Lawrence Berkeley National Laboratory
Recent Work

Title
ADENOSINE TRIPHOSPHATE (ATP) IN THE MARINE ENVIRONMENT - A BIBLIOGRAPHY

Permalink
https://escholarship.org/uc/item/0xw421rp

Author
Quinby-Hunt, M.S.

Publication Date
1981-03-01
ADENOSINE TRIPHOSPHATE (ATP) IN THE MARINE ENVIRONMENT - A BIBLIOGRAPHY

Anthony T. Jones, Eric O. Hartwig, and Mary S. Quinby-Hunt

March 1981

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ADENOSINE TRIPHOSPHATE (ATP) IN THE MARINE ENVIRONMENT - A BIBLIOGRAPHY

Anthony T. Jones
Eric O. Hartwig
Mary S. Quinby-Hunt

Marine Sciences Group
Earth Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

ABSTRACT

This bibliography lists published works on adenosine triphosphate (ATP) detected in the marine environment. Over 100 citations are listed in four categories: field measurements; macroscopic organisms; benthic populations; and papers on analytical methods.

INTRODUCTION

This bibliography lists the major published works describing the determination of adenosine triphosphate and reporting concentrations detected in the marine environment. Adenosine 5'-triphosphate (ATP) is a biosynthetic compound used by organisms for storage and transfer of energy within the cell. ATP has been found in all cells examined and is essential to the functions of the cell e.g. biosynthesis, active transport, contraction, motility, etc.

A method for determining adenosine triphosphate in oceanic waters was first proposed by Holm-Hansen and Booth (1966). This sensitive assay uses a chemiluminescent reaction of luciferin and the enzyme luciferase with ATP in the presence of magnesium and oxygen. The following
two step reaction has been proposed:

(1) \[\text{LH}_2 + \text{ATP} + \text{E} \xrightarrow{\text{Mg}^+} \text{E-LH}_2-\text{AMP} + \text{PP} \]

(2) \[\text{E-LH}_2-\text{AMP} + \text{O}_2 \xrightarrow{\text{hv}} \text{E-L-AMP} + \gamma v \]

where:

- \text{LH}_2 = \text{luciferin (substrate)}
- \text{E} = \text{luciferase (enzyme)}
- \text{ATP} = \text{adenosine triphosphate}
- \text{AMP} = \text{adenosine monophosphate}
- \text{PP} = \text{pyrophosphate}
- \text{L} = \text{dehydroluciferin}
- \gamma v = \text{photon of light}

In practice, environmental samples to be analyzed for ATP are collected on filters, extracted either in boiling tris [tris(hydroxymethyl)aminomethane] buffer (Holm-Hansen, 1969; Holm-Hansen and Karl, 1978) or in a cold sulfuric acid solution (Karl and LaRock, 1975a) and preserved until analyzed. The extraction procedure rapidly inactivates ATPase and other nucleotide degradative enzymes and extracts.

The assay procedure uses a photometer to detect the light generated by the luminescent ATP reaction. By comparing sample values with values from known standards, the ATP concentration of samples can be calculated. For more details on techniques, see Karl and LaRock (1975a) or

The concentration of particulate ATP in marine samples is useful in evaluating the distribution of microplankton and in estimating the distribution of microbial biomass. Conventional methods of estimating biomass of microorganisms in marine waters include direct microscopy, plating of viable cells, measurement of chlorophyll or other pigments, or total organic carbon measurements. These methods have limitations, the major obstacle being the presence of relatively large amounts of detrital material in the water column and the difficulty of discerning living versus non-living particulates. As ATP is rarely found outside living cells, the measurement of ATP is a rapid and accurate means of detecting living cells in the large volume of detrital material from water column samples. The specificity of the luciferin-luciferase reaction with ATP provides researchers with a reliable microbial biomass indicator (see Holm-Hansen, 1973a).

