Title
Price Variation in the Most Commonly Prescribed Ear Drops in Southern California

Permalink
https://escholarship.org/uc/item/0x89k06t

Journal
LARYNGOSCOPE, 127(8)

ISSN
0023-852X

Authors
Moshtaghi, O
Haidar, YM
Ghavami, Y
et al.

Publication Date
2017-08-01

DOI
10.1002/lary.26479

License
CC BY 4.0

Peer reviewed
Price Variation in the Most Commonly Prescribed Ear Drops in Southern California

Omid Moshtaghi, BS; Yarah M. Haidar, MD; Yaser Ghavami, MD; Jeff Gu, BS; Afsheen Moshtaghi, BS; Ronald Sahyouni, BA; Melissa Huang, BA; Harrison W. Lin, MD; Hamid R. Djalilian, MD

INTRODUCTION

Variation in the price of prescription medications is common and can be attributed to the lack of price fixation or regulations in the United States. Many pharmaceuticals in the United States are purchased by pharmacy benefit administrators that use their market power to negotiate better prices for managed care organizations.1,2 As a result, the usual and customary price, or the price that consumers would pay without insurance, is determined at the level of individual pharmacies and is influenced by prices set by the manufacturer, wholesaler, or direct purchaser. As such, these prices are ultimately driven by supply and demand.3

The uninsured are especially vulnerable to high retail prices, and the economic burden of medication costs most frequently impacts the low-income and elderly populations who resort to self-restriction of medications to save money, potentially leading to long-term health implications.4,5 In 2010, 48% of those uninsured and in poor health went without prescription drugs as a direct result of cost.6 One study showed that lowering the copayment for lipid-lowering drugs, for example, increased drug compliance, highlighting the importance of medication cost in patient adherence.7

Patients with insurance can also be vulnerable to high prescription drug prices. Since the implementation of the Patient Protection and Affordable Care Act in 2010, an estimated additional 10.2 million consumers are receiving coverage as of 2015.8 Nationwide, patients who obtained health insurance through the federal and state marketplaces were responsible for deductibles for prescription drug coverage ranging from 17% to 97% for platinum to catastrophic plans, respectively.9 The average deductible for generic medications for patients with this high deductible coverage is $13, lower than the $44 for preferred brand name drugs.9 Those with employer-based insurance had similar out of pocket medication costs, with an average of $11 for generics and $31 for preferred brand name drugs.10

The differences in prices between various pharmacies make it difficult for the uninsured or those with high

OBJECTIVES/HYPOTHESIS: To evaluate the variability and discrepancies among the most commonly prescribed ear drops sold at pharmacies in southern California.

STUDY DESIGN: Prospective study evaluating 11 commonly used ear drops to treat otologic disorders.

METHODS: Randomly selected drug stores in three major counties in Southern California (Los Angeles, Orange, and San Diego) were included. Mean, range, minimum, and maximum prices for each drug were calculated and analyzed. The median income of pharmacy ZIP code was also cross-referenced.

RESULTS: Data were collected from 108 pharmacies. The mean prices are noted for each of the individual drugs: Cortisporin (brand) 10 mL, $62.70; neomycin, polymyxin B sulfates, and hydrocortisone (Cortisporin–generic) 10 mL, $34.70; ofloxacin (generic) 10 mL, $99.95; sulfacetamide (generic) 15 mL, $40.18; Ciprodex (brand) 7.5 mL, $194.44; Cipro HC (brand) 10 mL, $233.32; Vosol (brand) 15 mL, $120.75; acetic acid (Vosol–generic) 10 mL, $116.55; VosolHC (brand) 10 mL, $204.14; acetic acid/aluminum acetate (Domeboro–generic) 60 mL, $22.91; and Tobradex (brand) 5 mL, $166.47.

CONCLUSIONS: There is significant variability among the prices of ear drops across Southern Californian pharmacies, which can be a financial burden to patients paying out of pocket or with high deductibles. A state-mandated, publicly accessible report of drug prices may help decrease variability and cost by promoting competition among pharmacies. Price negotiations by governmental payers may assist in reducing prices. In the treatment of otologic disorders, clinicians can help reduce costs for patients by prescribing generic ear drop medications and cheaper alternatives when clinically appropriate.

KEY WORDS: Ear drop, otic drop, pharmacy, price variation, ototopic.

