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Abstract

Biological invasions are multi-stage pro-
cesses comprising chance demographic
events, species interactions, and dispersal.
Despite this complexity, simple models can
increase understanding of the invasion pro-
cess. We model the spread of aquatic in-
vasive species through a network of lakes
to evaluate the effectiveness of two inter-
vention strategies. The first, which we call
offense, contains the invader at sources; the
second, which we call defense, protects un-
invaded destinations. Deterministic mod-
els reveal the effects of these intervention
strategies on spread rates. Practical ap-
plications involve finite collections of un-
invaded lakes, however, and we therefore
also present a stochastic model to describe
how these strategies affect expected times
to important invasion milestones. When
the goal is to reduce overall spread rates,
both approaches agree that offense is bet-
ter early in invasions, but that defense
is better after 1/2 the lakes are invaded.
When the goal is to protect areas of high
conservation value, however, defensive site
protection provides lower per site intro-
duction rates. Although we focus on lakes,
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National Center for Ecological Analysis and Synthesis
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our results are quite general, and could
be applied to any discrete habitat patches
including, for example, fragmented terres-
trial habitats.

Introduction

Translocation of people and products
introduces a wide variety of organisms
to novel habitats at rates, and over dis-
tances, independent of inherent dispersal
ability (Mack et al. 2000). These human-
mediated dispersals are likely to be espe-
cially important in discontinuous habitats,
such as freshwater lakes (Puth and Post
2005). The spread of invasive species to
such habitat patches is conceptually sim-
ilar to both the colonization of islands,
and the transmission of pathogens from
infected to susceptible individuals. We
therefore frame our analysis in terms of the
theory of island biogeography (MacArthur
and Wilson 1967) and use simple models
of epidemics to explore the landscape-level
consequences of facilitated dispersals, and
strategies for impeding them.

Experience shows that intervening early
in the invasion process by, for example,
removing organisms from transportation
pathways, is more effective than post-
establishment eradication (Lodge et al.
2006) and indeed, is economically optimal
(Leung et al. 2002). Because resources
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for the management of invasive species are
limited, however, decisions about when,
where and how to prevent introductions
remain necessary. We therefore consider
the relative effectiveness of two interven-
tion strategies: (1) preventing spread from
invaded source patches and (2) blocking
spread to uninvaded destination patches.
We refer to the former as offense and the
latter as defense and show that a threshold
exists for switching between them. As a
concrete example, we focus on inadvertent,
between–lake spread of aquatic invasive
species by transient recreational boaters
(Johnson et al. 2001).

Because aquatic organisms spread among
unconnected lakes via occasional discrete
jumps from invaded to uninvaded sites,
colonizations form “disjunct foci” (Moody
and Mack 1988), which expand locally via
diffusive spread (Shigesada and Kawasaki
1997, chap. 5). This pattern stands in con-
trast to the continuously radiating wave-
front associated with some range expan-
sions (e.g., Skellam 1951). Furthermore, in
the case of inter-lake spread, random ar-
rivals of individuals are offset by elevated
mortality rates caused by emersion and
transit stress. This demographic stochas-
ticity, accompanied by local extinctions
(see, e.g., Mack et al. 2000), may explain
some slow initial range expansions (Shige-
sada and Kawasaki 1997, chap. 2) because
many sites with invasive species may ini-
tially be population sinks that contribute
little, if at all, to regional spread. Un-
der continued immigration, however, these
may eventually achieve positive population
growth and convert to source populations.

We therefore assume that invaders arrive
at random times, in small random quanti-
ties, and with high post–introduction mor-
tality rates. Given these assumptions, the
colonization–extinction equilibrium con-
cept from island biogeography (MacArthur
and Wilson 1967) immediately leads to the
general hypothesis that interactions among
introduction rates, mortality rates (Riccia-
rdi et al. 1995, Facon et al. 2004) and re-
gional geography (Facon and David 2006)
influence colonization success. Neverthe-

less, without models, it is not obvious how
these processes interact with offensive and
defensive intervention strategies to deter-
mine the rate at which an invading species
spreads through a collection of lakes.

We begin with simple, deterministic
SEIR epidemic models (S→ susceptible,
E→ exposed, I→ infected, R→ recovered)
to describe transmission of invaders among
lakes. This approach reveals differences in
introduction rates, according to interven-
tion strategy, but because it approximates
the number of invaded lakes as a contin-
uous variable, it is not well–suited for ex-
ploring the effect of strategy on elapsed
time until full invasion of a finite collection
of lakes. We therefore also use a stochastic
SI epidemic model to evaluate offense and
defense with respect to expected time to
the half–invaded and fully invaded states.
Note that these approaches rely on the as-
sumption of equally likely contacts among
lakes, an assumption that we relax in forth-
coming work. Finally, we show how to
evaluate trade-offs between the number of
protected lakes, the duration of protection,
and the effectiveness of intervention.

