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Andosols (or Andisols) possess several distinctive properties that are rarely found in other groups of soils. These
properties are largely due to the dominance of short-range-ordered minerals (allophane, imogolite and ferrihy-
drite) and/ormetal–humus complexes (Al/Fe–humus complexes) in their colloidal fraction.While several papers
have extensively reviewed thenature andproperties of short-range-orderedminerals, there is no comprehensive
review of the genesis, characteristics andmanagement implications of Al–humus complexes, the dominant form
of active Al in non-allophanic Andosols. In this review, we survey the chemical characteristics of Al–humus
complexes and discuss the pedogenic environment favoring their formation in non-allophanic Andosols. The
role of Al–humus complexes in carbon cycling and soil organic carbon accumulation is emphasized as an impor-
tantmechanism controlling organic dynamics in Andosols. While non-allophanic Andosols share many common
properties with allophanic Andosols, they display several distinct characteristics associated with Al–humus
complexes, such as strong acidity and high exchangeable Al content that impair agricultural productivity due to
Al phytotoxicity. Thus, we focus on the role of Al–humus complexes in regulating aqueous Al3+ solubility and re-
lease/retention kinetics, Al phytotoxicity, phosphorus dynamics, and suppression of soil-borne diseases. Knowledge
of these soil properties as related to Al–humus complexes is necessary to develop effective soil management
practices to assure sustainable agricultural productivity in non-allophanic Andosols. Finally, future research needs
are identified concerning the role of Al–humus complexes in regulating soil biogeochemical processes.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Andosols (Obara et al., 2011; The Fourth Committee for Soil
Classification and Nomenclature, 2003; WRB, 2014) or Andisols (Soil
ashi), radahlgren@ucdavis.edu
Survey Staff, 1999; Soil Survey Staff, 2014), the typical soils developed
from volcanoclastic materials, cover approximately 124 million hect-
ares, about 0.84% of the world’s land surface (Leamy, 1984; McDaniel
et al., 2012). While Andosols comprise a relatively small extent of the
world’s land surface, they represent a crucial land resource due to the
disproportionately high human population densities often supported
by these soils (Mohr, 1938; Leamy, 1984; Shoji et al., 1993). The
high human-carrying capacity implies that Andosols have favorable
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physical, chemical and biological properties for sustainable agricultural
production.

Andosols possess several distinctive properties that are rarely found
in other groups of soils. These properties include variable charge, high
water retention, high phosphate retention, low bulk density, high fria-
bility, highly stable soil aggregates, and excellent tilth (Shoji et al.,
1993). These distinctive properties are largely due to the formation of
short-range-orderedminerals (mainly allophane, imogolite and ferrihy-
drite) and Al/Fe – humus complexes. For soil management purposes,
Andosols are often divided into two groups based on themajor colloidal
composition of surface horizons: allophanic Andosols dominated
by allophanic clays (allophane and imogolite) and non-allophanic
Andosols dominated by Al–humus complexes and often containing
2:1 layer silicates (Shoji, 1985, 1985; Shoji and Ono, 1978). In the
World Reference Base for Soil Resources (WRB, 2014), the term
“silandic” is used to describe allophanic Andosols and “aluandic” to des-
ignate non-allophanic Andosols. Non-allophanic Andosols represent
about 30% of all Andosols in Japan (Saigusa and Matsuyama, 1998)
and are distributed worldwide (e.g., Japan, USA, Indonesia, Spain, Italy,
Portugal, Chili, New Zealand, Western Samoa, Taiwan) (Chen et al.,
1999; Johnson-Maynard et al., 1997; Leamy et al., 1988; Madeira et al.,
1994; Shoji et al., 1985, 1987).

In this review, we assess the nature, genesis, properties and
significance of Al–humus complexes in soils formed on volcanoclastic
materials. Al–humus complexes are the dominant form of active Al
(acid oxalate-extractable Al) in the colloidal fraction of non-allophanic
Andosols, and also comprise a significant portion of the colloidal fraction
of humus-rich horizons in most Andosols and Podzols. Specific topics
covered by this review include the role of Al–humus complexes in
organic carbon accumulation, aqueous Al solubility and kinetics, Al
phytotoxicity, phosphorus dynamics, and suppression of soil-borne
diseases. This synthesis informs management practices related to max-
imizing agricultural productivity of soils dominated by Al–humus
complexes.

2. Characterization of Al–humus complexes and origin of the
organic carbon

Humic substances are anionic polyelectrolyteswith a large degree of
heterogeneity in terms of physical and chemical properties. The struc-
ture, molecular mass and functional groups of humic substances vary
depending on origin and degree of humification of the organic material.
Themajority of humic substances in soils occurs as insoluble forms such
as macromolecular complexes, macromolecular complexes bound
together by multivalent cations (e.g., Fe3+, Al3+), or in combination
with soil minerals (e.g., clay–metal–humus) through bridging by
polyvalent cations, hydrogen bonding and van der Waal’s forces
(Stevenson, 1985). Humic substances are often strongly bound to
mineral surfaces through specific adsorption by ligand exchange with
protonated surface hydroxyl groups to form metal–organic–mineral
coatings on soil mineral surfaces. As a result, the surface chemistry of
the soil is transformed from primary control by inorganic constituents
to organo-mineral coatings.

Humic substances have two primary types of metal binding sites,
carboxylic and phenolic functional groups. Two main types of chelate
linkages have been suggested: one involving a COOH and an adjacent
phenolic OH group to form a salicylate-like ring and the other involving
two COOH groups in close proximity to form a phthalate-like ring
(Schnitzer and Skinner, 1965; Gamble, 1970). The maximum binding
capacity of humic substances is approximated by the content of acidic
functional groups, primarily COOH moieties. Exchange acidities of
humic substances, approximating COOH content, rangewidely but gen-
erally fall within the range of 1500–5000 mmolc/kg (Stevenson, 1985).
Polyvalent cations (e.g., Al3+, Fe3+)may formmulti-dentate complexes
(mono-, di- and tri-dentate) with humic substances, but bidentate
complexes are believed to be the most prevalent (Rouff et al., 2012).
The stability constants for metal–humic complexes display a curvi-
linear decrease with increasing metal coverage (Perdue and Lytle,
1983; Stevenson and Chen, 1991). Stevenson and Chen (1991)
described the relationship between the stability constant and metal
coverage of humic substances by a continuous distribution model that
results from (i) complexation sites with different binding energies,
(ii) increasing electrostatic repulsion with increased metal saturation,
and (iii) increasing aggregation of humic substances with increasing
metal saturation thereby reducingmetal accessibility. Thus, the stability
of metal–humic complexes will depend on the metal/ligand ratio
(i.e., degree of metal saturation on humic substance functional groups)
and the concentration of competitive cations, especially protons
(Hargrove and Thomas, 1982; Gerke, 1994).

