Cutaneous T-cell lymphoma-associated Leser-Trélat sign: report and world literature review

https://escholarship.org/uc/item/0w01b1t3

Dermatology Online Journal, 23(1)

Narala, Saisindhu
Cohen, Philip R

2017

CC BY-NC-ND 4.0
Cutaneous T-cell lymphoma-associated Leser-Trélat sign: report and world literature review

Saisindhu Narala¹ BS, Philip R. Cohen² MD

Affiliations: ¹School of Medicine, University of California San Diego, La Jolla, California, ²Department of Dermatology, University of California San Diego, La Jolla, California

Corresponding Author: Saisindhu Narala, BS, sindhunarala@gmail.com; Philip R. Cohen, MD, mitehead@gmail.com

Abstract

Background: The sign of Leser-Trélat is characterized by the sudden appearance of seborrheic keratoses associated with an underlying malignancy. Objectives: An elderly man who developed multiple new-onset seborrheic keratoses temporally associated with a diagnosis of mycosis fungoides is described and lymphoma-associated Leser-Trélat sign is reviewed. Methods: Pubmed was used to search the following terms: cutaneous T-cell lymphoma, Leser-Trélat, leukemia, lymphoma, mycosis fungoides, and Sézary syndrome. Papers with these terms and references cited within these papers were reviewed. Results: An 84-year-old man developed multiple seborrheic keratoses temporally associated with a diagnosis of mycosis fungoides is presented. He was treated with bexarotene and achieved clinical remission; the number of seborrheic keratoses also decreased. Lymphoma-associated Leser-Trélat sign has been observed not only with mycosis fungoides but also other lymphomas and leukemias. Conclusions: The sign of Leser-Trélat is predominantly associated with solid organ adenocarcinomas. Albeit less common, an eruptive onset of seborrheic keratoses can also occur in association with hematopoietic malignancies.

Keywords: cutaneous, fungoides, Leser-Trélat, lymphoma, mycosis, seborrheic keratosis, Sézary syndrome, T-cell

Introduction

The Leser-Trélat sign is characterized by the eruptive onset of multiple seborrheic keratoses in a patient with underlying malignancy. It is most commonly associated with adenocarcinomas of the gastrointestinal tract, but has also—albeit less often—been associated with hematopoietic malignancies such as mycosis fungoides, a cutaneous T-cell lymphoma (CTCL). A man with new-onset seborrheic keratoses who was concurrently diagnosed with mycosis fungoides is described, and patients whose lymphomas were associated with Leser-Trélat sign are summarized.

Case Synopsis

An 84-year-old man presented with a 1-year history of a red, scaly rash on his entire body. He also noted several new brown skin lesions that had concurrently developed on his chest, back, and arms. The lesions were accompanied by extreme pruritus. He denied any constitutional symptoms (fever, weight loss, and night sweats) and review of systems was otherwise negative.

Cutaneous examination revealed diffuse erythroderma with scaling on approximately 95% of the body surface (Figure 1). Multiple brown plaques, 1 to 2 centimeters in greatest diameter, were present on his chest, back, and arms, consistent with seborrheic keratoses (Figure 1). There was no evidence of acanthosis nigricans or palpable lymph nodes.

Punch biopsy of a plaque on his right arm revealed orthokeratosis, acanthosis with elongation and anastomosis of the rete ridges, and pigment-laden keratinocytes with horn-cyst formation, establishing a diagnosis of seborrheic keratosis (Figure 2).
Punch biopsies from the right and left chest showed similar findings: epidermal spongiosis with infiltration of the epidermis by atypical lymphocytes. The papillary dermis showed a dense infiltrate of similar appearing lymphocytes (Figure 3).

Immunohistochemistry studies revealed an elevated CD4:CD8 ratio of 5:1. These findings confirmed the diagnosis of mycosis fungoides (Figure 4). Complete blood cell counts were within normal limits and no circulating Sézary cells were present. Further work-
up included PET/CT scan of the chest and abdomen, which revealed mediastinal lymphadenopathy.

