Lawrence Berkeley National Laboratory
Recent Work

Title
ON THE EXTRAPOLATION METHOD TO DETERMINE DIFFERENTIAL SCATTERING CROSS SECTIONS OF UNSTABLE PARTICLES

Permalink
https://escholarship.org/uc/item/0xg586tz

Author
Nauenberg, Michael.

Publication Date
1960-09-22
Ernest O. Lawrence
Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ON THE EXTRAPOLATION METHOD TO DETERMINE
DIFFERENTIAL SCATTERING CROSS SECTIONS OF UNSTABLE PARTICLES

Michael Nauenberg

September 22, 1960
ON THE EXTRAPOLATION METHOD TO DETERMINE
DIFFERENTIAL SCATTERING CROSS SECTIONS OF UNSTABLE PARTICLES

Michael Hauenberg

Lawrence Radiation Laboratory
University of California
Berkeley, California

September 22, 1960

Chew and Low1 and Goeble2 have discussed a method to measure the cross sections for scattering off particles such as pions and neutrons which are not available as free targets in the laboratory. The method consists of extrapolating the cross section for a related but measurable reaction as a function of one of the invariant momentum transfers to a pole of the S matrix for this reaction. The success of the extrapolation depends on the location and strength of other less-well-known singularities of the S matrix. In this note we want to point out the existence of two branch points which appear in the Chew-Low prescription for extrapolation to obtain the differential cross section of the unstable particle. These branch points are due to the constraint of fixed scattering angle, and disappear only when the integration over angle to obtain total cross sections is carried out. We will indicate how to modify the extrapolation to avoid this difficulty.

Suppose we want to measure the differential scattering cross section for the process

\begin{center}
* This work was performed under the auspices of the U. S. Atomic Energy Commission.
\end{center}

†

Present Address: Institute for Advanced Study, Princeton, New Jersey.
\[a_1 + a_2 \rightarrow a_3 + a_4, \tag{1} \]

where \(a_2 \) is emitted virtually by the process

\[a_6 \rightarrow a_2 + a_3. \tag{2} \]

Then, according to Chew and Low, we measure the cross section for the reaction

\[a_1 + a_6 \rightarrow a_3 + a_3 + a_4 \]

and extrapolate it in the momentum transfer \(S_{26} = (q_6 - q_2)^2 \) to the value \(S_{26} = m_2^2 \), keeping fixed \(S_{3b} = (q_3 + q_4)^2 \), the square of the total energy of \(a_3 \) and \(a_4 \), and \(\cos \theta_{14} \), the cosine of the angle between \(a_1 \) and \(a_4 \), both in the rest frame of \(a_3 \) and \(a_4 \). The variables \(q_1 \) and \(m_1 \) refer to the four-momentum and mass of the particle \(a_1 \). In the limit \(S_{26} = m_2^2 \), the laboratory-system cross section for this reaction takes the form

\[
\frac{d\sigma}{dS_{26}} = \frac{\pi^2 m_3^2}{\sin^2 \theta_{14}} \frac{([S_{26} - (m_1 - m_2)^2][S_{26} - (m_1 + m_2)^2])^{1/2}}{(S_{26} - m_2^2)}
\times \frac{ds_0}{dS_{26}} (S_{3b}, S_{14}) dS_{3b} dS_{14} dS_{26}, \tag{3}
\]

where \(\frac{ds_0}{dS_{26}} \) is the differential cross section for Process (1) and \(\sqrt{m} \) is the amplitude for Process (2) (coupling constant). For fixed \(S_{3b} \) and \(\cos \theta_{14} \) the invariant momentum transfer \(S_{14} = (q_1 - q_4)^2 \) is a function of \(S_{26} \).
\[s_{14} = m_1^2 + m_4^2 - \frac{1}{s_{56}} \left[(s_{54} + m_1^2 - s_{56})(s_{54} + m_4^2 - m_3^2) \right. \\
\left. - (s_{54} - (m_3 - m_4)^2)(s_{54} - (m_3 + m_4)^2) \right] \times \left[s_{56} - (\sqrt{s_{54}^2 - m_1^2})(s_{56} - (\sqrt{s_{54}^2 + m_1^2}))^{1/2} \right. \cos \theta_{14} \right] \]

Evidently \(s_{14} \) is analytic in \(s_{56} \) except for square root branch points at \(s_{56} = (\sqrt{s_{54}^2 - m_1^2})^2 \). Since \(\frac{d\sigma}{d\theta} \) is analytic in \(s_{14} \), it has also branch points at the same location when considered as a function of \(s_{56} \). However, integration over the scattering angle \(\theta_{14} \) to obtain the total cross section removes these branch points. This can be seen, for instance, by expanding \(\frac{d\sigma}{d\theta} \) in a Taylor series in \(\sqrt{s_{14}} \), noticing that only even powers of \(\cos \theta_{14} \) contribute to the integration.

We note that the minimum experimental value of \(\sqrt{s_{54}} \) is \((m_3 + m_4)\). On the other hand, in order that the branch points do not lie between the measured values of \(s_{56} \) \((s_{56} < 0)\) and its value at the pole \(s_{56} = m_2^2 \) it is necessary to consider \((m_1 + m_2) < \sqrt{s_{54}}\).

For the case \(m_3 + m_4 < m_1 + m_2 \), these branch points would forbid extrapolation to the unphysical but interesting region \((m_3 + m_4) < \sqrt{s_{54}} < (m_1 + m_2)\). (For example, in the measurement of \(K + K \rightarrow \pi + \pi \) by extrapolating \(K + K \rightarrow Y + \pi + \pi \).)

These branch-point singularities can be avoided by using the invariant momentum transfer \(S_{14} \) instead of \(S_{56} \) as the variable of extrapolation. Inverting Eq. (4), we express \(S_{56} \) as a function of \(S_{14} \) for fixed \(S_{54} \) and \(\cos \theta_{14} \), and substitute it in Eq. (3).
Square root branch points in s_{14} appear now explicitly in Eq. (5), and can be treated exactly. Another alternative is to keep s_{14} instead of $\cos \theta_{14}$ fixed. Since the ranges of values of s_{14} in the physical region of Reactions (1) and (3) are not the same, it will be necessary to perform a second extrapolation, this time for $\frac{d\sigma}{ds_{14}}$ as a function of s_{14} (i.e., $\cos \theta_{14}$), in order to obtain the differential scattering cross section in the nonoverlapping region.

On the other hand, this method allows us by extrapolation in s_{56} to obtain the differential cross section $\frac{d\sigma}{ds_{14}}$ in an unphysical range of s_{14}.

I would like to thank Professor Geoffrey F. Chew and Dr. B. N. Udgamonkar for several helpful discussions.

REFERENCES