The Al/Fe – humus complex fraction has historically been operation-
ally defined as the Al, Fe and organic carbon extracted by pyrophos-
phate reagent (0.1 M Na-pyrophosphate at pH 10) (McKeague, 1967).
In spite of its long-term use, caution must be exercised in interpreting
pyrophosphate extractable metal and organic matter concentrations
as pyrophosphate reagent has been shown to dissolved some Al from
gibbsite and amorphous Al(OH)3 in soil (Kaiser and Zech, 1996). Due
to the lack of specificity formetal–humic compounds by pyrophosphate
reagent, other extraction reagents have been proposed for characteriza-
tion of metal–humic substances with the following general extractabil-
ity pattern (Dahlgren, 1994): pyrophosphate (McKeague, 1967) N

Na-EDTA (Borggaard, 1976) N Na-tetraborate (Higashi and Shinagawa,
1981) N CuCl2 (Hargrove and Thomas, 1981).

Solid-state cross polarization magic angle spinning (CPMAS)
13C-nuclear magnetic resonance (NMR) spectra of A horizons from
Andosols usually show the presence of C in aliphatic, O-alkyl, aromatic
and carbonyl functional groups. Among them, the aromatic C and car-
bonyl C were shown to be concentrated in humic substances extracted
by alkaline solutions (pyrophosphate or NaOH) (Hiradate et al., 2004;
Takahashi et al., 2007). This evidence supports the assumption that
metal–humus complexes are formed primarily by the interaction of
metals with carboxylic functional groups. The complexing capacity of
humus increases as the degree of humification increases. The Al–
humus fraction is generally much higher (~10:1) than the Fe–humus
fraction owing to the greater stability of iron in Fe (hydr)oxides as com-
pared to humus complexes (Dahlgren et al., 1993;Ugolini andDahlgren,
2002; Wada and Higashi, 1976). The degree of metal complexation by
humic substances can be evaluated by examining pyrophosphate ex-
tractable Al, Fe, and C (Alp, Fep, Cp) using atomic ratios: Alp/Cp or
(Alp + Fep)/Cp. For most A horizons of Andosols, the Alp/Cp ratio ranges
between 0.05 and 0.2 (Higashi, 1983) while the (Alp + Fep)/Cp ratio
ranges between 0.1 and 0.2 (Inoue and Higashi, 1988). These ratios
are likely over-estimated due to the non-specificity of pyrophosphate
reagent for the Al/Fe fraction. Assuming a bidentate metal chelate
with COOH and an adjacent phenolic OH group (salicylate-like com-
plex), metal saturation with humic substances having a 5000 mmol
COOH/kg organic C content and 50% carbon content would be metal
saturated at a metal/Cp atomic ratio of approximately 0.12.

As for the origin of organic carbon in humic substances of Andosols,
especially for very dark colored A horizonswith highly humified organic
matter (melanic epipedon), grass vegetation such asMiscanthus sinensis
has been implicated as the primary source (Arai et al., 1986; Kumada,
1987; Mitsuchi, 1985; Shoji et al., 1990). Ishizuka et al. (2014) showed
that the melanic index correlates negatively with δ13C values of A hori-
zons in Japanese forest soils, indicating that C4 grasses played an impor-
tant role in generating dark-colored organic matter. Hiradate et al.
(2004) further showed that the contribution of C4 plants, such as
Miscanthus sinensis, to organic C was ~50% in dark-colored humic
acids using δ13C values of humic substances in A horizons of Japanese
volcanic soils. This indicates that C3 plants, including tree vegetation,
are also an important source of humic materials in melanic epipedons
(Shindo et al., 2005; Hiradate et al., 2006). Furthermore, Inoue et al.
(2001, 2006) and Takahashi et al. (1994) showed that C4 plants were
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not necessary for formation of melanic epipedons. In addition to these
grass and tree vegetation types, pteridophyte vegetation, such as brack-
en fern (Pteridium aquilinum), has been shown to preferentially form
Al–humus-rich melanic or melanic-like surface horizons (Birrell et al.,
1971; Johnson-Maynard et al., 1997; Leamy et al., 1980; Lowe and Palm-
er, 2005).

Takahashi et al. (1994) documented the presence of high concentra-
tions of charred materials across a range of melanic epipedons in
northern California. A subsequent analysis of these samples indicated
that charcoal comprised up to 20% of the total organic C pool (Dahlgren,
unpublished data). These results suggest that fire maybe an important
factor in the formation of melanic epipedons in the xeric moisture
regime of northern California where fire return frequencies of less
than 30 years were historically common. Many studies by Shindo and
coworkers further demonstrated that considerable amounts of charred
plant fragments are found in Andosols from Japan (Miyazaki et al.,
2009, 2010; Nishimura et al., 2006, 2008, 2009; Shindo et al., 2003,
2004). There were strong positive correlations between concentrations
of the charred materials and humic substances (e.g., humic acid, fulvic
acid) (Miyazaki et al., 2009, 2010; Nishimura et al., 2009; Shindo et al.,
2004). They attributed the charred plant fragments as important
contributors to the formation of humic substances in JapaneseAndosols,
especially the A-type humic acid that represents the highest degree of
humification.