Lessons from Biogeography and Epidemiol-
ogy

There are clear parallels between iso-
lated lakes and the islands of island bio-
geography; in both cases, suitable habi-
tats are embedded in a background ma-
trix of unsuitable habitat. Indeed, the
equilibrium between immigration and mor-
tality in a lake can be understood us-
ing the graphical approach of island bio-
geography (Fig. 1a). Immigration rates
(horizontal lines) are constant because ar-
rival events are independent of previous
arrivals, but differ depending on distance
from sources. In contrast, population-
level mortality rates are proportional to
the per capita death rate µ and gener-
ate the linearly increasing dashed mortal-
ity line. When the equilibrium is large
enough to sustain positive local popula-
tion growth, lakes convert from exposed
to invaded and become sources for further
spread.
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Fig. 1.— a) MacArthur and Wilson equilibrium number of species for large and small islands that are either
near or far from a mainland species pool. b) equilibrium number of live individuals of an invading aquatic
species carried across land by boaters from a source lake that is either near or far away. c) As in b except
that Allee dynamics suggest that for equal introduction sizes, density is lower in large lakes so that mortality
rates as described by the Nagumo equation are higher.

Offensive containment is conceptually
similar to increasing distance between is-
lands and the mainland (Fig. 1b), because
intervention at sources decreases the per
lake probability of introduction for all des-
tinations. An example of this type of inter-
vention is removal of organisms from boats
leaving lakes. In constrast, the defen-
sive strategy is more analogous to decreas-
ing the size of particular islands because
smaller lakes are less attractive to boaters
(Reed-Andersen et al. 2000). Thus, des-
tination intervention decreases the prob-
ability of introduction for particular pro-
tected lakes. The conceptual framework
of island biogeography therefore provides
a useful metaphor, which we use to inter-
pret our simple models and provide a use-
ful link between epidemiological and eco-
logical approaches for understanding how
intervention slows the spread of invasions.

We first develop a simple deterministic
model based on global movement behav-
ior of individuals between identical lakes
so that neither distance between lakes nor
lake size matter. Although these assump-
tions are unrealistic for many networks
(see, e.g., Barabasi and Albert 1999), they
can nevertheless provide useful descrip-
tions of epidemics (Keeling 2005). Indeed,

because lake-to-lake transmission of inva-
sive species is conceptually so similar to
the spread of disease via contacts between
infectious and susceptible individuals, we
restrict our attention to the so-called “well-
mixed” case here, and explore the conse-
quences of variability in these network fea-
tures in forthcoming work.

For small collections of lakes, it is feasi-
ble to enumerate all possible contacts be-
tween invaded and uninvaded lakes, un-
der all possible intervention configurations.
For example, Fig. 2a shows the number of
contacts when the invader is contained at
zero, one, and all invaded sources. Figure
2b shows the possible contacts when des-
tinations are instead protected. The num-
ber of connections is directly proportional
to the number of actual introductions.

These diagrams illustrate that interven-
ing at sources or destinations generates
identical results when occurring at either
all lakes, or none of the lakes. When the
numbers in each class vary, however, pro-
tecting identical numbers of lakes can lead
to different numbers of contacts. Thus,
identifying the most effective intervention
strategy requires knowing how the number
of potential contacts depends on the num-
bers of lakes in each class. We therefore de-
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rive formulæ for these contacts under each
intervention strategy, assuming that all are
equally likely. For example, when interven-
tion occurs at source lakes, the relationship
illustrated in Fig. 2a leads to the general-
ization,

EO = (I − PO)S, (1)

where EO is the total number of potential
new exposures, PO ∈ (0, I) is the number
of sources contained, and I and S are in-
vaded sources and unexposed destinations
respectively. When destinations are pro-
tected, the relationship illustrated in Fig.
2b leads to the generalization,

ED = I(S − PD), (2)

where ED is the total number of possible
new exposures, and PD ∈ (0, S) is the num-
ber of protected destinations. Our ques-
tion is therefore, for what values of I, S,
and P are these two expressions for expo-
sures equal, and for which values is one
greater than the other?

(I − P )S
?
> I(S − P ) (3)

Inequality (3) is true when more than half
the total number of lakes are invaded,
which can be seen by replacing S with
(N − I), where N = S + I is total lake num-
ber, and solving for I. Figure 3a shows
this relationship for a population of 50
lakes with varying numbers of initially in-
vaded sources and protected lakes. Pos-
itive regions of the surface indicate that
ED > EO, which means that intervention
should focus on containing sources, the of-
fensive strategy. Negative regions of the
surface indicate the opposite so that pro-
tecting destinations results in fewer new
exposures. Note that the switchpoint be-
tween positive and negative, and hence
between offensive containment and defen-
sive protection, occurs at precisely n

2 . Flat
regions of the surface represent nonsensi-
cal parameter pairs, such as containment
in more invaded sources than exist.

