Title
COMPARISON OF DETECTOR MATERIALS FOR TIME-OF-FLIGHT POSITRON TOMOGRAPHY

Permalink
https://escholarship.org/uc/item/0wc0x06s

Author
Derenzo, S.E.

Publication Date
1982-06-01

COMPARISON OF DETECTOR MATERIALS FOR TIME-OF-FLIGHT POSITRON TOMOGRAPHY

Stephen E. Derenzo

June 1982
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
COMPARISON OF DETECTOR MATERIALS FOR TIME-OF-FLIGHT POSITRON TOMOGRAPHY

Stephen E. Derenzo

Lawrence Berkeley Laboratory and the Donner Laboratory
University of California, Berkeley CA 94720

Abstract

Knowledge of detection efficiency and timing resolution is essential when comparing detector materials for time-of-flight positron tomography. We present results of Monte Carlo calculations of the detection efficiency of plastic, lead loaded plastic, NaI(Tl), liquid xenon, bismuth germanate (BGO), CsF, BaF2, Ge, and HgI2 for 511 keV photons. We also use recently published values of timing resolution for these detector materials to tabulate the quantity (efficiency)²/(time resolution) which is a measure of the relative sensitivity for time of flight positron tomography.

Introduction

Although time of flight for positron imaging was suggested by H.O. Anger in 1966, its implementation was not practical until the development of CsF scintillator detectors. Other detector materials have also been considered for this application, notably liquid xenon, germanium, pure NaI (cooled) mercury iodide, and most recently BaF2.

In order to compare detector materials for time of flight positron tomography, four primary factors must be considered:

(1) Detection Efficiency: which we define here to be the probability that an incident 511 keV photon will lose more than some threshold energy in one detector and none in any other detector. The detection efficiency depends on the density, atomic number, and dimensions of the detector, as well as the surrounding material.

(2) Timing Resolution: the accuracy with which the time difference of the arrival of two annihilation photons can be measured. For scintillators this depends on the decay time, the scintillation yield, the transfer efficiency to the photomultiplier, the quantum efficiency at the wavelength of emission, and the single photoelectron transit time jitter. For a semiconductor, the timing resolution depends on the number of electron-hole pairs created, the drift speed, the μ lifetime product and the amplifier noise.

(3) The Distribution of Positron Emitter: when the emitting region is small, time-of-flight information is less valuable.

(4) Amount of Activity: at high activity levels, detector materials with good time resolution are better in rejecting accidental backgrounds.

Scintillators

Table 1 summarizes the properties of many of the scintillation detectors used in or proposed for positron emission tomography, including the recently announced BaF2. The values for timing resolution were taken from the analysis of Tomitani for liquid xenon, and from the measurements of Garlo et al for BaF2. Other information was taken from the review article by Farukhi.

To compare materials with different detection efficiency and time resolution, we have defined a TOF figure of merit as the ratio:

\[\text{(time resolution)}^{-1} \]

Note that (efficiency)² is proportional to the number of events detected and (time resolution)⁻¹ is proportional to the statistical value of each event.

For a 30 cm emission region, and 20 mm detectors, CsF has a two-fold advantage over BGO and BaF₂ has a four-fold advantage over BGO.

The fast component of BaF₂ is due to electron-hole recombination. The best previously known example of this process is ZnO, which has a decay time of 0.4 nsec. It is hoped that a material with the detection efficiency of BGO and the speed of ZnO will be discovered. If this resulted in a detection efficiency of 80% and a time resolution of 0.2 nsec then the TOF figure merit of would be 3.2, significantly better than any material in Table 1.

*This work was supported by the Office of Health and Environmental Research of the U.S. Department of Energy under Contract No. DE-ACO3-76SF00098 and also by the National Institutes of Health, National Heart, Lung, and Blood Institute under grant No. PO1 HL25840-02.
TABLE 1. PROPERTIES OF SCINTILLATION MATERIALS FOR POSITRON EMISSION TOMOGRAPHY