Since the first vertical profiles of microbial ATP in the water column were published, measurements of ATP and other nucleotides have expanded to include studies of ATP in macroscopic zooplankton, sediment microbial populations, and benthic organisms. The bibliography is divided into sections dealing with the nature of the published research. The four categories are field measurements, macroscopic organisms, benthic populations, and papers on analytical methods. Some citations
appear in more than one section when appropriate. Literature on fresh-
water aquatic systems which might be useful to investigators has not
been examined and is therefore not reported. Only method papers dealing
exclusively with marine samples are included.

Acknowledgements are due to P. Wilde for his support and C. Ryan
who reviewed the bibliographic format.

This work was supported by the Ocean Systems Branch, Division of
W-7405-ENG-48.
FIELD MEASUREMENTS

Andersen J.J. and F.A. Richards (1977) Chemical and biochemical observations from the DOMES study area in the equatorial North Pacific. Deep Ocean Mining Environmental Study (DOMES) unpublished manuscript No. 16, 95 pp.

Chrzanowski T.H., L.H. Stevenson and B. Kjerfve (1979) Adenosine 5'-triphosphate flux through the North Inlet marsh system. Applied and Environmental Microbiology, 37, 841-848.

FIELD MEASUREMENTS (cont.)

Eppley R.W., W.G. Harrison, S.W. Chisholm, and E. Stewart (1977) Parti-
culate organic matter in surface waters off Southern California and
tits relationship to phytoplankton. *Journal of Marine Research, 35*
671-696.

Eppley R.W., C. Sapienza and E.H. Renger (1978) Gradients in phytoplank-
ton stocks and nutrients off Southern California in 1974-76. *Estua-
rine and Coastal Marine Science, 7*, 291-301.

Gordon D.C. (1970) Chemical, biological observations at Station Gollum,
an oceanic station near Hawaii, January 1969 - June 1970. Institute

Hamilton R.D., O. Holm-Hansen and J.D.H. Strickland (1968) Notes on the
occurrence of living microscopic organisms in deep-water. *Deep-Sea
Research, 15*, 651-656.

Herbland A. and J. Pages (1975) L’adenosine triphosphate (ATP) dans le
dome de Guinee distribution verticale et signification ecologique.
Office de la Recherche Scientifique et Technique Outre-Mer Cahiers,
Series Oceanographie, 13, 163-169.

Hobbie J.E., O. Holm-Hansen, T.T. Packard, L.R. Pomeroy, R.W. Sheldon,
J P. Thomas and W.J. Wiebe (1972) A study of the distribution and
activity of microorganisms in ocean water. *Limnology and Oceanogra-
phy, 17*, 544-555.

Hodson R.E. and F. Azam (1977) Determination and biological significance
of dissolved ATP in seawater. In: *ATP Methodology Symposium, G.A.
Borun, editor, SAI Technology Co., San Diego, California, Vol. II,
pp. 127-140.*

Holm-Hansen O. (1969) Determination of microbial biomass in ocean pro-

Holm-Hansen O. (1970a) Determination of microbial biomass in deep ocean
waters. In: *Organic matter in natural waters, D.W. Hood, editor,
University of Alaska Press, pp. 287-300.*

Holm-Hansen O. (1970b) Microbial distribution in ocean water relative to
nutrients and food sources. In: *Proceedings of an International Sym-
posium on Biological Sound Scattering in the Ocean, G.B. Farquhar
editor, 1970 March 31 - April 2, Warrenton, Virginia, Maury Center
for Ocean Science, pp. 147-155.*

Holm-Hansen O. (1971) Determination of microbial biomass in deep ocean
profiles. In: *Symposium on Fertility of the Sea, J.D. Costlow, edi-
tor, 1969, Sao Paulo, Brazil, Vol. 1, pp. 197-207.*
FIELD MEASUREMENTS (cont.)

FIELD MEASUREMENTS (cont.)

MACROSCOPIC ORGANISMS

MACROSCOPIC ORGANISMS (cont.)

BENTHIC ORGANISMS

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.