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Automated Code Engine for Graphical Processing Units: Application to the Effective Core 

Potential Integrals and Gradients  

Chenchen Song1,2, Lee-Ping Wang1,2, and Todd J. Martínez1,2 
1Department of Chemistry and the PULSE Institute, 

  Stanford University, Stanford, CA 94305 
2SLAC National Accelerator Laboratory, Menlo Park, CA 94025 

 

Abstract 

We present an automated code engine (ACE) that automatically generates optimized kernels for 

computing integrals in electronic structure theory on a given graphical processing unit (GPU) 

computing platform. The code generator in ACE creates multiple code variants with different 

memory and floating point operation trade-offs. A graph representation is created as the 

foundation of the code generation, which allows the code generator to be extended to various 

types of integrals. The code optimizer in ACE determines the optimal code variant and GPU 

configurations for a given GPU computing platform by scanning over all possible code 

candidates, and then choosing the best-performing code candidate for each kernel. We apply 

ACE to the optimization of effective core potential integrals and gradients.  It is observed that 

the best code candidate varies with differing angular momentum, floating point precision, and 

type of GPU being used, which shows that the ACE may be a powerful tool in adapting to fast 

evolving GPU architectures. 
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1. Introduction 

Many well-established approaches in modern quantum chemistry rely on introducing a set of 

one-electron orbitals to describe the many-body wavefunction. The ab initio calculations of the 

electronic energy, atomic forces, and other observables naturally involve integrals of the atomic 

basis functions with operators such as electron-nuclear attraction and electron-electron 

repulsion,1 dipole moment, and spin-orbit coupling,2 along with their corresponding derivatives.3 

Consequently, the computational cost of many quantum chemistry methods is dominated by 

large numbers of integral and gradient evaluations. More recently, graphical processing units 

(GPUs) have become a powerful resource in accelerating integral construction.4,5,6,7 However, 

due to significant differences in the architecture between GPUs and traditional central processing 

units (CPU), several important programming challenges must be addressed in order to efficiently 

utilize the computational power of the GPU.  

In terms of evaluating integrals in electronic structure theory, there are at least three 

important challenges. First of all, the streaming multiprocessor (SM) in GPUs derives its 

computational power from executing kernels on thousands of threads in parallel, but each thread 

only has rapid access to a relatively small amount of data compared to programs running on the 

CPU. GPUs have a complex memory hierarchy; in order of increasing latency (the time needed 

to access a variable), memory is composed of 1) thread-specific registers, 2) L1 cache / shared 

memory (shared among a group of threads called a block), and 3) L2 cache / global memory 

(accessible by all threads). In contrast with a typical CPU, where the cache size per thread is 

usually several megabytes, the cache size per warp (a group of 32 threads comprising the 

minimum execution unit) on the GPUs is only several kilobytes. The properties of small cache, 

high latency, limited bandwidth and potential bank conflicts all make global memory (DRAM) 

usage expensive. Broadly speaking, performance is improved by writing GPU code that 

efficiently uses the registers and shared memory while minimizing the use of global memory, 

such that cores stay “busy” with computations rather than “waiting” to read a variable from 

higher-latency memory. 

Second, the architecture of graphical processing units evolves quickly. NVIDIA has 

announced its Fermi architecture, Kepler architecture and Maxwell architecture within only six 

years since 2009. These architectures all have different features from each other. For example, a 

typical graphics card with Fermi architecture is composed of 16 SMs, each with 32 cores. The 
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Kepler architecture reduces the number of SMs of each card, but increases the cores per SM to 

192 cores. The Maxwell architecture has 128 cores on each SM that are partitioned into 4 

processing blocks, each with its own resources for scheduling and instruction buffering. More 

detailed comparisons between architectures are given in Section 1 of the Supporting Information. 

Due to the diversity of GPU architectures, computing kernels optimized for one platform are not 

guaranteed to perform well on another.  

Third, the complexity of kernels in both operations and memory requirements increases 

with respect to the angular momentum of the basis set.8-9 As a result, optimizing the kernels 

becomes increasingly difficult with higher angular momentum. This is also a challenge in 

carrying out integrals and gradients on the CPU, but more onerous in the case of the GPU due to 

the rapid introduction of new architectures and the limited memory constraints. 

The problem could be solved if there existed a fully optimizing compiler capable of 

transforming each program P into the optimum program Opt(P) with the same input/output 

behavior as P. However, the full employment theorem in computer science has proved that such 

an ideal compiler cannot exist.10 In addition, the range of transformations that a compiler can 

explore is usually limited such that the program can be compiled in a reasonable amount of time; 

in a qualitative sense, the compiler performs only a very local optimization in the full space of 

programs. As a result, we cannot completely rely on a general purpose compiler to search for 

better program transformations. An alternative approach is to develop a code generator which 

can use knowledge of the mathematics behind integral methods (which is not available to a 

compiler) to create a wide variety of code variants. We expect that the resulting code variants 

will more broadly explore the space of possible program implementations and thus be more 

likely to expose the best performance on the hardware.  

The complexity inherent in ab initio quantum chemistry and many-body theories has long 

motivated attempts to use automated code generation. The earliest attempt dates back to the 

pioneering work of Jones,11-12 automating the generation of overlap integrals between Slater-type 

orbitals by using a computer algebra system to transform mathematical expressions into 

computer code. Subsequent studies have applied this method to generate code for Gaussian 

integrals,13 density functional theory14 and many-body theories.15-16 Very recently, MacLeod 

et.al. developed an automatic code generator which enables analytical nuclear gradients 

implementations for fully internally contracted active space second-order perturbation theory 
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(CASPT2).17 These studies focused on the use of code generators to guarantee code correctness 

while avoiding intensive (and often error-prone) manual derivations.  

There has also been previous work aimed at using code generators to improve 

implementation performance in addition to ensuring code correctness. One approach to 

automated code generation with performance optimization is model-driven optimization. An 

example of this approach is the tensor contraction engine (TCE),18 which has achieved great 

success in CPU-based computational many-body theory. TCE includes an operator contraction 

engine (OCE) which transforms Feynman-like diagrams into tensor expressions expressed in a 

domain-specific language. The TCE, which is the “compiler” of the domain-specific language, 

then translates the high-level symbolic math language into low-level languages like FORTRAN 

and C. The model-driven search-based optimization approach adopted by TCE relies on cost 

models to estimate and minimize the computational cost.19 Very recently, researchers have been 

working on generalizing the TCE optimization approach such that tensor computation 

optimization can be extended to other architectures like GPUs.20 Another example is LIBINT,21-

22 which uses an optimizing compiler to automatically generate two-body integrals over Gaussian 

functions. The optimizing compiler approach enables easy implementation of new recurrence 

relationships, and yields high performance for the generated code on superscalar CPU 

architectures.   