LEVEL OF EVIDENCE: 4.
deductibles to obtain the best price without spending a significant amount of time comparing prices. When the lowest possible price is not attainable, essential income is lost, adding to the economic burden of a population most sensitive to cost fluctuations. Due to the impact of medication price on patient compliance, we sought to evaluate the cost of ototopical drops, a medication commonly prescribed by otolaryngologists. The purpose of this study was to evaluate the variability and discrepancies among the most commonly prescribed otic preparations in Southern California pharmacies, and to assist clinicians in prescribing less expensive alternative ear drops when clinically appropriate.

MATERIALS AND METHODS

This cross-sectional study assessed 11 of the most commonly prescribed ear drops used to treat various otorhinolaryngologic disorders in August 2014. A list of state-licensed pharmacies was obtained from the California State Board of Pharmacy website (http://www.pharmacy.ca.gov/) and chosen by computer randomization within three major locations in southern California, including Orange County, San Diego County, and Los Angeles County. All inpatient pharmacies were excluded. Data were collected over the course of 1 month; each pharmacy was contacted by phone about the cash drug price, excluding any coupons or discounts for each of the 11 medications. Up to three phone calls were made to each pharmacy to obtain all drug prices. Additionally, medications that were outliers were confirmed with a repeat phone call at a later day to confirm accuracy. Some of the drops for which prices were obtained were for ophthalmologic preparation, which are commonly used in the ear. Coupons were also excluded. The list of medications collected included Cortisporin (brand) 10 mL, neomycin-polymyxin B sulfates-hydrocortisone (Cortisporin–generic) 10 mL, ofloxacin (generic) 10 mL, sulfacetamide (generic) 15 mL, Ciprodex (brand) 7.5 mL, Cipro HC (brand) 10 mL, Vosol (brand) 15 mL, acetic acid (Vosol–generic) 10 mL, VosolHC (brand) 10 mL, acetic acid-aluminum acetate (Domeboro–generic) 60 mL, and Tobraflex (brand) 5 mL. Medicare part D was determined to be lowest in the highest-income ZIP code according to ZIP code income (Table II). Ear drop prices were stratified in Figure 1. One-way ANOVA statistical testing was performed to compare ear drop prices between small and big chain pharmacies. A P value of < .05 was considered statistically significant.

RESULTS

The average price, minimum/maximum price, range, and standard deviation of the 11 most commonly prescribed ear drops are shown below in Table I. Prices ranged from $4.60 for generic acetic acid-aluminum acetate 60 mL (Domeboro–generic) to $338.00 for brand Tobraflex (5 mL). The price range for any single ear drop was lowest for neomycin, polymyxin B sulfates, and hydrocortisone (Cortisporin–generic) at $19.00 and highest for brand Tobraflex at $294.00.

Average prices of the ear drops were also stratified according to ZIP code income (Table II). Ear drop prices were determined to be lowest in the highest-income ZIP code and highest in low-income neighborhoods as depicted in Figure 1. One-way ANOVA statistical testing was performed to assess the relationship between the average

TABLE I.

Price Breakdown of the Top 11 Most Prescribed Ear Drops.