3. Formation of Al–humus complexes

Under humidweathering conditions in volcanoclasticmaterials, alu-
minum in the colloidal fraction generally forms a continuum between
pure Al–humus complexes and pure allophane/imogolite (Mizota and
van Reeuwijk, 1989), corresponding to aluandic and silandic horizons,
respectively, in WRB classification (WRB, 2014). Pedogenic environ-
ments favoring formation of Al–humus complexes and allophanic
materials are sharply contrasting in Andosols. Non-allophanic soils
dominated by Al–humus complexes form preferentially in pedogenic
environments dominated by organic acid weathering and are therefore
rich in organic matter and have pH values of 5 or less (Shoji and
Fujiwara, 1984). Contributing to soil acidification are base-poor volcanic
deposits (e.g., rhyolitic, dacitic, or andesitic) having non-colored volca-
nic glass, annual precipitation amounts greater than about 1000 mm,
and older parent materials that have experienced a greater degree of
weathering. At pH values less than 5, organic acids are the dominant
proton donor lowering pH and aqueous Al3+ activities through forma-
tion of Al–humus complexes. Aqueous Al3+ may also be incorporated
into the interlayer of 2:1 layer silicates when present (Dahlgren and
Ugolini, 1989). Under this weathering environment, humus and 2:1
layer silicates effectively compete for dissolved Al, leaving little Al avail-
able for co-precipitation with silica to form aluminosilicate materials,
such as allophane/imogolite. This preferential incorporation of Al into
Al–humus complexes and hydroxy-Al interlayers of 2:1 layer silicates
has been termed the anti-allophanic effect (Shoji et al., 1993) and
leads to the formation of non-allophanic Andosols.

In contrast, allophanic clays form preferentially in pedogenic
environments where the dominant proton donor is carbonic acid, pH
values are in the range of 5 – 7, and the content of complexing organic
compounds is low (Ugolini and Dahlgren, 1991). Shoji et al. (1982)
and Shoji and Fujiwara (1984) showed that allophanic soils are favored
in base-rich parent materials (e.g., andesitic basalt, basalt) having col-
ored volcanic glass, humid climates having less than 1000mmof annual
precipitation, and in younger volcanic deposits. These condition favor
higher pH values (pH N 5), which promotes formation of Al-polymers
relative to Al–humus complexes (Jackson, 1963a,b). The Al-polymers
are able to react with silica and form allophane/imogolite leading to
formation of allophanic Andosols.

It is important to note that allophanic and non-allophanic Andosols
are distinguished based on the dominance of Al–humus complexes
versus allophanic materials in the upper soil horizons (e.g., generally
upper 30 cm). As such, Al–humus complexes are also common in the
A horizons of allophanic Andosols where they often suppress formation
of allophanic materials relative to underlying B horizons (Dahlgren
et al., 2004). Similarly, non-allophanic Andisols often have allophanic
materials in their lower horizons as the organic acid weathering regime
in the upper soil horizons is replaced by carbonic acid in the lower soil
horizons (Ugolini et al., 1988; Dahlgren et al., 1991, 2004).

In Japan, allophanic Andosols are mainly distributed in areas having
thick deposition of Holocene and/or late-Pleistocene volcanic deposits,
while non-allophanic Andosols are found in areas with older tephra
deposits. Older tephra deposits are generally more acidified and have
been exposed to eolian deposition of exogenous materials containing
2:1 layer silicates or their precursors, such as loess from China
(Bautista-Tulin and Inoue, 1997; Inoue and Naruse, 1987; Mizota and
Inoeu, 1988;Mizota et al., 1990; Saigusa andMatsuyama, 1998).Mixing
of alluvial or residual depositswith volcanicmaterialsmay also result in
formation of non-allophanic Andosols. For example, Takahashi et al.
(2001) showed that non-allophanic Andosols in several forest soils of
Aomori and Akita Prefectures were formed in Pleiocene sedimentary
rocks and Miocene green tuff mixed by landslides with no evidence of
tephra deposition. Recent studies in forested areas in Japan indicate
widespread distribution of non-allophanic Andosols mixed with
Brown forest soils (Imaya et al., 2005, 2007, 2010a,b).
4. Organic carbon accumulation in Andosols

Accumulation of soil organic matter (SOM) is a characteristic prop-
erty of Andosols (Wada, 1985). Andosolization is the darkening of the
soil due to an accumulation of stable humic substances under subacid
conditions (Duchaufour, 1977; Ugolini et al., 1988). Andosolization is a
case of melanization in which Al3+ is the dominant exchangeable
cation, as opposed to Ca2+ that produces a mollic epipedon. While
Andosols cover 0.84% of the Earth’s land surface (Leamy, 1984; Soil
Survey Staff, 1999), they contain a disproportionate amount of SOM,
approximately 1.8% of the global soil organic carbon (Hillel and
Rosenzweig, 2009). The large accumulation of organic matter results
froma combination of high detritus inputs associatedwith the generally
high fertility and productivity of Andosols and from effective stabiliza-
tion of SOM against decomposition. Research has shown that plant-
derived SOM is strongly degraded and that it is the microbial SOM frac-
tion that contributes substantially to SOM pools in Andosols (Buurman
et al., 2007). Stabilization of SOM in Andosols has been attributed to
i) formation of the SOM in organo-mineral and/or organo-metallic
(Al/Fe–humus) complexes (Inoue and Higashi, 1988; Nanzyo et al.,
1993; Neculman et al., 2013; Percival et al., 2000; Rumpel et al., 2012;
Torn et al., 1997), ii) low activity of soil microorganisms due to low
soil pH, Al toxicity, low base cation content, and/or P deficiency
(Tokashiki and Wada, 1975; Tonneijck, 2009), iii) physical protection
of the SOM in stable microaggregates characteristic of variable charge
soils (Huygens et al., 2005; Baldock and Broos, 2011), iv) sorption and
deactivation of exoenzymes involved in the extracellular depolymeriza-
tion component of SOMdecomposition (Saggar et al., 1994;Miltner and
Zech, 1998), v) burial of organic-rich surface horizons by repeated addi-
tions of airfall tephra deposition, and vi) the presence of microbially-
recalcitrant charcoal (especially in melanic epipedons) (Miyazaki
et al., 2009, 2010; Nishimura et al., 2006). The stabilization of SOM is
reflected in the 14C age of humic acids extracted from A horizons of
Andosols which is reported to range from modern to 30,000 YBP, with
the majority in the range 1000-5000 YBP (Inoue and Higashi, 1988). It
was concluded that mean residence time of SOM in Andosols was
appreciably greater than for Mollisol A horizons and Podzol/Spodosol
Bh horizons. This supports the assertion that the mean residence time
of SOM in Andosols is generally much longer than for other soil types
(Arnalds, 2008; Torn et al., 1997).
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Several studies have suggested that chemical stabilization of SOM
via formation of Al–humus complexes is an important process for
SOM accumulation in Andosols (e.g., Zunino et al., 1982; Inoue and
Higashi, 1988; Egashira et al., 1997; Baldock and Skjemstad, 2000;
Percival et al., 2000; Rasmussen et al., 2006; Takahashi et al., 2012).
Al–humus complexes may facilitate protection of organic C directly by
rendering functional groups more condensed and less assessable to
enzymatic attack and indirectly by promoting adsorption to mineral
surface (as Al–humic–mineral complexes), particle cementation, and
the formation of stable micro- and macro-aggregate structures (Oades,
1988). However, the specific role of Al–humus complexes in chemical
stabilization of SOM is not yet fully understood. Studies examining ex-
tensive global datasets for Andosol A horizons find a strong correlation
between pyrophosphate-extractable Al and SOM (r = 0.89, P b 0.01,
Inoue and Higashi, 1988; r = 0.84, P b 0.01, Nanzyo et al., 1993). In
New Zealand volcanic soils, the pyrophosphate-extractable Al was
similarly strongly correlated to SOM, whereas allophanic materials
were not related to SOM (Percival et al., 2000). It is considered that
the complexation of multivalent cations (e.g., Al3+) by humic
substances results in functional groups becoming more condensed and
less susceptible to biological attack (Baldock and Broos, 2011). The
role of Al–humus complexes in enhancing the resistance of humic sub-
stances to microbial decomposition has been demonstrated by incuba-
tion experiments (Martin et al., 1966; Juste et al., 1975; Martin et al.,
1982; Rasmussen et al., 2006). However, a pyrolysis-GC/MS investiga-
tion of soil organic matter in Andosols from Costa Rica did not support
the theory of strong chemical protection of plant-derived components
through binding to allophane, iron or aluminum (Buurman et al.,
2007). Therefore, other processes may be important in SOM sequestra-
tion in Andosols.