Empirical performance-driven optimization is another approach for automatic generation 

of optimized code. Examples include the automatically tuned linear algebra library23 (ATLAS) 

and the Fastest Fourier Transform in the West (FFTW).24 Both numerical libraries perform 

program optimization by empirically testing the performance of several versions of generated 

code on the target architecture. The optimization approach is based on the idea that the accurate 

prediction of code performance requires good knowledge of the hardware layout and parameters, 

which can be highly complex and vary greatly across different types of target architectures. In 

addition, different code variants will trigger different (and often unpredictable) optimization 

paths in the chosen compiler, which decreases the accuracy of model-based approaches. ATLAS 

and FFTW address the problem by generating a set of code variants that cover a wide range of 

possibilities, and selecting the best code variant based on timing tests. ATLAS is reported to 

match or exceed the performance of the vendor-supplied version of matrix multiplication on 
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almost every tested platform.25 A similar empirical performance-driven approach has been 

developed and applied to problems in tensor algebra.26 

The performance-driven optimization strategy is especially appealing for quantum 

chemistry computations on GPUs, because the high complexity of both the algorithms and the 

hardware architecture make it difficult to accurately model performance. Titov et. al. took first 

steps towards applying this approach to optimize Fock matrix construction on the GPU with d-

orbitals,27 and were able to achieve similar performance as hand-tuned GPU kernels limited to s 

and p orbitals. However, this work was only partially automated, hampering extensions to higher 

angular momentum functions or different integral types. 

In this work we describe the development of a fully automated code engine (ACE) that 

generates optimized kernels of integral calculations for a given CUDA computing platform. In 

order to highlight the fundamental issues, we have first focused on the most complex one-

electron integral (integrals over effective core potentials or ECPs), although generalization to 

other integrals is also possible. In order for the code generator to be easily generalizable, we 

introduce a graph representation of the procedure for evaluating the integral, which enables easy 

searching over different code variants.  

The structure of this paper is as follows. First, we describe the design of the three 

modules in ACE, namely the code generator, the code tester and the code optimizer. We then 

describe in detail the graph representation, which is the foundation of our automated code 

generation. Next, we apply ACE to ECP integrals and gradients. We show that the angular 

momentum, floating point precision, and the type of GPU architecture all affect the optimal 

choices. We observe significant differences in performance across different compiler-optimized 

code variants. This indicates that compiler optimization is far from complete and the generation 

and testing of codes using ACE is a way to achieve high performance for quantum chemistry 

calculation kernels on the GPU. Finally, we discuss improvements to be carried out in future 

work. 

 

2. Methods 

The most fundamental concept in ACE is the representation of the program that evaluates an 

integral as a graph that connects input and output variables through intermediate values and 

mathematical operations. Given this graph representation, ACE automatically generates multiple 
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computational kernels by transforming the graph structure and designating variables as being 

stored or recomputed on-the-fly. In the current manuscript, we provide an initial graph 

representation of the integral as the starting point; future work will describe the capabilities of 

ACE for automatically generating graph representations starting from high-level working 

equations. In the next section, we introduce the equations for computing the integrals that 

provide the basis of the graph representation. 

 

2.1 ECP integrals and Gradients 

Here we briefly summarize the method for computing ECP integrals and gradients, following 

McMurchie and Davidson.28 The form of the effective core potential operator for an ECP 

center29 located at the origin is  

 UECP r( ) =UL+1 r( ) + Slm Ul r( )−UL+1 r( )( ) Slm
m=− l

l

∑
l=0

L

∑  (1) 

where L is the maximum angular momentum orbital in the core, and the angular functions

Slm θ ,ϕ( )  are the normalized real spherical harmonics. The following two types of integrals 

appear in ECP integral evaluations < φa |U r( ) |φb >  

 χab = r2U r( ) φa r( )φb r( )dΩ
Ω∫0

∞

∫   (2) 

 γ ab
l = r2U r( ) φa r( )Slm dΩΩ∫ φb r( )Slm dΩ 'drΩ '∫0

∞

∫   (3) 

where 

 U r; du ,n,ζ( ) = durne−ζur
2

 (4) 

is the primitive radial Gaussian functions for the ECP potential, and 

 φa r( ) = da x − Ax( )ax y − Ay( )ay z − Az( )az e−α r−A( )2   (5) 

 φb r( ) = db x − Bx( )bx y − By( )by z − Bz( )bz e−β r−B( )2   (6) 

are the primitive Gaussian basis functions. The contraction coefficients for the ECP potential and 

basis functions are given by du, da, db, and the exponents are given by ζu, ηa, ηb. Here we have 

employed a local coordinate system centered at the position of the ECP center for each integral. 

The centers of the basis functions are given by A = (Ax, Ay, Az); B = (Bx, By, Bz), and the angular 

momenta are ax, ay, az; bx, by, bz. The integral in Eq. (3) can be evaluated as 
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γ axayaz ,bxbybz

l = 16π 2dudadb Θaxayaz ,α xα yα z

0 Ax , Ay , Az( )
α z=0

az

∑
α y=0

ay

∑
α x=0

ax

∑

× Θbxbybz ,βxβ yβz

0 Bx , By , Bz( )
βz=0

bz

∑
β y=0

by

∑
βx=0

bx

∑

× Rλ1,λ2
2+ n+α + β ,ζ ,ηA, RA,ηB , RB( )Ω l ,λ1λ2

α xα yα z ,βxβ yβz rA ,rB( )
λ2=0

l+β

∑
λ1=0

l+α

∑

 (7) 

where a=ax+ay+az, b=bx+by+bz, α=αx+αy+αz, β=βx+βy+βz, RA=||A||, and RB=||B||.  We have 

defined the angular factors as 

 Θaxayaz ,α xα yα z

0 Ax ,Ay ,Az( ) = −1( )La−α ax
α x

⎛
⎝⎜

⎞
⎠⎟
ay
α y

⎛

⎝⎜
⎞

⎠⎟
az
α z

⎛
⎝⎜

⎞
⎠⎟
Ax
ax−α x Ay

ay−α y Az
az−α z   (8) 

 
Ωl ,λ1λ2

α xα yα z ,βxβyβz rA ,rB( ) = Sλ1µ1 θA ,ϕA( ) SlmSλ1µ1xn
α x yn

α y zn
α z dΩ∫

µ1=−λ1

λ1

∑
m=− l

l

∑

× Sλ2µ2 θB ,ϕB( ) SlmSλ2µ2 xn
βx yn

βy zn
βz dΩ∫

µ2=−λ2

λ2

∑
  (9) 

and the radial function is defined as 

 Rλ1,λ2
N ,ζ ,α ,RA ,β,RB( ) = r2+Ne−ζ r

2

e−α r−RA( )2e−β r−RB( )2Kλ1
2αRAr( )Kλ2

2βRBr( )dr
0

∞

∫  (10) 

where K is the modified spherical Bessel function of the first kind weighted by an exponential 

factor as Kλ z( ) = M λ z( )e− z . 
The corresponding analytic gradient of the integral in Eq. (3) can be derived by making 

use of the property that  

 d
dA

x − A( )a e−ηa x−A( )2⎡
⎣

⎤
⎦ = a x − A( )a−1 e−ηa x−A( )2 − 2ηa x − A( )a+1 e−ηa x−A( )2   (11) 

As a result, the analytic gradient of the integral in Eq. (3) with respect to Ax can be computed as  

 

   

d
dAx

γ axayaz ,bxbybz

l = 16π 2dudadb Θaxayaz ,α xα yα z

x Ax , Ay , Az( )
α z=0

az

∑
α y=0

ay

∑
α x=0

ax+1

∑

× Θbxbybz ,βxβ yβz

0 Bx , By , Bz( )
βz=0

bz

∑
β y=0

by

∑
βx=0

bx

∑

× Rλ1,λ2
2+ n+α + β ,ζ ,ηA, RA,ηB , RB( )Ω l ,λ1λ2

α xα yα z ,βxβ yβz rA ,rB( )
λ2=0

l+β

∑
λ1=0

l+α

∑

 (12)

 
where 
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Θaxayaz ,α xα yα z

x Ax ,Ay ,Az( ) =

−1( )La+1−α ax
ay
α y

⎛

⎝⎜
⎞

⎠⎟
Ax
ax−1−α x − 2ηA

ay
α y

⎛

⎝⎜
⎞

⎠⎟
Ax
ax+1−α x

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ay
α y

⎛

⎝⎜
⎞

⎠⎟
az
α z

⎛
⎝⎜

⎞
⎠⎟
Ay
ay−α y Az

az−α z
 (13)

 
The gradients with respect to Ay, Az, Bx, By, Bz are similar to Eq. (12).  