Correlation of clinical examination and pathology findings established a diagnosis of Stage IIIa mycosis fungoides associated with the sign of Leser-Trélat. Initial management consisted of high-potency topical corticosteroid application (clobetasol propionate 0.05% cream twice daily) and systemic antihistamines (fexofenadine 180 mg daily, ranitidine 150 mg daily, and hydroxyzine 10 mg daily). These interventions resulted in partial diminution of erythroderma and partial relief of pruritus; however, they did not alter the course of mycosis fungoides.

Figure 3. Low (A) and higher power (B) magnification views of the biopsy from the right chest shows atypical lymphocytes in the papillary dermis with exocytosis of the cells into the overlying epidermis, establishing a diagnosis of mycosis fungoides (hematoxylin and eosin stain: A, 10x, B, 20x).

Figure 4. Immunohistochemistry of mycosis fungoides skin lesions showing CD3 positive T cells in the epidermis and dermis (A). High CD4 (helper T cells) positivity (B) and low CD8 (suppressor T cells) positivity (C) are present, demonstrating the characteristic high CD4:CD8 ratio in mycosis fungoides (immunoperoxidase stain: A, 10x, B, 10x, C, 10x).
Treatment with bexarotene 300 mg per day was initiated. Within two months, there was complete resolution of not only the pruritus, but also the erythroderma. Follow-up examination also showed a reduction in the number of seborrheic keratoses (Figure 5).

Case Discussion

The discovery of the sign of Leser-Trélat is attributed to two European surgeons, Edmund Leser (1827-1916) and Ulysse Trélat (1827-1890), who independently described the eruption of cutaneous lesions in patients with cancer. However, retrospective review indicated that the lesions they identified were actually cherry angiomas [1]. Hollander was the first physician to accurately describe the association of multiple eruptive seborrheic keratoses with internal malignancy in 1900 [2]. Since then, numerous case reports documenting the eruption of multiple seborrheic keratoses and its association with cancer have been published [1].

Leser-Trélat sign is most commonly associated with adenocarcinomas of the gastrointestinal tract, such as stomach, liver, pancreas, and colorectal [1]. Lymphoproliferative disorders are the second most common type of associated malignancy [4]. We identified 28 individuals with Leser-Trélat sign-associated lymphoma and leukemia (Table 1, [3-28]) and summarized the characteristics of 15 patients—

<table>
<thead>
<tr>
<th>Malignancy</th>
<th>Number of Patients</th>
<th>Percent</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphoma (N = 22)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTCL</td>
<td>15</td>
<td>68.2</td>
<td>3-16, CR</td>
</tr>
<tr>
<td>Lymphocytic</td>
<td>2</td>
<td>9.1</td>
<td>17, 18</td>
</tr>
<tr>
<td>Primary CNS</td>
<td>1</td>
<td>4.5</td>
<td>19</td>
</tr>
<tr>
<td>Unspecified</td>
<td>4</td>
<td>18.2</td>
<td>5, 20-22</td>
</tr>
<tr>
<td>Leukemia (N = 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute myelogenous</td>
<td>4</td>
<td>66.7</td>
<td>23-26</td>
</tr>
<tr>
<td>Acute lymphocytic</td>
<td>1</td>
<td>16.7</td>
<td>27</td>
</tr>
<tr>
<td>Unspecified</td>
<td>1</td>
<td>16.6</td>
<td>28</td>
</tr>
</tbody>
</table>

Table 1. Lymphomas and Leukemias Associated with Leser-Trélat sign. Abbreviations: CNS, central nervous system; CR, current report; CTCL, cutaneous T-cell lymphoma; N, number of patients
including the man described in this report—with cutaneous T-cell lymphoma-associated sign of Leser-Trélat (Table 2, [3-16]).

CTCL is characterized by the presence of neoplastic T lymphocytes in the skin. Mycosis fungoides is a type of CTCL with indolent behavior that can advance to an aggressive variant called Sézary syndrome [29]. Of the identified patients with CTCL-associated Leser-Trélat sign, 8 patients (53%) had mycosis fungoides while 7 patients (47%) had Sézary syndrome (Table 2).