<table>
<thead>
<tr>
<th>Drug name</th>
<th>No. of Prices Obtained*</th>
<th>Average</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Range</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortisporin (brand) 10 mL</td>
<td>16</td>
<td>$82.70</td>
<td>$105.00</td>
<td>$49.96</td>
<td>$55.04</td>
<td>$15.81</td>
</tr>
<tr>
<td>Neomycin, polymyxin B sulfates, hydrocortisone (Cortisporin–generic) 10 mL</td>
<td>82</td>
<td>$34.70</td>
<td>$44.00</td>
<td>$25.00</td>
<td>$19.00</td>
<td>$5.09</td>
</tr>
<tr>
<td>Ofloxacin (generic) 10 mL</td>
<td>85</td>
<td>$99.95</td>
<td>$174.00</td>
<td>$15.00</td>
<td>$159.00</td>
<td>$50.06</td>
</tr>
<tr>
<td>Sulfacetamide (generic) 15 mL</td>
<td>92</td>
<td>$40.18</td>
<td>$100.00</td>
<td>$8.00</td>
<td>$91.00</td>
<td>$20.49</td>
</tr>
<tr>
<td>Ciprodex (brand) 7.5 mL</td>
<td>90</td>
<td>$196.28</td>
<td>$281.32</td>
<td>$107.00</td>
<td>$174.32</td>
<td>$28.40</td>
</tr>
<tr>
<td>Cipro HC (brand) 10 mL</td>
<td>75</td>
<td>$233.32</td>
<td>$299.99</td>
<td>$112.37</td>
<td>$187.62</td>
<td>$35.34</td>
</tr>
<tr>
<td>Vosol (brand) 15 mL</td>
<td>36</td>
<td>$120.75</td>
<td>$274.00</td>
<td>$25.00</td>
<td>$249.00</td>
<td>$89.35</td>
</tr>
<tr>
<td>Acetic acid (Vosol–generic) 10 mL</td>
<td>43</td>
<td>$116.55</td>
<td>$226.60</td>
<td>$34.99</td>
<td>$191.61</td>
<td>$64.25</td>
</tr>
<tr>
<td>Vosol HC (brand) 10 mL</td>
<td>64</td>
<td>$204.14</td>
<td>$300.48</td>
<td>$94.00</td>
<td>$206.48</td>
<td>$39.53</td>
</tr>
<tr>
<td>Acetic acid/aluminum acetate (Domeboro–generic) 60 mL</td>
<td>56</td>
<td>$22.91</td>
<td>$105.00</td>
<td>$4.60</td>
<td>$90.00</td>
<td>$20.66</td>
</tr>
<tr>
<td>Tobraflex (brand) 5 mL</td>
<td>67</td>
<td>$166.47</td>
<td>$338.00</td>
<td>$44.00</td>
<td>$294.00</td>
<td>$58.67</td>
</tr>
</tbody>
</table>

*Not all pharmacies carried every drug.
drug prices across pharmacies located in ZIP codes within the same income bracket. The analysis shows statistical significance for two drugs: sulfacetamide (generic) \((P = .003)\), and Cipro HC (brand) \((P = .032)\), demonstrating that the prices of these two medications vary across pharmacies located in different median incomes. When comparing drug prices across the three counties, ANOVA testing demonstrated statistical significance for the following drugs: sulfacetamide \((P = .003)\), Vosol HC (brand) \((P = .008)\), and Tobradex \((P = .022)\) for San Diego, Los Angeles, and Irvine respectively. Independent sample \(t\) tests between big chain and small chain pharmacies showed significance for Floxin (small chain cheaper by \$33.19; \(P = .005)\), sulfacetamide (small chain more expensive by \$22.67; \(P = .001)\), VosolHC (small chain cheaper by \$21.81 (\(P = .002)\), and Tobradex (small chain cheaper by \$40.25; \(P = .024)\).

DISCUSSION

Our study demonstrated wide variation in prices among the most commonly prescribed ear drops with the lowest price variation of a single drug for generic Cortisporin \((\$74.00)\) and highest for brand Tobradex \((\$294.00)\). Consumers face many options in choosing from which pharmacy to buy, especially in the densely populated areas of Southern California. The three counties sampled compose 42.7% of the entire California population and represents 12.1% of the United States population.\(^{13}\)

Pharmaceuticals have been reported to engage in price discrimination on an international level.\(^{14}\) Drug prices tend to be higher in higher-income countries, despite no difference in manufacturing or distribution costs.\(^{15}\) This phenomenon is seen in the United States, where the prices of brand name drugs are 35% to 55% higher compared to prices in developed countries.\(^{16}\) Within California, our study shows variation in retail pricing between different ZIP codes of the same income bracket, with significant variation found in two medications, sulfacetamide and Cipro HC. In our study, higher-income ZIP codes had lower average ear drop prices (Fig. 1). In addition to the variation in drug prices across ZIP codes, there was a significant difference in drug prices between big chain pharmacies versus small chain pharmacies and when comparing drug prices across counties. No substantial trend exists, but further investigation shows variation in drug prices does exist. Similar findings have also been seen in other states, including Michigan and Florida, where drug prices are higher in lower-income neighborhoods and lower in higher-income neighborhoods.\(^{17,18}\) This may be due to a higher proportion of patients with high deductibles in the lower-income neighborhoods. Without a regularly updated price reference, a tremendous burden is placed upon patients to seek out the lowest price, which is less likely to be in their neighborhood. This can further impose economic burdens to the most vulnerable.