In order to compute the analytic gradient of the total energy with respect to the nuclear 

displacements, the analytic gradient of the integrals need to be contracted with some given 

density matrix as 

 Γab
l ξ( ) = Paxayaz , bxbybz

d
dξ

γ axayaz , bxbybz
l

bx , by , bz:
bx+by+bz=b

∑
ax , ay , az :

ax+ay+az=a

∑   (14) 

where  Γab
l ξ( )  is the gradient of the integrals contracted with the corresponding block of the density 

matrix P, and ξ represents the nuclear degree of freedom from either atom A or atom B. 

Throughout this paper,  Γab
l ξ( )  is used to illustrate computational strategies.  

 In practice, the first step toward calculating the ECP integrals and gradients is to compute 

the radial integrals R in Eq. (10), which requires the parameters of the three Gaussian functions 

involved (those of the basis functions and the ECP) as well as their relative displacement vectors. 

We previously showed how an adaptive quadrature strategy with screening could accelerate 

radial integral evaluations.30 The radial integral is then contracted with several other factors in a 

multi-level summation to compute the integral in Eq. (7) and the gradient in Eq. (12). Therefore, 

we now introduce a series of intermediate variables to represent the contraction process, which 

will be used for later analysis.  

Here we use the gradient  Γab
l ξ( )  in Eq. (14) as an illustration. The array of radial integrals 

R is indexed by !λ1 , !λ2  and N, where the number of variables is determined by several 

conditions on the indices forced by the summation rules in Eq. (12), i.e. λ1≤l+La+1, λ2≤l+Lb+1, 

λ1+λ2≤La+Lb+1 and max(0,λ1+λ2-2l)≤N≤La+Lb+1. First, R(λ1,λ2,N) is contracted with an 

angular factor 
   
Ω l ,λ1λ2

α xα yα z ,βxβ yβz rA ,rB( )  that again depends on the parameters of basis functions. This 

contraction eliminates the !λ1  and !λ2  indices, resulting in an intermediate variable T: 
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Tα xα yα z ,βxβ yβz

= Rλ1,λ2
2+ n+α + β ,ζ ,ηA, RA,ηB , RB( )Ω l ,λ1λ2

α xα yα z ,βxβ yβz rA ,rB( )
λ2=0

l+β

∑
λ1=0

l+α

∑   (15) 

where the six summation indices obey the conditions αx+αy+αz≤La+1, βx+βy+βz≤Lb+1, and 

αx+αy+αz+βx+βy+βz≤La+Lb+1, and we have omitted the index !l  for clarity because it is not a 

summation index. Next T is contracted with a different angular factor 
  
Θbxbybz ,βxβ yβz

0 Bx , By , Bz( )  

where the indices   
βx ,β y ,βz  are eliminated, resulting in another intermediate variable G: 

 
  
Gα xα yα z ,bxbybz

= Θbxbybz ,βxβ yβz

0 Bx , By , Bz( )
βz=0

bz

∑
β y=0

by

∑
βx=0

bx

∑ Tα xα yα z ,βxβ yβz
 (16) 

By analogy, we define  G  by contracting over the   
α x ,α y ,α z  indices: 

 
  
Gaxayaz ,βxβ yβz

= Θaxayaz ,α xα yα z

0 Ax , Ay , Az( )
α z=0

az

∑
α y=0

ay

∑
α x=0

ax

∑ Tα xα yα z ,βxβ yβz
 (17) 

Contracting over the last angular factor 
  
Θaxayaz ,α xα yα z

x Ax , Ay , Az( )  and multiplying by some 

parameters gives the integral gradient: 

 
  

d
dAx

γ axayaz ,bxbybz

l = 16π 2dudadb Θaxayaz ,α xα yα z

x Ax , Ay , Az( )
α z=0

az

∑
α y=0

ay

∑
α x=0

ax+1

∑ Gα xα yα z ,bxbybz
 (18) 

Finally, the integral gradient is contracted with the density matrix, representing a fourteen-fold 

loop in total (as the six-fold summation in Eq. (14) has two constraints). The calculation of the 

ECP integral is a ten-fold loop because it does not involve contracting with the density matrix. 

The calculations that transform the radial integral into the ECP integrals and gradients 

present a large number of possibilities in terms of which intermediate variables to store, which 

intermediate variables are recomputed, and the possible orderings of the computations. Here, we 

introduce a graph representation to formalize these choices and apply ACE to optimize the 

computations. Although Γab
l ξ( )  is used as an example for this paper, other integrals or integral 

gradients are generated and optimized in similar ways. The next section describes how the 

equations are represented using a dependence graph structure and a set of decisions, which 

together with the dependence graph is referred to as a decision graph. 

 

2.2 Design of Code Generator-Generating Different Code Variants 
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The code generator is the most important module in the ECP-ACE, as it generates the code 

candidates to be profiled. The code generator has two major functions: 1) generating multiple 

code variants, and 2) performing loop unrolling. As the registers are limited resources on the 

GPUs, we design a code generator that can tune the register usage for different code variants in a 

controllable way. Therefore, we adopt ideas from liveness analysis31 in compiler theory and the 

interference graph32,33 which is closely related with register allocation optimization.  

A few important concepts about the interference graph are: 1) a variable is live if it holds 

a value that may be needed in the future, 2) redefinition of a variable changes its value, therefore 

is equivalent to destroying the old variable and creating a new variable, 3) variables a and b 

interfere if they cannot be allocated to the same register at the same time, which happens when a 

and b have overlapping live range. 4) An interference graph is an undirected graph where nodes 

represent variables and edges connect variables that interfere. The register allocation problem 

can then be reinterpreted as coloring the nodes in the interference graph with the minimum 

number of colors, under the constraint that nodes connected by edges cannot have the same 

color. If the minimum number of colors K is less than the available number of registers Nreg, then 

the compiler (e.g. nvcc) will allocate K registers for the function. However if K is greater than 

Nreg, the compiler will select nodes to push to the stack (register spilling), which we discuss more 

below.  

 Concepts 3) and 4) suggest that the number of registers consumed is closely related to the 

maximum number of interfering variables. Concept 2) suggests that redefinition can be used as a 

tool to reduce the number of interfering live variables by recomputing some variables rather than 

keeping them alive through the entire function.  However, recomputing intermediates increases 

the number of floating point operations (flops). Therefore, the best code variant will be a 

tradeoff between consumed flops and register usage. 