Al–humus complexes may also participate in physical protection of
SOM, along with allophanic materials, through formation of micro-
and macro-aggregates that are prevalent in Andosols (Warkentin
et al., 1988). Asano and Wagai (2014) demonstrated strong evidence
for aggregate hierarchy in Andosols A horizons with Al–humus com-
plexes likely contributing as a binding agent to form both micro- and
macro-aggregates. Gijsman and Sanz (1998) investigated the physical
protection of macro-aggregates in Andisols and found elevated CO2

mineralization after crushing of macro-aggregates. Macro-aggregate
breakdown results in the exposure of labile organic matter rendering
it accessible for microbial decomposition. Due to high water retention
Fig. 1. Path analysis diagram for the relationships between organic carbon (OC) content and soil
path coefficient (Pij) of soil properties is represented by single-headed arrows, and the simples
**Significant at P b 0.01. (Takahashi et al., 2012).
by micro-aggregates, it is plausible that anaerobic conditions may
hinder aerobic decomposers in the aggregate interiors, even under oth-
erwise well-aerated conditions at the soil pedon scale. For example,
Buurman et al. (2007) reported incorporation of SOM into 10 μm-
diamater aggregates that remained saturated with water throughout
much of the year, thereby hindering microbial decomposition. As fluid
migration is reduced inside the fractal structure of the aggregates, the
SOMadsorbedor trapped in these fractal pore structures is less available
to microbes and enzymes (Chevallier et al., 2010).

With the lower soil pH characteristic of non-allophanic Andosols
(pH b 5), organic matter may also be protected against decomposition
by Al toxicity to some microorganisms (Tokashiki and Wada, 1975). In
Andean Andosols, soil pH and KCl-extractable Al concentration were
closely related to the SOM content (Tonneijck, 2009). Takahashi et al.
(2012) determined the relationship between SOM content and selected
soil properties such as pH(H2O), KCl-extractable aluminum (KCl-Al,
exchangeable Al), pyrophosphate-extractable Al and Fe (Alp and Fep,
Al/Fe–humus complexes), and acid oxalate-extractable Si (Sio, Si in
allophanic materials) for 293 A horizons in the Tohoku University
World Andosol Database (Shoji et al., 1996). A path analysis was used
to examine direct and indirect effects of soil properties on SOM content
(Fig. 1 and Table 1). The results showed a high correlation coefficient be-
tween SOM content and Alp (r = 0.69, P b 0.01) indicating a strong di-
rect effect of Alp (path coefficient = 0.52, P b 0.01) on SOM content.
Strong correlations between SOM and KCl-Al (r = 0.60, P b 0.01) or
pH(H2O) (r = -0.58, P b 0.01) were not only due to direct effects
(path coefficient= 0.21 and -0.27, respectively, P b 0.01), but also to in-
direct effects of other properties, especially that of Alp. Thus, it is consid-
ered that, in the humus horizons of many Andosols, Al–humus
complexation strongly contributes to SOM accumulation, and low soil
pH and Al toxicity may be partially responsible for this humus accumu-
lation through depressing microbial activity (Takahashi et al., 2012).

Al–humus complexes are believed to be highly stable under natural
conditions in non-allophanic Andosols. As previously discussed,
Al–humus complexes are assumed to protect soil humus from decom-
position by microorganisms and enzymes (Baldock and Broos, 2011;
Mikutta et al., 2007; Schneider et al., 2010). However, Takahashi et al.
(2006a) showed a remarkable decrease of Alp values (7 – 52%) follow-
ing liming of A horizon soils from non-allophanic Andosols in a labora-
tory study. The authors postulated that the reduction of Al–humus
complexes could lead to an increase in C mineralization by liming
properties using data (n=293) from the TohokuUniversityWorld Andosol Database. The
correlation coefficients (rij) between variables are represented by double headed arrows.