TABLE II.

<table>
<thead>
<tr>
<th>Price Breakdown by Average Income of Pharmacy ZIP Code.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Bracket</td>
</tr>
<tr>
<td>Cortisporin (brand) 10 mL</td>
</tr>
<tr>
<td>Cortisporin (generic) 10 mL</td>
</tr>
<tr>
<td>Floxin (generic) 10 mL</td>
</tr>
<tr>
<td>Sulfacetamide (generic) 15 mL</td>
</tr>
<tr>
<td>Ciprodex (brand) 7.5 mL</td>
</tr>
<tr>
<td>Cipro HC (brand) 10 mL</td>
</tr>
<tr>
<td>Vosol (brand) 15 mL</td>
</tr>
<tr>
<td>Vosol (generic) 10 mL</td>
</tr>
<tr>
<td>Vosol HC (brand) 10 mL</td>
</tr>
<tr>
<td>Domeboro (generic) 60 mL</td>
</tr>
<tr>
<td>Tobradex (brand) 5 mL</td>
</tr>
<tr>
<td>No. of pharmacies</td>
</tr>
<tr>
<td>Average price</td>
</tr>
</tbody>
</table>

Fig. 1. Graph of the average price according to average income bracket of pharmacy ZIP code.
Insurance companies also contribute to drug price variation. Insurance companies are able to direct prescribing patterns of clinicians through the use of formularies, encouraging the use of some drugs over others. With this, companies have the power to negotiate for lower prices. Such opportunities are not available to the uninsured cash payer due to the discrepancy in negotiating power.

The federal or state governmental payers can potentially mandate price controls or negotiate drug prices for all Medicare or Medicaid patients. In addition, alternative approaches exist to potentially benefit the uninsured as an initial step toward reducing costs. One option is to develop a state-sponsored drug registry. These websites would be created by the state and would mandate pharmacies to submit cash pricing, providing an accurate and powerful tool that patients can utilize when searching for medication. Although third-party websites such as GoodRx.com have been created in an attempt to disseminate this information, our study team found them to be discordant to the prices obtained from calling the pharmacist directly. Third-party sites take into account various coupons that are subject to constant change, and can partly explain this price discrepancy. There is no substitute for the accuracy of a state-sponsored website mandated by law. With substantial price variation of medications, it is difficult for the consumer to determine which pharmacy is offering the best price for their prescription on a day-to-day basis. Although prices obtained at the time of data collection are accurate, a patient performing a search today would potentially find slightly different prices than what we found due to fluctuation of pricing from the pharmaceutical industry or pharmacies. Our team spent a significant amount of time in this study calling each pharmacy to obtain these prices. The time spent obtaining these prices by both consumer and pharmacy staff proves the inefficiencies of the current system. Several states have instituted drug-comparison websites to remedy this problem, including Florida, Michigan, Missouri, New Jersey, and New York. To our knowledge, an evaluation of the impact of these websites has yet to be reported.

Many retail pharmacies object to the creation of a state-sponsored website mandated by law. With substantial price variation of medications, it is difficult for the consumer to determine which pharmacy is offering the best price for their prescription on a day-to-day basis. Although prices obtained at the time of data collection are accurate, a patient performing a search today would potentially find slightly different prices than what we found due to fluctuation of pricing from the pharmaceutical industry or pharmacies. Our team spent a significant amount of time in this study calling each pharmacy to obtain these prices. The time spent obtaining these prices by both consumer and pharmacy staff proves the inefficiencies of the current system. Several states have instituted drug-comparison websites to remedy this problem, including Florida, Michigan, Missouri, New Jersey, and New York. To our knowledge, an evaluation of the impact of these websites has yet to be reported.

CONCLUSION

This study found significant variability among ear drop prices across different pharmacies in Southern California. A searchable, state-mandated database of drug prices for the general population may help reduce costs of drugs by encouraging a free market and providing a platform to compare pharmacies’ pricing for the same drug. Price negotiation by governmental payers may assist in reducing prices as well. Otolaryngologists can improve medication compliance and decrease patient cost burden by prescribing generic ear drop medications and cheaper alternatives for patients when clinically appropriate.

BIBLIOGRAPHY

1. Jones JD. How MCOs can get optimal value from their pharmacy benefit managers. Manag Care 2008;17:43–45.