 The above analysis suggests that we can generate code variants with different flops-

storage tradeoffs by deciding which intermediates to store and which to recompute on the fly. To 

help generalize the decision procedure, we introduce two types of graphs: 1) the dependence 

graph, which represents the procedure for evaluating the integral expression and how 

intermediates are related, and 2) the decision graph, which represents the decisions regarding 

intermediate storage and uniquely defines each code variant.34 
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2.2.1  Dependence Graph  

 Dependence analysis with its graph representation is crucial in the development of 

compiler technology. The data dependence,35,36 which represents whether the computing of data 

a requires the knowledge of another data b, i.e. a is dependent on b, is one of the fundamental 

types of dependence relationships. Data dependence has played an important role in the 

instruction scheduling optimization in combination with control dependence analysis37,38 and 

program dependence analysis.39,40 Therefore, we borrow the basic idea from the formal data 

dependence graph used in the compiler theory, and set up a simplified dependence graph to 

facilitate the design of the code generator.  

The dependence graph we set up has two basic components: 

• Nodes. A node stores a list of mutually independent values, and can be used to represent a 

collection of variables identified by one or more summation indices. Each node has the following 

associated properties: 1) node index, 2) node name (which is a string to be used for declaring 

variables in the generated code), 3) color, which could be input, output, or intermediate, 4) an 

ordered-list of the variables, and 5) a list of the summation indices for each variable. For 

example, a node representing G from Eq. 16 contains a list of variables, as well as their 

corresponding summation indices αx, αy, αz, bx, by, and bz.  

• Vertices. A vertex represents the mathematical relationships between the variables in the 

three nodes connected to it. There are two parent nodes above the vertex, whose variables are 

inputs for computing those of the child node below. The I-th variable in the child node cI  can be 

computed from the variables in the two parent nodes p and q as:  

 cI = V̂I ; j ,k pj ,qk( )
k=0

nq

∑
j=0

np

∑   (19) 

where pj and qk denote the jth/kth variable of node p/q, respectively. Therefore each vertex is 

associated with the following properties: 1) pointers to the left parent node, right parent node, 

and child node, and 2) a map of mathematical operations V̂I ; j ,k pj ,qk( )  that maps the triplet (I,j,k) 

to a function that takes pj and qk as arguments. The operation function V can take arbitrary form, 

and determines how pj and qk together contribute to cI. The vertex keeps track of all the triplets 

(I,j,k) where the contribution is non zero. For example, a vertex that connects the parent nodes 

R(λ1,λ2,N) and 
   
Ω l ,λ1λ2

α xα yα z ,βxβ yβz rA ,rB( )  to the child node 
  
Tα xα yα z ,βxβ yβz

 requires that the !λ1  and !λ2  
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indices match in the parent variables, and that the αx, etc. indices match between the variables in 

Ω and T.  

One possible dependence graph for the ECP gradient is shown in Figure 1. The ECP 

integrals have a very special property. For all vertices, one of the parent nodes depends directly 

on the input nodes, and is much easier to compute than the other parent node (i.e. the angular 

factors mentioned above). As a result, we can always compute the simpler parent on the fly 

without much penalty. This procedure can be interpreted as defining a new operator  

 cI = ÂI ;k qk( )
k=0

nq

∑ = V̂I ; j ,k pj ,qk( )
j=0

np

∑⎧⎨
⎩⎪

⎫
⎬
⎭⎪k=0

nq

∑   (20) 

 The new operator 
  
ÂI ,k  can be represented as a dressed arrow. By removing one of the 

parents for each vertex, we get a reduced dependence graph.  The root of the reduced 

dependence graph is the input node, and the leaves are the output nodes. Each intermediate node 

has only one parent node, but can have multiple child nodes. Nodes with multiple child nodes are 

called branching nodes. The reduced dependence graph for Γab
l ξ( ) is shown in Figure 2a. It has the 

following components: 

• Nodes. The definitions of nodes are same as before.  

• Arrows. Each arrow defines the relationship between the parent node and child node it 

connects. It has the following associated properties: 1) pointer to the parent node, 2) pointer to 

the child node, and 3) operation matrix elements 
  
ÂI ,k . The matrix elements are represented as 

strings, which can be printed when generating code. If 
  
ÂI ,k = 0 , then the I-th variable in the child 

node is independent of the k-th variable in the parent node.  

The distances between nodes within the same graph are defined as the shortest path 

connecting them. Therefore, for a given reference node, it is possible to compare whether one 

node is closer to the reference node than another.  

In the code generator, each type of integral is represented by its own initial dependence 

graph, which defines variables in the nodes and operations in the arrows. Given the initial 

dependence graph, the code generator first performs graph transformations and creates several 

equivalent dependence graphs with differing topology. One possible way to transform one 

dependence graph into another is by removing the branches. For example, the node Tαβ in Figure 
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2a is a branching node with two child branches. According to the liveness analysis, if we 

compute the left branch first, then the node Tαβ interferes with the entire left branch because the 

right branch is dependent on Tαβ. In order to remove this interference, we can add another node 

T’ to the top of the right branch, corresponding to recomputing the node Tαβ at the beginning of 

the right branch. This node duplication (which can also be thought of as branch removal) 

decreases the maximum number of interfering variables but will increase the flops - another 

example of the flops-storage tradeoff. This basic idea is illustrated in detail in Section 2 of the 

Supporting Information, where we have included several other dependence graphs of Γab
l ξ( )  

transformed from Figure 2a by removing branches.  

In this paper, we only discuss code generation from reduced dependence graphs. We will 

talk about code generation from general dependence graphs in a forthcoming paper. 

 

2.2.2 Decision Graph Representation of Different Code Variants 

A decision graph has the same topology as the dependence graph from which it is 

created, except that each node colored as intermediate in the dependence graph is further 

designated as stored or transient in the decision graph. The color stored implies that variables in 

the nodes are computed only once, and stored in registers/memory for all future usage. The color 

transient denotes that variables in the nodes are recomputed on the fly whenever needed. Figure 

2b shows one possible decision graph corresponding to the dependence graph in Figure 2a. 

 In order to generate codes from a decision graph, we use the following strategy. 

1) If a node is designated as stored, then all subsequent calculations depending on this node 

will read from its stored values. Thus, we disconnect the graph at the stored nodes into 

independent subunits with well-defined structures. Each subunit represents a job to be processed 

by the code generator. Processing a job refers to generating the code that calculates the stored 

variables for the graph subunit. Each job has a directionality, starting from the stored nodes 

where the variables are known, called the source, and moving forward in the direction of arrows 

toward the stored nodes whose values are to be computed, called the sink. 

2) The jobs need to be ordered such that dependencies are satisfied and calculations are not 

repeated. To determine this ordering, we create a job stack for each output node. Starting with 

the first output node, the first job pushed onto the stack is the subunit containing the output node 

itself. We then follow up the dependencies and search for the next job that takes the source node 
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of the first job as its sink node. The detected job is pushed onto the stack. This procedure is 

repeated recursively until the input node is reached, which indicates that the whole stack of the 

first output node has been built. The code to compute the first output node is generated by 

popping each job off the stack and processing it. For the remaining output nodes, jobs are 

detected and pushed onto the stack in the same recursive way until either it reaches the input, 

where a complete job stack has been built; or it encounters a job that has already been processed, 

which indicates that codes corresponding to the job and all jobs prior to it have been generated 

by a previous output node. 