Table 1
Direct effect (diagonal, underlined) and indirect effect (off diagonal) of soil properties on
organic carbon content from the results of the path analysis (n = 293). (Takahashi et al.,
2012).

pH(H2O) KCl–Ala Alpb Fepc r R2 Ud

pH(H2O)(1) −0.27⁎⁎ −0.13⁎ −0.21⁎⁎ 0.04 −0.58⁎⁎ 0.61 0.63
KCl–Al (2) 0.16⁎⁎ 0.21⁎⁎ 0.27⁎⁎ −0.04 0.60⁎⁎

Alp (3) 0.11 0.11 0.52⁎⁎ −0.05 0.69⁎⁎

Fep (4) 0.13⁎ 0.11 0.35⁎⁎ −0.08 0.52⁎⁎

a 1 M KCl-extractable Al.
b Pyrophosphate-extractable Al.
c Pyrophosphate-extractable Fe.
d Uncorrelated residue.
⁎⁎ Significant at P b 0.01.
⁎ Significant at P b 0.05.

Fig. 3. Plots of equilibriumAl solubility versus pH at 25 °C for A horizons of non-allophanic
and allophanic Andosols and a Bhs horizon of a Podzol. The solubility of synthetic gibbsite
is indicated by the dotted line for comparison. (Takahashi et al., 1995).
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(Takahashi et al., 2006a), as was later verified in a laboratory incubation
(Miyazawa et al., 2013). These results are consistent with field studies
that demonstrated a marked decrease in Alp and SOM contents of Ap
horizons in Andosols following cultivation and liming (Saigusa et al.,
1988; Verde et al., 2005).

5. Role of Al–humus complexes in aluminum solubility and release/
retention kinetics

Aluminum solubility and release/retention kinetics are closely relat-
ed to the dominant pools of active Al in allophanic and non-allophanic
Andosols. In turn, Al dynamics play an important role in agricultural
productivity, especially related to Al toxicity that is often closely tied
to the easily exchangeable Al fraction. Studies examining Al solubility
and release/retention kinetics in Andosols show fast reaction kinetics
and rapid attainment of equilibrium (Dahlgren and Saigusa, 1994;
Dahlgren and Walker, 1993; Takahashi and Dahlgren, 1998; Takahashi
et al., 1995). In soils containing hydroxy-Al polymers (interlayered 2:1
layer silicates), allophone/imogolite, Al–humus complexes, and ex-
changeable Al, there appears to be a simultaneous equilibrium among
all phases (Fig. 2; Dahlgren and Walker, 1993). In particular, the
release/retention kinetics associated with exchangeable Al and Al–
humus complexes are very rapid with an apparent equilibrium from
both over- and under-saturation occurring within a 20-min residence
time (Dahlgren et al., 1989). Hydroxy-Al polymers appear to ultimately
regulate Al solubility with a solubility product similar to that of
synthetic gibbsite: log K⁎SO = 8.1 for the reaction Al(OH)3 + 3H+ =
Al3+ + 3H2O (May et al., 1979). Dahlgren andWalker (1993) obtained
a slope of about 2.7 for several Spodosol Bs horizons, compared to a the-
oretical value of 3.0 for an Al(OH)3 phase. A slope less than 3.0 may in-
dicate that the formula for the hydroxy-Al polymer is Al(OH)2.70.3+, the
positive charge satisfying the negative charge of the 2:1 layer silicate
hosting the interlayermaterial (Huang, 1988). As for allophanic Andosol
A horizons, Takahashi et al. (1995) observed a slope of 2.9, which was
very close to the value expected for an Al(OH)3 phase (Fig. 3 and
Table 2).

In contrast, humus-rich soils such as non-allophanic Andosol A
horizons and Podzol/Spodosol Bh horizons have significantly lower
Fig. 2. The active Al fractions in Andosols appear to form a simultaneous equilibrium
between the various solid-phase constituents. (Dahlgren et al., 2004).
Al3+ activities and pAl/pH slopes (1.3 – 2.4) than expected for
hydroxy-Al polymers (pAl/pH = 3.0) (Table 2 and Fig. 3; Dahlgren
andUgolini, 1989; Takahashi et al., 1995). These studies suggest that ex-
change of Al3+ with humic substances (Al–humus complexes) controls
the relationship between Al3+ and H+. In this case, the degree of Al3+

saturation of carboxyl groups on humic substances will determine the
pAl versus pH solubility relationship (i.e., slope and intercept) (Cronan
et al., 1986).

The kinetics of Al release from soils containing a variety of active Al
forms show that Al release rates are rapid from both allophanic and
non-allophanic soils (Dahlgren and Saigusa, 1994; Takahashi et al.,
1995). To determine the source of Al released, soil samples were
sequentially treated with KCl (exchangeable Al), pyrophosphate
(Al–humus complexes) and acid oxalate (allophane/imogolite) to
isolate the effects of each active Al pool on Al release rates. The KCl treat-
ment resulted in a large decrease in Al release rates for non-allophanic
soils, but an increase in release rates for allophanic soils. The decrease
in Al release rates for non-allophanic soils is explained by the removal
of easily exchangeable Al having rapid release kinetics (Fig. 4). In con-
trast, the increase in Al release rates observed in the allophanic soils
(Fig. 4) is believed to be due to the mechanism of “induced hydrolysis”
(Wada, 1987a,b). Induced hydrolysis results from the release of
adsorbed Al to the aqueous phase in the exchange process with K+.
The exchangeable Al is considered to be mostly from weakly held
Al–humus complexes. Following release, the Al undergoes hydrolysis
and releases H+ that is adsorbed on the surface of variable chargemate-
rials. Saturation indices for the KCl-treated soil were near apparent
equilibrium to slightly super-saturated with respect to synthetic
gibbsite suggesting that the precipitation of displaced Alwas thermody-
namically favorable. These precipitates are most likely adsorbed to soil
surfaces making them readily available for subsequent dissolution by
acidic solutions (Dahlgren and Saigusa, 1994; Dahlgren and Walker,
1993).

Among soil samples rich in Al–humus complexes and having a virtu-
al absence of allophanic materials, Takahashi and Dahlgren (1998)
found several samples showing an increase of Al release rates after 1M
KCl treatment as previously found for allophanic soils. The saturation
Table 2
Slopes and log K*SO (intercept) values obtained from linear regression of Al solubility data
for A horizons of Andosols and a Bhs horizon of a Podzol. (Takahashi et al., 1995).