<table>
<thead>
<tr>
<th>Case</th>
<th>CTCL Type</th>
<th>A R/S</th>
<th>TA[a]</th>
<th>Pr</th>
<th>SK Site</th>
<th>SK Bx</th>
<th>Treatment</th>
<th>SK Response to Tx</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MF</td>
<td>61 Ca/M</td>
<td>F [2]</td>
<td>-</td>
<td>Ba, Ch, Face</td>
<td>-</td>
<td>NS</td>
<td>NS</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>MF (Pl)</td>
<td>63 Ca/M</td>
<td>Con</td>
<td>+</td>
<td>Tr</td>
<td>+</td>
<td>Bleomycin chemotherapy</td>
<td>Res</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>MF (T)</td>
<td>71 AA, M</td>
<td>F [9]</td>
<td>+</td>
<td>Neck, Tr, UE</td>
<td>-</td>
<td>NS</td>
<td>NS</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>MF</td>
<td>83 H/M</td>
<td>Con</td>
<td>+</td>
<td>Ba, Ch, UE</td>
<td>+</td>
<td>Bexarotene</td>
<td>Red</td>
<td>CR</td>
</tr>
<tr>
<td>5</td>
<td>MF</td>
<td>87 NS/M</td>
<td>Con</td>
<td>NS</td>
<td>Ba, Ch</td>
<td>NS</td>
<td>Electron beam irradiation</td>
<td>Res</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>MF (Pl)</td>
<td>35 As/W</td>
<td>Con</td>
<td>NS</td>
<td>Ch, Neck</td>
<td>NS</td>
<td>PUVA, Etr, IL-1</td>
<td>Red</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>MF</td>
<td>61 NS/W</td>
<td>P [2]</td>
<td>+</td>
<td>Ba, Ch</td>
<td>-</td>
<td>PUVA</td>
<td>Res</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>MF</td>
<td>76 Ca/W</td>
<td>F [24]</td>
<td>+</td>
<td>NS</td>
<td>+</td>
<td>Mustard gas, Plasmapheresis</td>
<td>NR</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>SS</td>
<td>55 Ca/M</td>
<td>Con</td>
<td>+</td>
<td>Ba, Ch, Sh</td>
<td>+</td>
<td>NS</td>
<td>NS</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>SS</td>
<td>57 Ca/M</td>
<td>F [60]</td>
<td>+</td>
<td>Tr</td>
<td>+</td>
<td>Photopheresis IFN alpha</td>
<td>Res</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>SS</td>
<td>74 As/M</td>
<td>P [3]</td>
<td>-</td>
<td>Entire body</td>
<td>+</td>
<td>Chemotherapy</td>
<td>Red</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>SS</td>
<td>82 H/M</td>
<td>P [6]</td>
<td>+</td>
<td>Tr</td>
<td>+</td>
<td>PUVA, IFN alpha</td>
<td>Red</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 2. Characteristics of Patients with CTCL-associated Leser-Trélat sign. Abbreviations: A, age; AA, African-American; As, Asian; Ba, back; Bx, biopsy; Ca, Caucasian; Ch, chest; Con, concurrent; CR, current report; CTCL, cutaneous T-cell lymphoma; Etr, Etretinate; F, followed; H, Hispanic; IFN, interferon; IL-1, interleukin-1 (intravenous); LE, lower extremity; M, man; MF, mycosis fungoides; NR, no response; NS, not stated; P, preceded; Pl, plaque stage; Pr, pruritus; PUVA, psoralen and ultraviolet A; R, race; Red, reduction; Ref, reference; Res, resolution; S, sex; Sh, shoulder; SK, seborrheic keratosis; SS, Sézary syndrome; T, tumor stage; TA[], temporal association [duration in months]; Tr, trunk; Tx, treatment; UE, upper extremity; W, woman; +, positive; -, negative.
a. The diagnosis of CTCL either preceded, was concurrent (within 1 month), or followed the onset of seborrheic keratoses.
associated with a reduction of seborrheic keratoses in 92% of these patients.

References