Now that the decision graph has been broken down into an ordered list of individual jobs, we 

consider how to generate the code that computes the variables in the sink nodes from the source 

node within a job. By examining any transient variable in a graph subunit, we can identify two 

types of fundamental operations: 

(1) Backward Propagation computes a variable by applying a chain of operations 

starting from the closest source node. Figure 3a shows the graph representation of a backward 

propagation. As each node has only one parent node, the direction of backward propagation is 

unique and defined by the intermediate node T and the variable t which is being computed. It can 

be constructed recursively, as shown in Table S3 of the supporting information.  

 (2) Forward Propagation applies a chain of operations to the variable to compute its 

contribution to stored variables in the sink node. Figure 3b shows the graph representation of the 

simplest forward propagation, which has a single sink node. As each node can have multiple 

child nodes, a more general type of forward propagation can have multiple sinks, as shown in 

Figure 3(c). As the sink nodes can potentially compete to be computed first, we assign the left 

branches with higher priority to resolve the ambiguity. Similar to backward propagation, both 

single sink and multi-sink forward propagation can be constructed recursively.  

 By using these two types of basic propagations, we can construct types of basic sub-unit 

structures. 

 (1) Closed connection. Figure 4a shows the graph representation of a closed connection. 

A closed connection is a series of non-branching nodes connecting a single source with a sink. 

For each closed connection, one transient node needs to be designated as primary representing 

the outermost loop. Each variable in the primary node is computed using backward propagation, 

and contributes to variables in the sink using forward propagation. Therefore, the closed 
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connection is uniquely defined by the chosen primary node, and can be divided at the primary 

node into a backward propagation followed by a single sink forward propagation as shown in 

Figure 4a.   

From liveness analysis, the source node and the sink node are interfering throughout the 

closed connection computation. As a result, the size of the memory request for a closed 

connection is equal to the number of variables in the source node plus the number of variables in 

the sink node. 

As we have discussed before, variables in the primary node are computed only once 

while variables in other transient nodes are computed multiple times as required by the 

propagation steps. The choice of primary node in closed connections does not affect storage but 

could have an impact on flops. For example, it is always preferable to choose a transient node 

instead of the source node as primary; since retrieving variables from the source node has no flop 

cost, designating it as primary and accessing it the least number of times is not beneficial to the 

performance. In contrast, choosing a transient node as primary may potentially reduce the total 

number of flops, as it minimizes the number of requests to the variables belonging to the primary 

node, which are only accessible at the cost of floating point operations. 

 (2) Transient Branching. Figure 4b shows the graph representation of a transient 

branching structure, which contains one source node, one or multiple transient branching nodes, 

and multiple sink nodes. If there are multiple transient branching nodes, the one closest to the 

source node will be chosen as the primary branching node, which defines the transient branching 

structure. This is the only branching node that can be chosen as primary because it is connected 

to all sinks by forward propagation. By splitting the graph at the primary branching node, a 

transient branching subunit can be divided into a backward propagation from the primary 

branching node, followed by a multi-sink forward propagation, as shown in Figure 4b. 

By liveness analysis, the source node and all sink nodes interfere with each other. 

Therefore, the memory request for a transient branching structure is the number of variables in 

the source nodes, plus the sum of number of variables in the sink nodes. 

(3) Stored Branching. Figure 4c shows the structure of a stored branching structure 

containing one source node, one stored branching node, and multiple sink nodes. As shown in 

Figure 4c, by disconnecting the graph at the stored branching node, the stored branching subunit 

can be divided into closed connections and transient branching subunits.  Therefore, the stored 
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branching structure does not need to be included as a basic subunit structure – however, the 

stored branching node affects the liveness analysis as it interferes with all nodes on its branches 

except the rightmost branch. 

The above analysis shows that the entire decision graph can be split into either closed 

connections (identified by the primary node) or transient branching structures (identified by the 

primary branching node), corresponding to different types of jobs (i.e. kinds of generated code). 

Table S3 provides the pseudo-code for the processing of different job types. Step IV in Figure 5 

illustrates the job stack and processing order for the decision graph in Figure 2b. 

 

2.2.3 Summary of ACE-code generator 

Figure 5 shows the workflow of the code generator that uses the reduced 

dependence/decision graph to generate all possible code variants known to the code generator. A 

code variant is uniquely defined by the structure of its decision graph, the decisions regarding 

stored or transient colorings of intermediate nodes, and the designation of primary nodes in 

closed connections with multiple transient nodes.  

For each code variant generated, the code generator reports the floating point operations 

(flops) and the maximum number of interfering variables of any individual subunit.41 If there 

were an infinite number of registers, then the maximum interfering variables reported provides 

an estimate to the number of registers required. However, when register spilling takes place due 

to limited physical registers, analysis becomes much more complicated. First of all, it is usually 

difficult to predict which variable the compiler will choose to push to the stack (which is also 

called local memory for CUDA-GPUs). Second, the compiler has to transform the code as 

pushing a variable to stack. Loading a variable from stack is at least accompanied by allocating 

an additional variable in the registers, and performing a load instruction from the stack to the 

register. The number of load/store instructions issued due to register spilling is not easy to 

predict; the additional variable may also cause spilling on other variables and trigger further code 

transformations. This is especially notable in kernels with larger angular momentum, as register 

spilling becomes severe. As will be shown in the results section, when register spilling happens, 

the stack used may not be closely correlated with the maximum number of interfering live 

variables, and the large number of load/store instructions issued may sometimes become the 

bottleneck. 
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 The code generator performs loop unrolling as it generates each code variant. The loop 

unrolling has three benefits:  

1) Reducing loop overhead.  

2) Reducing stack usage: compared with CPUs, load/store instructions with stacks on 

GPUs are much slower. Allocating arrays on the stack is required if values need to be loaded 

from/written to an address depending on the iterator. As registers are not indexable, unrolling the 

loops can avoid the usage of arrays as all indices are known at compilation time. A series of 

instructions associated with array manipulations may also be avoided.  

3) Using compile time constants. Coefficients like SlmSλµxn
i yn

jzn
k dΩ∫  and α x

ax( )  do not 

depend on parameters of the primitive Gaussian functions except the angular momentum; the 

values of these functions are evaluated by the code generator and written to the generated code, 

so they need not be evaluated at run time.  

However, the downside of loop unrolling is that it increases the size of the codes – this increases 

the search space for the compiler and could make compiler optimization more difficult. 

The generated code depends on the ordering of variables within a node, which could 

potentially influence the performance. In this work, we stick with one predefined ordering for all 

the illustrated results. However, users can provide other orderings to the code generator, which 

allows the exploration of many more code variants. In principle, this could be automated and the 

code generator could scan over many possibilities. However, the number of code variants will 

grow quickly, so some form of model-based optimization approach would be well-advised if this 

strategy were to be pursued. 