Soil type Non-allophanic Podzol Bhs Allophanic

Soil name Mukaiyama Noshiro Wakami Hubbard Brook Hiyamizu

Slope 2.4 2.2 2.3 2.0 2.9
log K*so 5.2 4.5 4.8 3.4 7.5



Fig. 4.Aluminumrelease rates at pH3.3 for nontreated soil samples and residues following
selected dissolution treatment for a Bw horizon from allophanic and non-allophanic
Andosols. Samples were treated with KCl, pyrophosphate, and oxalate to remove the var-
ious Al pools for determining their effect on the overall Al dissolution rates. (Dahlgren and
Saigusa, 1994).
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indices indicated that the precipitation of an Al(OH)3 phase was
thermodynamically possible. The probable “induced hydrolysis” of
non-allophanic soils was assumed to be related to high contents of ac-
tive Al (Alo and Alp) (Takahashi and Dahlgren, 1998). Lee (1988) also
demonstrated that the extraction of Al from Spodosol Bh horizons by
KCl solution was controlled by the solubility of an Al(OH)3 phase.
Thus, these phenomena may occur widely in acidic soils with an active
Al fraction dominated by Al–humus complexes.

Removal of Al–humus complexes with pyrophosphate reagent re-
sulted in a substantial decrease in Al release rates for both allophanic
and non-allophanic soils (Fig. 4). This suggests that Al–humus com-
plexes are a labile source of dissolved Al, especially for non-allophanic
soils. Further treatment with acid oxalate had little effect on Al release
from non-allophanic soils; however, Al release from allophanic soils
decreased to very low rates, suggesting that allophane/imogolite are
an important source of dissolved Al in allophanic soils.

Allophanic soils usually have pH(H2O) values greater than ~5. How-
ever, the heavy application of ammonium-based fertilizers over many
years has resulted in allophanic Andosols becoming strongly acidified
(Inamatsu et al., 1991; Matsuyama et al., 2005; Morikawa et al., 2002;
Saigusa et al., 1988). Changes in soil chemical properties and Al solubil-
ity characteristics for acidified allophanic soils in tea plantations were
investigated by Takahashi et al. (2008) (Fig. 5). Samples were derived
from both alleyways and under the tea canopy. The less fertilized soils
beneath the tea canopy showed limited acidification (pH(H2O) 4.9 –
5.0) and demonstrated Al solubility characteristics typical of allophanic
Andosols (Takahashi et al., 2008). In contrast, the alleyway soils were
strongly acidified due to heavier application of ammonium-based
fertilizers (pH(H2O)≈ 3.6 – 3.8) and displayed a decrease in allophanic
materials with a concomitant increase in Al–humus complexes. This
study clearly demonstrates the conversion of allophanic to non-
allophanic (Al–humus complexes) materials upon prolonged acidifica-
tion. The ion activity products for the strongly acidified soils were large-
ly under-saturated with respect to allophane/imogolite and gibbsite.
Similarly, the pAl/pH slope was b3.0, consistent with Al solubility
being controlled by Al–humus complexes (Fig. 5). Similar Al solubility
characteristics were reported by Yagasaki et al. (2006) for an acidified
A horizon initially dominated by allophanic materials. Thus, long-term
acidification of allophanic soils leads to a change in the active Al fraction
to a dominance by Al–humus complexes and the Al solubility and
kinetic characteristics are then controlled by Al–humus complexes.

6. Aluminum phytotoxicity

In acidic Andosols, toxicities (H+ and Al3+), deficiencies (P, Ca, Mg
and micronutrients), and suppression of microbial activity may limit
agricultural productivity. Among these agricultural impairments, Al
toxicity is often recognized as the most important constraint on plant
growth in acidic Andosols. The importance of Al toxicity in Andosols is
recognized by the “alic” subgroup/qualifier (N2.0 cmol(+) kg-1

KCl-extractable Al) in Soil Taxonomy. Among Andosols significant dif-
ferences in Al toxicity potential are recognized between allophanic
and non-allophanic soils. Allophanic Andosols are moderate to slightly
acidic (pH(H2O) ≈ 5 – 7), even when the base saturation is very low,
and rarely contain toxic levels of KCl-extractable Al. In contrast,
non-allophanic Andosols are strongly acidic (pH≤5) when the base sat-
uration is low and possess high KCl-extractable Al concentrations (N2.0
cmol(+) kg-1) that are toxic to Al-sensitive plants (Saigusa et al., 1980;
Shoji et al., 1980). Unbuffered salt solutions, such as 1 M KCl solution,
are generally believed to extract exchangeable Al ions electrostatically
bonded to permanently charged sites of clay minerals (Jardine and
Zelazny, 1996) and the weakly complexed fraction from Al–humus
complexes (Dahlgren and Saigusa, 1994).

Humus-rich horizons of non-allophanic Andosols generally contain
abundant amounts of organically complexed Al (Al–humus complexes).
The potential for Al toxicity is believed to be controlled by the degree of
Al3+ saturation of clay minerals and humic substances. Evidence sug-
gests that KCl-extractable Al is considerably influenced by Al–humus
complexes (Takahashi and Dahlgren, 1998). To support this assump-
tion, the relationship between Al saturation (KCl-extractable Al/
effective CEC) and Alp was examined (Takahashi et al., 2003). The
results showed that there is a strong relationship (P b 0.001) in the
humus-rich mineral horizons of non-allophanic Andosols from an
extensive area of eastern Japan (n = 70) (Fig. 6). Another dataset of
105 humus-rich mineral horizons showed a strong negative correlation
between KCl-extractable Al and pH(KCl) values (P b 0.01) and a strong
relationship between KCl-extractable Al and Alp (P b 0.05)(Takahashi
et al., 2011). Thus, it is suggested that the KCl-extractable Al fraction
from Andosols consists of the easily exchangeable Al fraction plus Al as-
sociated with the pyrophosphate-extractable fraction (i.e., Al–humus
complexes) (Takahashi et al., 2011). This evidence supports the origin
of a portion of the exchangeable Al fraction as aqueous Al equilibrated
with Al–humus complexes, as indicated in the Al equilibration scheme
discussed above (Fig. 2). Thus, it is also considered that the organically
complexed Al may contribute to Al phytotoxicity.