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (gm/cm³)</th>
<th>Atomic numbers</th>
<th>Hygroscopic?</th>
<th>Linear attenuation coefficients at 511 keV (cm⁻¹)</th>
<th>Photoelectron yield (511 keV)</th>
<th>Scintillation decay time (nsec)</th>
<th>Wavelength at max emission (nm)</th>
<th>Refractive Index</th>
<th>Pulse height resolution (FWHM)</th>
<th>Time resolution (FWHM nsec)</th>
<th>Detection Efficiency</th>
<th>TOF Figure of merit</th>
</tr>
</thead>
<tbody>
<tr>
<td>plastic (pilot U)</td>
<td>1.03</td>
<td>6,1</td>
<td>NO</td>
<td>0.096</td>
<td>730</td>
<td>1.4</td>
<td>432</td>
<td>1.58</td>
<td>500</td>
<td>0.2</td>
<td>20%</td>
<td>0.20</td>
</tr>
<tr>
<td>NSI(Tl)</td>
<td>1.17</td>
<td>6,1,82</td>
<td>NO</td>
<td>0.106</td>
<td>250</td>
<td>2</td>
<td>230</td>
<td>1.85</td>
<td>180</td>
<td>0.4</td>
<td>0.3</td>
<td>0.20</td>
</tr>
<tr>
<td>liquid xenon</td>
<td>3.67</td>
<td>11,53</td>
<td>YES (-108°C)</td>
<td>0.060</td>
<td>2,500</td>
<td>11</td>
<td>230</td>
<td>0.275</td>
<td>7</td>
<td>0.12</td>
<td>12%</td>
<td>1.2</td>
</tr>
<tr>
<td>BGO</td>
<td>3.06</td>
<td>54</td>
<td>NO</td>
<td>0.215</td>
<td>1,400</td>
<td>2.7;27</td>
<td>415</td>
<td>1.85</td>
<td>7</td>
<td>0.15</td>
<td>1.48</td>
<td>1.56</td>
</tr>
<tr>
<td>CsF</td>
<td>7.13</td>
<td>83,53</td>
<td>NO</td>
<td>0.510</td>
<td>400</td>
<td>2.3</td>
<td>480</td>
<td>1.45</td>
<td>11</td>
<td>1.3</td>
<td>1.48</td>
<td>1.56</td>
</tr>
<tr>
<td>BaF₂</td>
<td>4.61</td>
<td>55,9</td>
<td>VERY</td>
<td>0.334</td>
<td>600</td>
<td>5</td>
<td>390</td>
<td>1.48</td>
<td>16</td>
<td>0.04</td>
<td>1.48</td>
<td>1.56</td>
</tr>
<tr>
<td>BaPb</td>
<td>4.8</td>
<td>56,9</td>
<td>NO</td>
<td>0.353</td>
<td>250;13</td>
<td>0.8</td>
<td>225;310</td>
<td>2.7;27</td>
<td>27</td>
<td>0.3</td>
<td>25%</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Semiconductors

Table 2 summarizes the properties of several semiconductor detector materials for application in TOF positron emission tomography. The time resolution for Germanium was taken from the measurements of Kaufman and the calculations of Llacer. Compared to Germanium, all heavy atom semiconductors thus far known have lower mobility and much shorter trapping lengths. In table 2, E is the electric field (V/cm), μ is the carrier mobility (cm/sec per V/cm), and τ is the trapping time constant.

None of the three entries in Table 2 provide any TOF figure of merit advantage over the best scintillators of table 1, but it is important to note that the semiconductors naturally achieve high spatial resolution. In fact, narrow detectors have better time and pulse height resolution than wider detectors.

Detection Efficiency

The computer code used in this calculation (described previously) traces the Compton and photoelectric interactions of 511 keV photons incident on an infinite linear array of detectors (Figure 1). The program assumes that the face of one detector is uniformly illuminated. The Compton and photoelectric cross sections were derived from the tabulation of Plechaty et al for the individual elements. Results are presented in Table 3.
TABLE 2. PROPERTIES OF SEMICONDUCTOR MATERIALS FOR POSITRON EMISSION TOMOGRAPHY

<table>
<thead>
<tr>
<th>Material</th>
<th>Density</th>
<th>Atomic number</th>
<th>(a) Linear attenuation coefficients at 511 keV (cm(^{-1})):</th>
<th>Band gap (eV)</th>
<th>Electron mobility (\mu) (cm/sec per V/cm)</th>
<th>Hole mobility (\mu) (cm/sec per V/cm)</th>
<th>Typical electric field (E) (V/cm)</th>
<th>Electron transit time (t_e) (ns/mm)</th>
<th>Hole transit time (t_h) (ns/mm)</th>
<th>Trapping distance (E \cdot t) (electrons)</th>
<th>Trapping distance (E \cdot t) (holes) (cm(^{-1}))</th>
<th>Number of e-hole pairs</th>
<th>Pulse height resolution</th>
<th>Time resolution</th>
<th>Pulse height threshold (keV)</th>
<th>Detection efficiency</th>
<th>Figure of merit for TOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ge</td>
<td>5.38</td>
<td>32</td>
<td>0.407, 0.442, 0.019, 0.711</td>
<td>0.66</td>
<td>4500</td>
<td>10</td>
<td>10</td>
<td>1(\times)10(^{-4})</td>
<td>(\geq) 1 (\times)10(^{-5})</td>
<td>(\geq) 1 (\times)10(^{-4})</td>
<td>(\geq) 1 (\times)10(^{-5})</td>
<td>170,000</td>
<td>100</td>
<td>0.4 nsec</td>
<td>100</td>
<td>53%</td>
<td>0.70</td>
</tr>
<tr>
<td>HgI(_2)</td>
<td>6.3</td>
<td>80,53</td>
<td>0.442, 0.269, 0.711</td>
<td>0.22</td>
<td>94</td>
<td>30</td>
<td>600</td>
<td>(\geq) 1 (\times)10(^{-5})</td>
<td>(\geq) 1 (\times)10(^{-5})</td>
<td>(\geq) 1 (\times)10(^{-5})</td>
<td>(\geq) 1 (\times)10(^{-5})</td>
<td>70,000</td>
<td>400</td>
<td>2 nsec?</td>
<td>50</td>
<td>52%</td>
<td>0.25</td>
</tr>
<tr>
<td>CdTe</td>
<td>6.2</td>
<td>48,52</td>
<td>0.098, 0.199, 0.533</td>
<td>0.66</td>
<td>4000</td>
<td>30</td>
<td>2,000</td>
<td>(\geq) 1 (\times)10(^{-4})</td>
<td>(\geq) 1 (\times)10(^{-4})</td>
<td>(\geq) 1 (\times)10(^{-4})</td>
<td>(\geq) 1 (\times)10(^{-4})</td>
<td>110,000</td>
<td>100</td>
<td>0.8 nsec?</td>
<td>200</td>
<td>66%</td>
<td>0.54</td>
</tr>
</tbody>
</table>