 

2.3 GPU Configuration Parameters 

In addition to the code variants, the hardware configuration settings defined at compile-time can 

also affect performance. We consider the following GPU configuration parameters: 1) the 

maximum number of registers per thread allowed, 2) number of threads per block, and 3) L1 

cache/shared memory configuration (applicable to architectures prior to Maxwell). All three 

parameters can change how many active warps/blocks can be executed simultaneously on a 

streaming multiprocessor, which can be evaluated as achieved occupancy (i.e. the average 

fraction of warps that are active on a multiprocessor), as discussed below. 
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The first parameter changes the number of registers required per thread, and is passed to 

the CUDA compiler using the –maxrregcount flag. Setting a large number of registers per thread 

may increase performance by avoiding register spilling within each warp, but may also decrease 

performance as the number of warps that can be executed simultaneously decreases due to the 

limited size of register files.  

 The second parameter changes the size of shared memory required per block. In ECP 

gradient computations, the shared memory requested is linearly dependent on the block size, and 

is used for contracting gradients on the same ECP centers. The block size can be changed when 

launching kernels. Requiring more shared memory per block can increase performance by 

enabling more communication and contraction between threads within a block, but the downside 

is the reduced occupancy due to hardware limitations on the amount of physical shared memory. 

 Unlike the above two parameters, which change the requests for each warp/block, the last 

parameter influences the occupancy and the performance by changing how the same physical 

resources are partitioned between different usages. For architectures prior to Maxwell, the L1 

cache and shared memory use the same physical hardware resources and the split between these 

can be set in software. The Fermi architecture supports 16KB/48KB or 48KB/16KB partitions 

between shared/L1 cache memory, and the Kepler architecture supports an additional 

32KB/32KB partition. The preference can be set separately in each kernel by calling 

cudaFuncSetCacheConfig(). According to the discussion for block size, larger shared memory 

configuration can increase occupancy, but the consequence of reducing L1 cache size is an 

increase in load/store misses from L1, and consequently more load/store from L2 cache or global 

memory which have much higher latency. Therefore, there is a tradeoff between shared memory 

and L1 cache that may be worth tuning.  

There are many combinations between code variants and GPU configurations. We use the 

term code candidate to represent a specific combination of a code variant and GPU 

configuration. Although one could test all the possible combinations of code variants and GPU 

configurations, the number of code candidates would rapidly become very large, making the 

optimization prohibitively time consuming. Therefore, during the optimization, we first find the 

optimal code variants under default GPU configurations: block size is set to 64; maximum 

number of registers per thread is 63 for CC2.0 and CC3.0, 225 for CC3.5 and CC5.0; and 
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L1/shared configuration is 16KB/48KB partition. We then optimize the GPU configuration for 

the optimal code variant. 

 

2.4 Code Tester and Code Optimizer 

 The code tester and code optimizer are the other two components in ACE. The code tester 

is responsible for compiling the code candidates and verifying whether each compiled code 

candidate can correctly reproduce the Fock matrix and gradients. The code generator emits 

formally correct code by construction, but it is nevertheless prudent to test for correctness 

explicitly. This ensures that any potential roundoff errors from reordering floating point 

operations will be flagged. The ACE framework will only consider code candidates that pass the 

correctness check in the code tester. Currently, the code tester simply works by comparing the 

result of running the generated code on a test system with a reference result stored on the disk. 

 The code optimizer collects timing data and analyzes the results. Suppose there are Ntest 

test systems, Nrun timings are collected for each test system, and the time of code candidate I on 

test system s in the nth run is ts,n
I . We compute the mean time of each code candidate as the 

average time over all runs: 

 MeanTime I( ) = 1
Nrun

ts,n
I

s=1

Ntest

∑
n=1

Nrun

∑   (21) 

The code candidate with the smallest mean time is then selected as the optimal one.  

In order to get accurate and valid timing data, two questions need to be addressed. The 

first question is how to do deviation detection. To prevent including timing data with large 

deviation, here we compute the standard deviation of the set ts,n
I 1≤ n ≤ Nrun{ }  before computing 

the mean time. If the standard deviation exceeds some user defined threshold, the entire set is 

discarded and the corresponding calculations will be run and timed again. The second question is 

what requirements a proper test system should satisfy; we simply require that the system should 

be large to provide enough primitive Gaussian basis functions and ECP primitive functions. 

From a data analysis point of view, large testing systems tend to have smaller coefficients of 

variation; from the performance point of view, whether the card is saturated or not may have a 

large impact on the performance evaluation. We describe how the test results depend on system 

size in the Supporting Information. 
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The entire workflow of ACE is described in Figure 6. The main driver collects 

information about the user’s platform and analyzes the user’s requests, then performs two 

optimization cycles as shown in Figure 6. The first cycle optimizes the code variants under the 

default GPU configurations, and the second cycle optimizes the GPU configurations for the 

optimal code variants. After the two optimization cycles are completed, the driver signals the 

user and hands back the final optimal programs. 

 

3. Results and Discussion 

In this section, we compare and discuss the performance data collected by ACE. We tested ACE 

for ECP integrals and gradients on four different platforms: NVIDIA Tesla S2050 (Fermi 

architecture, CC2.0), NVIDIA GeForce 680 (Kepler architecture, CC3.0), NVIDIA GeForce 

Titan (Kepler architecture, CC3.5), and NVIDIA GeForce 970 (Maxwell architecture, CC5.0).42 

For simplicity, we use the shorthand notation Precision-l-LaLb to denote the type of gradients 

computed. For example, Double-0-PP represents the kernel that computes Γab
l ξ( )  in double 

precision with (l=0, a=1, b=1). Detailed information about the test systems can be found in the 

supporting information. Timings on each system are run three times. 

3.1 Code Variant Optimization 

We start by comparing the performance between 36 different code variants with the 

kernel and GPU architecture held constant. The 36 code variants are all generated based on the 

four dependence graphs in Figure S1, under the constraint that nodes with the same depth receive 

the same coloration. Figure 7 shows the performance comparison for Double-0-FF on a CC 3.5 

GPU, demonstrating large performance differences between different code variants. The 

performance difference between the slowest and the fastest code variants is more than a factor of 

6, and the difference for Float-0-FF is even greater (see Figure S3). In addition, there are no 

obvious correlations between the performance and the theoretical flops or maximum interfering 

variables. Therefore, it is difficult to predict the optimal code variant for the target kernel without 

performance testing. 

We also found that the optimal code variant depends significantly on the target kernel and 

architecture. In order to better understand this dependence, we carried out a detailed analysis on 

ten chosen code variants with relatively good performance and a clear flop-memory tradeoff 

(these are labeled in Figure 7). The decision graphs corresponding to the ten chosen variants are 
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given in Figure S4. The ten code variants are sorted in decreasing order of flops to memory ratio, 

such that variant #1 has the largest number of interfering live variables, and variant #10 requires 

the largest number of flops (see Figure S5). 

We summarize the relative performance among the ten selected code variants for double 

precision kernels with l=0 on different architectures in Figure 8. A similar comparison for 

double precision kernels with l=1 and l=2 is given in Figure S6. In general, different code 

variants are optimal for different architectures and some of the observed differences can be 

rationalized on the basis of architectural features:  

The CC5.0 architecture supports up to 255 registers per thread, and has the largest 

register file size and cache size. However, its double precision peak performance is low -- only 

1/32 of its single precision peak performance as shown in Table S2. Therefore, the optimal code 

variants on CC5.0 usually have a lower flops-to-mem ratio. The most flop intensive code 

variants like #8 through #10 do not perform well on CC5.0.  