To confirm the potential phytotoxicity of Al–humus complexes,
plant culture tests were performed using synthetic Al–humus com-
plexes (Takahashi et al., 2007). Humic substances were extracted from
the A horizon of a non-allophanic Andosol usingNaOH and subsequent-
ly reacted with partially neutralized AlCl3 solution (pH = 4.0–5.5) to
prepare purified Al–humus complexes. The synthetic complexes
showed Al solubility characteristics similar to that of non-allophanic
soils. Plant growth tests using the Al–humus complexes revealed that
root growth of burdock (Arctium lappa L.) and barley (Hordeum vulgare
L.) was significantly reduced and the roots showed symptoms typical of
Al toxicity (Figs. 7 and 8). These results indicate that, in soils dominated
by Al–humus complexes, the Al from the Al–humus complexes, as well
as other exchangeable Al forms, are highly toxic to plant roots.

Strong acidification of allophanic Andosols as a result of changes in
vegetation or the heavy application of ammonium-based fertilizers



Fig. 5. Plots of equilibrium Al solubility versus pH at 25 °C for acidified allophanic Andosols. The dotted lines are synthetic and soil gibbsites for the reaction: Al(OH)3 + 3H+ =
Al3+ + 3H2O. (Takahashi et al., 2008).
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can result in a transformation of Al solubility control from allophane/
imogolite-gibbsite control to that of Al–humus complexes (Takahashi
et al., 2008; Yagasaki et al., 2006). In these situations, it is considered
that Al ions are released from Al–humus complexes as a function of
pH resulting in high concentrations of aqueous Al3+ that are phytotoxic
(Inamatsu et al., 1991; Matsuyama et al., 2005; Mitamura, 2005;
Morikawa et al., 2002; Saigusa et al., 1988; Takahashi et al., 2008).
Yamada et al. (2011) performed intensive plant cultivation experiments
using non-allophanic and allophanic soils (including some acidified
allophanic soils) over a wide range of pH values (pH(H2O) = 4.4–7.0).
The results indicated that Al–humus complexes significantly contribut-
ed to Al toxicity in the allophanic Andosol at lower pH values, aswell for
non-allophanic Andosols (Yamada et al., 2011).

Lime materials are generally applied to acidic soils to ameliorate Al
toxicity potential. However, liming of surface soils is not effective for
amelioration of subsoil acidity because of its low solubility and lack of
transport to the subsoil. As a result, gypsum or phosphogypsum,
which have higher solubility, have been investigated for their ability
to ameliorate subsoil acidity following surface application. Phosphogyp-
sum application to Andosols with high humus (Al–humus complexes)
contentwasnot effective for reducingplant root toxicity,whereas appli-
cation to Andosols with low humus content was effective (Saigusa and
Toma, 1977; Saigusa et al., 1996; Toma and Saigusa, 1997). This was ex-
plained by the changes in Al release rates from soils with acetate buffer
solution (pH 3.5) following gypsum application (Takahashi et al.,
2006b). The Al release rates from soils with low humus content were
markedly decreased due to Al precipitation as low-solubility com-
pounds (e.g., gibbsite-like phases). In contrast, Al release rate from
soils rich in Al–humus complexes showed little or no change indicating
that Al release from Al–humus complexes remained the primary source
of the labile Al causing the phytotoxicity (Takahashi et al., 2006b).

7. Phosphorus dynamics

Mature Andosols commonly possess high phosphate (P) sorption ca-
pacity. As a result, P retention (N85%) is used as a criterion to define



Fig. 6. Relationship between the concentration of pyrophosphate-extractable Al (Alp) and
Al saturation (KCl-extractable Al/effective cation exchange capacity). (Takahashi et al.,
2003).

Fig. 8. Root tips of burdock planted in a medium containing Al–humus complexes.
(Takahashi et al., 2007).
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andic soil properties (Soil Survey Staff, 1999; Soil Survey Staff, 2014;
WRB, 2014). The major colloidal constituents responsible for P sorption
in allophanic Andosols are allophane/imogolite and Al–humus com-
plexes, while Al–humus complexes are the dominant component in
non-allophanic Andosols. The amount of P adsorbed per mole of active
Al (acid oxalate-extractable Al) is higher in non-allophanic Andosols
(0.13 mol/mol) as compared to allophanic Andosols (0.09 mol/mol)
(Matsuyama et al., 1999; Saigusa et al., 1991). Phosphorus sorption
has been shown to be strongly pH dependent with a maximum P sorp-
tion capacity generally occurring between pH values of 3 – 4 (Nanzyo
et al., 1993). The pH dependency for P sorption by Al–humus complexes
is considerably lower as compared to allophanic materials (Gunjigake
and Wada, 1981; Nanzyo et al., 1993).

Using Al–humus complexes synthesized from humic acids and
Alx(OH)3x − y, Appelt et al. (1975) demonstrated adsorption of ortho-
phosphate by the Alx(OH)3x − y–humus complex. P sorption increased
with increasing OH content of the Alx(OH)3x − y–humus complex.
They postulated that a ligand exchange reaction occurred between the
ortho-phosphate anion and the Alx(OH)3x − y–humus complex:
humus–Alx(OH)3x − y + H2PO4

- → humus–Al–H2PO4 + OH-. It has also
been shown that organic C is often released from non-allophanic
Andisols via P sorption suggesting that Al may be removed from the
Fig. 7.Root growth of burdock and barley cultured in perlitemedia containing synthetic Al–hum
the trial), Ca–humus complex (Ca) and perlite medium only (Cont.). Bars indicate standard de
Al–humus complex upon reaction with PO4 (Nanzyo, 1991). In this
case the Al released from the Al–humus complex may combine with
PO4 to form noncrystalline aluminum phosphate compounds, such as
Al(OH)2H2PO4 and NaAl(OH)2HPO4 (Veith and Sposito, 1977).

Due to the higher P sorption potential of non-allophanic Andosols, P
availability is generally higher for agricultural crops in allophanic
Andosols. Matsuyama et al. (1994) showed that dent corn (Zea mays
indentata) absorbed more P from allophanic Andosols as compared
with non-allophanic Andosols when the ratio of total P/active Al was
similar for both types of Andosols. Similarly, Ito et al. (2011) demon-
strated that for soils with similar levels of available P (Truog-P or Bray
II-P), P uptake by grain sorghum (Sorghum bicolor) was larger from
allophanic Andosols than from non-allophanic Andosols. These results
support the contention that P retention by Al–humus complexes is
stronger than for allophane/imogolite resulting in lower availability of
P to agricultural plants in non-allophanic Andosols.

