in} \times 19.2 \text{k} = 461 \text{k-in} \\
\Rightarrow f & = \frac{M}{5w} = \frac{57.6}{360} = 0.16 \text{k/in} \\
\Rightarrow f & = \frac{461}{1693} = 0.28 \text{k/in} \\
\end{align*}
\]

Total weld length = 2(10) + 2(3) = 56 in

Shear = \frac{19.2 \text{k}}{56 \text{in}} = 0.34 \text{k/in}

\[
\begin{align*}
\text{TOP} \\
\frac{(2.93 \times 34)}{3.27} & \Rightarrow f_r = \sqrt{\frac{3.17^2 - 1.97^2}{3.77}} \\
& = 3.77 \text{k/in}
\end{align*}
\]

Allowable \frac{1}{2} \text{ weld} \equiv 5.0 \text{k/in}

So top weld alone is O.K.

And all other hangers are O.K. since they have more weld length.
CHECK ATTACHMENT TO FIXED FRAME / SUPER STRUCTURE

SHEAR AREA = 0.75x1x2
= 1.5 in² for both sides

1.5 R BEARING AREA = 0.75x1
= 0.75 in²

SUPER STRUCTURE 20G 2086 OR
FIXED FRAME 19C 7706

DOOR HANGER 20G 1796

Fₚₚₙ = LARGE DOOR
WEST HANGER = 19.2 k

F = 3/4

CHECK PIN - IN DOUBLE SHEAR
A = \(\frac{\pi}{4} (1)^2 = 0.785 \) in²

\[
\tau = \frac{F}{A} = \frac{19.2k}{2(0.785)} = \frac{12.3 kips}{F_s = 4.8}
\]

ULT SHEAR =
0.65 F_v = 0.65 x 90 = 58.5 kips
CHECK TEAROUT

\[T = \frac{F}{A} = \frac{19.2k}{1.5in^2} = 12.8 \text{ksi} \]

ULT. SHEAR = \(G_T(F_V) \) = \(37.7 \text{ksi} \)

FS = 2.9

CHECK BEARING STRESS

\[G_B = \frac{F}{A} = \frac{19.2k}{1.5in^2} = 12.8 \text{ksi} \]

ALLOWABLE = \(0.9 F_Y = 0.9(26) = 23.4 \text{ksi} \)

CHECK BOLT STRESS

\[P = \frac{F (6.2)}{5.7} = F(1.1) \]

\[= 19.2(1.1) = 21.1 \]

\[G = \frac{P}{A} = \frac{21.1k}{2.05in^2} = 17.4 \text{ksi} \]

FS = 1.9

PROOF STRESS

\[A = 0.7 \text{ in} \times \text{bolt} \]

\[= 33 \text{ksi} \]

THREAD ENGAGEMENT

FROM MACHINERY'S HANDBOOK 26TH ED. PAPER 1168)

SHEAR AREA, INTERNAL THREADS TO \(1 \)" UNC = 2.34 in\(^2\)/in

\[A = 2.34 \text{in}^2/\text{in} \times 0.875N = 2.05 \text{in}^2 \]

ULT. STRENGTH = \(25(58 \text{ksi}) \times 2.05 \text{in}^2 = 77.3 \text{ksi/bolt} \)
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.