\(a\)For a 20 mm \(\times\) 20 mm \(\times\) 40 mm deep detector and threshold as given. Packing fraction 95%.

Detectors require encapsulation, their packing fraction is fairly low, from 70\% to 85\% for large (20 mm detectors) and less for smaller sizes. On the other hand, reflectors for non-hygrosopic materials can be as thin as 0.1 mm which results in packing fractions very close to unity.

Although the detectors should be as small as possible, there is little advantage in making them much smaller than other factors limiting spatial resolution. The most important of these are deviations from 180\(^{\circ}\),\(^{27}\) which contribute about 0.8 mm FWHM for a 50 cm detector ring and 1.6 mm FWHM for a 100 cm detector ring and positron range, which contributes a non-Gaussian broadening that extends over several mm, depending on the energy of the positron emitter.\(^{28}\) Ideally, the quantitation volumes in the reconstructed multi-slice images should be cubes, as there is no reason to assume that anatomical features are elongated in any preferred direction. From a practical standpoint, however, there are several reasons why many positron tomographs have detectors that are elongated along the axial dimension \(S\):

1. If only nearest neighbor cross-coincidences are used, the sensitivity of each slice is proportional to \(S\).
2. On the other hand, if all possible cross-coincidences are used and the frontal area of the detectors is kept constant, then the overall sensitivity is nearly independent of detector shape. Under these conditions, making the detectors longer in the axial direction (and narrower in the in-plane direction) decreases the number of slices to be stored and reconstructed and actually increases the total number of quantitation voxels.

Table 4 combines our calculations of the detection efficiency for BaF\(_2\) as a function of crystal depth and pulse height threshold with the corresponding time resolution measurements of Gar-iod et al.\(^{21}\) to investigate how the TOF figure of merit depends on these factors. While these results seem to indicate that it is best to use long crystals and a low pulse height threshold, firm conclusions should be based on the more accurate approach of measuring both detection efficiency and timing resolution in a realistic test set-up.

Conclusions

The best detector material for TOF positron emission tomography at present is BaF\(_2\), which of the seven scintillators and three semiconductors considered here has the largest TOF figure of merit. BaF\(_2\) is not the ultimate material, however, as a nonhygroscopic material with the detection efficiency of BGO and the speed of ZnO would have a TOF figure of merit three times larger than that of BaF\(_2\).
Valid detections require more than 100 keV energy loss in one detector and less than 10 keV in each of the other detectors. Percentages in parentheses are for full 511 keV energy loss in one detector.

10,000 photons per run, 0° incidence.

All efficiencies must be reduced by the packing fraction which depends on the specific detector design.

10% by weight. Mole fraction is 0.627%
TABLE 4. EFFECT OF BaF_2 CRYSTAL DEPTH AND PULSE HEIGHT THRESHOLD ON EFFICIENCY AND TIMING RESOLUTION^a

<table>
<thead>
<tr>
<th>Pulse height threshold (mm)</th>
<th>Depth D (mm)</th>
<th>Detection efficiency (%)</th>
<th>Time resolution (nsec FWHM)b</th>
<th>TOF Figure of merit</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 keV</td>
<td>10</td>
<td>22</td>
<td>0.20</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>32</td>
<td>0.22</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>49</td>
<td>0.25</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>56</td>
<td>0.28</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>62</td>
<td>0.30</td>
<td>1.27</td>
</tr>
<tr>
<td>Photopeak</td>
<td>10</td>
<td>13</td>
<td>0.16</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>27</td>
<td>0.18</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>35</td>
<td>0.20</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>42</td>
<td>0.23</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>46</td>
<td>0.25</td>
<td>0.86</td>
</tr>
</tbody>
</table>

^aCrystals with 24 mm x 24 mm front face and a packing fraction of 95%

bValues derived from the measurements of Gariod, Allemand, Cormoreche, and Laval, Reference 21, Figure 5.

REFERENCES

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.