To improve phosphorus fertilizer utilization efficiency in Andosols,
especially in non-allophanic soils, Nanzyo et al. (2002) showed that
localized application (banding) of P fertilizer to avoid extensive mixing
of the fertilizer with the soil was very effective. For the P-deficient non-
allophanic Andosols, the roots of Brassica plants and buckwheat
(Fagopyrum esculentum) completely covered the P fertilizer particles
resulting in P recovery rates of about 40%, which was two times greater
than conventional broadcast P fertilizer application (Nanzyo et al.,
2004).

Given the pH dependency for P sorption by Al–humus complexes
(Gunjigake and Wada, 1981; Nanzyo et al., 1993), liming of non-
allophanic Andosols may be expected to decrease P sorption due to an
increase in soil pH. In addition, a decrease in P sorption by liming of
us complexes (Al(4.0), Al(4.5) and Al(5.5); numerical values showing the pHat the start of
viation. (Takahashi et al., 2007).
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non-allophanic Andosols may also be expected due to a considerable
decrease in Alp (Al–humus complexes) following lime addition
(Takahashi et al., 2006a). These results are supported by Saigusa et al.
(1988) who showed a significant decrease in Alp and a decrease of P re-
tention in Ap horizons of non-allophanic Andosols following cultivation
and lime addition.

8. Soil borne diseases and microbial processes in non-allophanic
Andosols

Elevated levels of aqueous and exchangeable Al in Andosols some-
times provide benefits for some types of agricultural production
through suppression of soil borne diseases. Root rot of common bean
(Phaseolus vurgaris L.) caused by Fusarium solani f. sp. Phaseoli (Furuya
et al., 1996) and common scab of potato (Solanum tuberosum L.) caused
by Streptomyces scabies (Mizuno and Yoshida, 1993) are common in
Hokkaido, Japanwhere allophanic Andosols arewidely distributed. Sup-
pression of these soil-borne pathogens was reported in non-allophanic
Andosols because the higher levels of exchangeable and associated
aqueous Al inhibit these pathogens. In the case of root rot for common
bean, inhibition of macroconidial germination and disease incidence
was observed in soils with exchangeable Al contents greater than
0.4 cmolc kg-1 (Furuya et al., 1999). Similarly, potato common scab
was suppressed in soils having relatively higher amounts of exchange-
able Al and aqueous Al concentrations (N0.3mg L-1). To enhance control
of potato common scab by Al, a single basal application of ammonium
sulfate is applied to each planting row. This application effectively
lowers the soil pH and increases the concentration of aqueous Al to
effectively suppress disease incidence (Mizuno et al., 1998, 2000).

In addition to Al inhibition of these specific soil-borne pathogens,
several other soil-borne pathogens have been shown to be sensitive to
elevated Al concentrations on the basis of in vitro tests, including
Aphanomyces euteiches (Lewis, 1973), Phytophthora capsici (Muchovej
et al., 1980), Phytophthora parasitica (Benson, 1993; Fichtner et al.,
2001), Verticillium albo-atrum (Orellana et al., 1975), Rhizoctonia solani
Kühn (Kobayashi and Ko, 1983, 1985), and Thielaviopsis basicola
(Meyer, 1994). Thus, acidic Andosols with abundant Al–humus
complexes possess the potential to reduce damage from selected soil-
borne pathogens through inhibition by exchangeable and aqueous Al.

Recently, Oshima et al. (2015) reported that amendment of Andosol
subsoil horizons with Al-containing humic acid suppressed root rot of
lettuce (Lactuca sativa var. capitata L.) caused by Fusarium oxysporum
f. sp. Lactucae even when the soil pH was about 6.0, suggesting very
low exchangeable and aqueous Al concentrations. Fichtner et al.
(2001) also demonstrated that Al-peat complexes (generally consid-
ered non-toxic) suppressed damping off of Vinca (Catharanthus roseus)
caused by Phytophthora parasitica. Similarly, microbial processes related
to emission of reduced greenhouse gasses (such as methane and N2O)
may also be suppressed by active Al compounds (e.g., Al–humus)
explaining the lower N2O emission observed in several studies (Kusa
et al., 2006; Muñoz et al., 2011; Yazaki et al., 2011). While a direct
mechanism for microbial suppression has not been elucidated, further
exploration is warranted as manipulation of soil aluminum levels
through pH regulation may provide an effective and natural strategy
to alleviate selected microbial pathogens and lower greenhouse gas
emissions from non-allophanic Andosols.

9. Future research needs

As new molecular techniques become available, further elucidation
of the chemical nature of Al–humus complexes will contribute to our
understanding of their genesis and reactivity in soil biogeochemical
processes. The molecular characterization of Al–humus complexes will
likely yield important information on their role in stabilization of
SOM. Understanding the physical, chemical and biological mechanisms
by which Al–humus complexes contribute to carbon sequestration in
Andosols is a critical research need that could provide management
strategies to enhance carbon storage in Andosols. This leads not only
to conservation of soil quality, but also to provision against global
climate change.

While a considerable amount of research has explored the role of
Al–humus complexes in regulating aqueous Al3+ activities, there is
further need to quantitatively model these relationships for application
to understanding claymineralogy, phytotoxicity, soil microbial commu-
nities and controls on nutrient availability. The model should address
microsites of heterogeneous soil systems (e.g., rhizosphere soil) in addi-
tion to bulk soil systems because Al3+ activity may be easily changed
with fluctuations of pH and ion strength thereby affecting chemical
and biological processes. A better understanding of how Al–humus
complexes affect P retention and phosphorus availability to plants will
contribute to enhanced P fertilizer-use efficiency, especially in develop-
ing countries where high fertilizer costs hinder agricultural production.
Further, the role of Al–humus complexes as a potential source of Al
toxicity to agricultural plants and soil microbial communities requires
further investigation as Al toxicity is often a major impairment to
agricultural productivity in non-allophanic Andosols. Remediation
methods, other than the use of lime amendments, for strong acidity
and Al toxicity in both surface and subsoil horizonswill further enhance
agricultural productivity. Finally, there is a critical need for research that
examines the role of Al–humus complexes on soil microbial processes,
especially with regard to organic matter decomposition, trace gas
emissions (N2O, CH4), and suppression of soil borne diseases.
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