The CC2.0 architecture is quite the opposite from CC5.0. Its double precision peak 

performance is half of its single precision peak performance. However, it only supports 63 

registers per thread, and its register file size is the smallest; therefore, register spilling has a more 

significant performance impact for CC2.0. For kernels with small register spilling, like Double-

0-SS to Double-0-PP, flop intensive code variants are usually the optimal ones. As the angular 

momentum of the basis functions increases (e.g. Double-0-DD), flop-intensive code variants 

become less favorable since load/store instructions caused by register spilling start to dominate 

the computations (discussed in detail below), and the optimal code variants gradually shift to the 

ones with more balanced flop-mem tradeoff. CC3.0 also supports only 63 registers per thread, 

but nearly every other feature is improved over CC2.0. The best-performing code variants in 

CC3.0 also favor the flop intensive side, although the performance differences are not as large as 

CC2.0. 

For CC3.5, the optimal code variants have a more diffuse distribution than the others. 

CC3.5 combines the advantages of CC2.0 and CC5.0; it also supports 255 registers per thread, 

and its double precision peak performance is about one third of its single precision peak 

performance. Therefore, code variants with higher memory requests and code variants with 

higher flops may achieve the same good performance, which makes predicting the optimal code 

variant much more difficult.  
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Although Figure 8 (and Figure S6) appear to show some general trends for different 

architectures, it also indicates that the optimal code variant for each individual kernel does not 

follow a regular pattern. When comparing Double-0-DD (row 7), Double-0-PD (row 8), and 

Double-0-PP (row 9) on the CC3.5 architecture, the performance ranking across variants is quite 

different depending on the particular kernel. Variant #10 is the fastest for DD, but is almost the 

slowest for PP and PD; on the other hand, variants #1 and #7 are among the fastest for PP and 

PD but perform poorly for DD. The optimal code variants on CC2.0 also depend on the angular 

momentum as shown in Figure 8, but not in the same way as CC3.5. In fact, the optimal code 

variant for one architecture often has bad performance on another – for example, variant #4 

which is optimal for PD on CC2.0 (row 20) is the worst on CC3.5, and variant #1 which is 

among the best for PP and PD on CC3.5 becomes the worst on CC2.0 (rows 20 and 21). These 

comparisons are also illustrated as a bar chart in Figure S8. 

To understand the irregularities in performance rankings, we examined several profiling 

metrics measuring the number of instructions and local memory transactions, which are given in 

Table S6. We found that the factors limiting performance may vary strongly with the choice of 

kernel and architecture. Our results from examining PD on CC3.5 indicate that the performance 

of the slowest variant is limited by the large number of floating point operations. On the other 

hand, the performance of DD on CC3.5 is limited by register spilling and local memory 

transactions, since DD involves more intermediate and output variables than PP or PD. When 

comparing architectures, CC2.0 has far fewer registers than CC3.5 (63 vs. 255), which means 

register spilling becomes more severe. We observed that for DD on CC2.0, variant #8 has a 

larger number of load/store operations than #4, despite variant #8 being explicitly designed to 

have fewer interfering variables and more flops. This provides an example for the complexity 

that arises when register spilling happens, as it becomes difficult to predict the code that will be 

produced by the compiler.  

To summarize, the irregular dependence of our observed performance rankings on the 

kernel and GPU architecture can be explained by examining the profiling metrics, but it also 

presents a significant challenge for model-based optimization approaches to predict the 

performance accurately. The model should be sensitive to the details of the kernel and 

architecture in order to determine which factors limit performance, and when register spilling 
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could make the performance much more unpredictable. In-depth analyses of the profiling metrics 

that support these conclusions are provided in the Supporting Information. 

 

3.2 GPU configuration optimization 

We show how the GPU configuration can influence the performance for the optimal code 

variants selected in the previous sections. We use CC3.5 as an example, and choose three 

different maximum numbers of registers per thread (64, 128, 256), three different block sizes 

(64, 128, 256), and two different L1/Shared partitions (L1-preferred, i.e. 48Kb/16Kb, and 

Shared-preferred, i.e. 16KB/48KB). These give us 18 different combinations of configuration 

parameters. It turns out that the optimal GPU configuration, especially the maximum number of 

registers per thread, is not the same for different kernels, as shown in Figure 9. For the Double-0-

DD kernel (Figure 9b), the default GPU configuration parameters give near-optimal 

performance, and tuning the parameters yields a negligible 2-3% improvement. For Double-0-

SD (Figure 9a), tuning the configuration parameters yields a performance increase of ~15% over 

the default. In either case, the impact of tuning GPU configuration parameters has a smaller 

impact compared to the choice of code variant. 

 For kernels with high angular momentum like Double-0-DD, it is expected that 255 

registers per thread gives the best performance, as it reduces the local memory transactions as 

much as possible. In contrast, smaller number of registers per thread performs better for kernels 

with smaller angular momentum like Double-0-SD. Take block size 64 with L1-preferred 

partition as an example. When compiled with maxrregcount=255, Double-0-SD uses 202 

registers. When compiled with maxrregcount=127, Double-0-SD uses all 127 registers plus 216 

bytes of local memory. Despite the register spilling caused by smaller number of registers 

allowed, the achieved occupancy between maxregcount=255 and 127 is 0.1190 versus 0.2356, 

which indicates that more warps can be executed simultaneously. This gives an example to show 

that register spilling is not always harmful, and the tradeoff between register spilling and 

achieved occupancy can be tuned to achieve better performance.  

 For ECP calculations, the effects from adjusting block sizes and L1/Shared partitions are 

smaller than changing the register configuration. This could be because the shared memory is 

only accessed at the end of each loop over ECP centers, and doesn’t participate in the 

intermediate calculations. Therefore, configurations related to the shared memory should not 
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make a large difference. Despite this, we observed that smaller block sizes and larger L1 

partitions tend to lead to better performance. The former may result in better achieved 

occupancy, and the latter may result in a higher L1 cache hit rate.  

 It is worth noting that the optimal code variant may in fact depend on the GPU 

configuration parameters, a possibility that we did not fully investigate. More complete 

explorations of the space of code candidates – either by means of a full search over the space of 

code variants and GPU configurations, or iterating back and forth between code variants and 

GPU configurations until convergence – may be requested by the user in order to investigate 

these possibilities. 

 

4. Conclusions 

We presented the automated code engine for graphical processing units that automatically 

generates optimized integral kernels for a given GPU computing platform. The use of graph 

representations for the basic equations allows the ACE-code generator to be generalized to other 

types of integrals. The application to ECP integrals demonstrates the complex factors that 

influence performance and the challenges associated with correct prediction of optimal code 

variants. The performance driven optimization strategy adopted by the ACE-code optimizer, 

which scans over the space of code candidates and chooses the best one from empirical testing, 

greatly simplifies the optimization procedure and is easily adaptable to the fast evolution of GPU 

computing architecture.  

There are several future directions for further improvement and application of ACE. One 

improvement is to generate codes based on the general dependence graph where multiple parent 

nodes are allowed for each node. Although the single parent node restriction embedded in the 

reduced dependence graphs works well for the ECP integral and gradient calculations, the 

restriction is too strong for other types of integrals. More complex integrals where this restriction 

should be lifted include the two-electron-three-center integrals and gradients (the foundation of 

density-fitting methods), and two-electron-four-center integrals and gradients (needed for Fock 

matrix element evaluation).  

Another crucial requirement for applying ACE to more complex integrals is automatic 

exploration of more types of dependence graph transformations. Here, we have already described 

graph transformations regarding the branching structures, but other types of transformations are 
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possible that become important for different types of integrals. One topic of current study is the 

formulation of recursion relationships in terms of dependence graph transformations, enabling 

automatic discovery and testing of different recursion paths. Another possible transformation is 

systematic splitting of output nodes. For example, the FF kernel has high register and memory 

pressure because each thread needs to compute and store the entire 10 by 10 matrix of final 

integrals. Alternatively, a group of several kernels can be generated to work independently where 

each only computes and stores a part of the full matrix. This strategy repeats computations in 

order to reduce the number of stored variables, and is appealing for higher angular momentum as 

it reduces the register and memory pressure for each individual kernel. 

 Combining the possible dependence graphs and their associated decision graphs leads to 

an exponential increase in the space of potential code variants. This can make it challenging to 

generate, compile, and test all of the resulting code variants. One possible solution is to allow 

ACE to score each of the code variants before entering the optimization step. As the maximum 

interfering variables and the number of floating point operations are directly available from the 

code generator, cost models can be applied to estimate the performance as a function of the 

interfering variables and the flops. This could allow ACE to screen out code variants with 

unreasonably high storage or flop requirements, reducing the number of code variants that need 

to be compiled and tested – thus combining the advantages of model-driven and performance-

driven approaches. 

Currently, the initial dependence graphs representing different integrals are set up by the 

programmer manually from analyzing the equations. It will be appealing to study the systematic 

creation of initial dependence graphs based on just the mathematical expression for the integral, 

which can make ACE applicable to a much broader range of problems in electronic structure 

theory. Work along these lines is in progress. 

 

Acknowledgements 

This work was supported by the National Science Foundation (ACI-1450179). TJM is 

grateful to the Department of Defense (Office of the Assistant Secretary of Defense for Research 

and Engineering) for a National Security Science and Engineering Faculty Fellowship 

(NSSEFF). CS is grateful for a Stanford Graduate Fellowship. 

  



 Song et.al. – Automated Code Engine – Page 26 

 
Figure 1. General dependence graph describing the ECP gradient calculation in a GPU kernel. 
The nuclear gradients of the ECP integrals for a primitive pair are computed as !!!γ l

Ax a ,b( )  and 

then contracted with the corresponding block of the density matrix !!P a ,b( )  to produce the final 

output, !!!Γ l ,ab
Ax . Nodes representing collections of variables and vertices representing mathematical 

relationships between nodes are described in Section 2.2.1. Equation references describe how the 
variables in each node are computed. Indices of intermediate variables are represented as: α
= α x ,α y ,α z( ) , β = βx ,βy ,βz( ) , a = ax ,ay ,az( ) , b = bx ,by ,bz( ) . “Params” refer to parameters of 
basis functions, i.e. coordinates of atoms, exponential coefficients and contraction coefficients. 
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(a)  

 
(b)  

 

Figure 2. (a) Reduced dependence graph of  corresponding to the full dependence graph in 
Figure 1. (b) One possible decision graph corresponding to the reduced dependence graph of (a), 
which represents code variant #6 in the main text. The notation for indices is simplified by 
omitting the total angular momenta and abbreviating variables with triples of indices as follows: 
G(α ,b) à Gαb. The nuclear degree of freedom is denoted as !ξ .   
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Figure 3. Graph representations of the basic propagations originating from any transient node in 
the graph (t) and ending at a stored node (Source/Sink). Within each column, the graph on the 
left gives an illustration corresponding to the type of the propagation, and the graph on the right 
shows the symbol that will be used to represent that propagation.  
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Figure 4. Graph representations of the three basic subunit structures. Within each column, the 
graph on the left gives an illustration corresponding to the type of the basic subunit structure, and 
the graph on the right shows how the subunits can be divided into basic propagations. The node 
labeled P represents the chosen primary node – note that in the closed connection, any transient 
node may be chosen as primary. The node labeled B represents the primary branching node. 
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Figure 5. Workflow of code generator for producing all possible code variants for a chosen 
integral type. Notation follows Figure 2. Graph representations in steps II and III are toy models. 
The decision graph in Figure 2b is used as an illustration for step IV; the disconnected subunits 
are pushed into the job-stack for each output node, and the code generator produces code for 
each subunit in the indicated order. Note that since each closed connection (2-7) has only one 
transient node, it automatically becomes the primary node. 
  

I. Choose the Integral Type 

γ ab
l ,    γ ab

l ξ( ),    χab ,    χab
l ξ( )...

II. Scan over Dependence Graphs 

etc. 

III. Scan over Decision Graphs 

etc. 

IV. Generate Code 

R

 
Tαβ

bGα aG β

yA
abγ zA

abγ xB
abγ yB

abγ zB
abγ

yAΓ zAΓ xBΓ yBΓ zBΓ

bGα

xA
abγ

 Γ
Ax

bGα bGα  
Gaβ  

Gaβ  
Gaβ

Stack1 Stack2 Stack3 Stack4 Stack5 Stack6 

Process 
CodeGen 

1 

2 3 4 5 6 7 



 Song et.al. – Automated Code Engine – Page 31 

 

 

 
Figure 6. User interface and workflow of ACE. The user requests which type of integral to be 
optimized, the highest angular momentum, numerical precision and GPU compute capability. 
The main driver validates the user input and runs two optimization cycles - first optimizing over 
the code variants under the default GPU configuration, then optimizing over the GPU 
configurations for the chosen variant. The driver then returns the optimized kernels to the user. 
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Figure 7.  Performance comparisons between 36 code variants for Double-0-FF (double 
precision, l=0, a=3, b=3) on CC3.5 architecture. Normalized time is computed as the mean time 
of each code variant, as defined in Eq. (19), divided by the mean time of the optimal code 
variant. To show the differences between code variants clearly, the position of 1.0 is marked on 
each bar. The ten code variants selected for in-depth analysis in the main text are labeled using 
numbers 1-10. 
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Figure 8.  Performance ranking of code variants. Each row shows a different kernel where the 
primitive angular momentum and GPU architecture are varied. All kernels shown use l=0, 
double precision and the default GPU configuration. Within each row, the performance of the 
code variants are compared; the star represents the best code variant, the color of the circles 
represent the ranking of the variants as shown in the legend, and the radius of the circles indicate 
the performance of each variant relative to the optimal one – the smaller the radius, the lower the 
performance.  

Ranking 
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Figure 9.  Performance comparison of different GPU configurations for two different kernels:  
(a) Double-0-SD and (b) Double-0-DD, both on CC3.5. Normalized time is computed with 
respect to the fastest configuration. Each comparison uses the code variant optimized under the 
default GPU configuration (blue), corresponding to: block size equal to 64, 16KB/48KB partition 
of L1/shared memory, and 225 registers per thread. In the legend, “L1” (resp. “Shared”) denotes 
a 48/16 KB (resp. 16/48 KB) partitioning between L1 cache and shared memory. The second 
integer in the legend represents the block size.  
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