Invasion Rates

The combinatorial nature of potential
introductions for fixed I and S depicted
in Fig. 2 is suggestive of mass-action, an
assumption of the SEIR model of dis-
ease transmission (pg. 611, Murray 2002).
Mass-action means that some fraction α
of all possible new introductions occurs in
each time interval. This fraction can ex-
press the rate of change in susceptible lakes
with either

dSO

dt
= −α(I − ρPO)S, (4)

or

dSD

dt
= −α(S − ρPD)I, (5)

depending whether sources are contained
or destinations are protected, with effec-
tiveness ρ, respectively. Here we hold I
constant and model the rate of change
in exposures (S → E), which is distinct
from transitions from uninvaded to in-
vaded (S → I). The rate described by
Eqs. (4)–(5) is therefore proportional to,
but less than, the number of sites that are
ultimately invaded (E → I), because many
exposures ultimately revert to susceptible
(E → S). The constant of proportional-
ity obviously depends on the population
biology of the invading species, whereas
the introduction (i.e., exposure) process
we model here does not.

Note that Eq. (4) is similar to a metapop-
ulation model with no extinction (Hanski
1999). Metapopulation models have equi-
librium patch occupancy frequencies, how-
ever, while the equilibria of Eq. (4) occur
only when there is no containment at in-
vaded source lakes (PO = I) or the system
is fully invaded (S = 0). Thus, as is often
observed empirically, Eq. (4) suggests that
invasions proceed to habitat saturation.

With perfect intervention effectiveness
(ρ = 1) in Equations (4)-(5), there are
no accidental transmissions from contained
source lakes or to protected destination
lakes. In practice, this is not likely to
be the case. Considering efficacy ρ < 1
therefore allows us to explore the effects
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Fig. 2.— a) Schematic diagram representing the effects of intervention that prevents invaders from leaving
sources on pathways of spread to uninvaded sites. IS is the number of possible introductions when interven-
tion prevents invaders from leaving source lakes. b) As in a) except that intervention occurs at destinations
and prevents entry into univaded lakes. ID is the number of possible introductions when intervention prevents
invaders from enterining uninvaded destination lakes.

of imperfect intervention on exposure rate.
Solving Equations (4)–(5) yields, respec-
tively,

SO(t) = S0e
−αt(I−ρPO) (6)

and

SD(t) = ρPD + (S0 − ρPD)e−αIt. (7)

Equation (6) reveals that the number of
uninfected destinations decays exponen-
tially with time when sources are con-
tained, if I > ρPO. In contrast, when des-
tinations are protected, the number of un-
infected destinations decays exponentially
to the constant,

S∗
D(∞) = ρPD. (8)

Thus, under the offensive strategy, the
number of unexposed lakes will decrease

to 0, at a rate proportional to the differ-
ence, I − ρPO, the introduction rate α, and
time t. In contrast, Eq. (8) formalizes the
common-sense notion that blocking intro-
ductions to PD protected lakes will result in
PD unexposed lakes in the long run. With
imperfect intervention, however, the quan-
tity ρPD indicates that on average, we ex-
pect only the success rate fraction ρ of the
PD lakes to remain unexposed. When no
lakes are protected, P = 0 and solutions
(6)–(7) are identical.

Manipulation of these equations yields
quantitative predictions about how system-
wide invasion outcomes will vary according
to introduction rate, intervention strategy,
efficacy, and number of sites. For example,
rearranging Eq. (6) yields
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the surface loosely means that infections are more likely when protection is concentrated at destinations vs.
sources, while the negative surface indicates the opposite. Note that the deterministic switching point is at
exactly 1

2 total lake number.

−ln

[
SO(t)

S0

]
= αt(I − ρPO), S0 > 0, (9)

revealing a linear relationship among the
introduction rate α, time t, and the differ-
ence I − ρPO. This relationship provides a
useful model for comparison with empiri-
cal data (see, e.g., Dwyer et al. 1997), be-
cause for given t and number of infected
sources I, it provides an obvious means of
estimating introduction rate α. The anal-
ogous transformation of Eq. (7),

−ln

[
SD(t)

S0

]
= −ln

[
e−αIt + ρP̃D(1 − e−αIt)

]
, (10)

where, P̃D =
PD

S0
, and, S0 > 0.

describes the effects of introduction rate
α and time t on the development of an
invasion when destinations are protected.
Comparing the predictions of the two in-
tervention strategies is now a simple mat-
ter of specifying model parameters, solving
equations (9)-(10), and plotting the results
(Fig. 4).

When source lakes are contained, the
rate of new introductions is affected sim-

ilarly by changing the number of interven-
tion lakes or the introduction rate from in-
fected sources to susceptible destinations
(Fig. 4a). In contrast, changing the num-
ber of protected destinations has no effect
on the rate of introduction (dot-dashed
line), but does affect the asymptotic num-
ber of uninfected destinations SD(∞) (Fig.
4b). Changing the introduction rate does
not affect this asymptote, but changes the
rate at which it is approached (dotted
line).

This deterministic approach thus reveals
important qualitative and quantitative dif-
ferences in the dynamics resulting from
containment versus protection. Neverthe-
less, it does not allow calculation of the
expected time to invasion milestones, such
as the half–invaded or fully–invaded states,
another meaningful way to compare offense
to defense.

Full Invasion Times

Calculating the expected time until all
lakes become invaded requires a stochas-
tic model (Nasell 1999). Using a simple
stochastic epidemic model (see, e.g., Ross
1996, pg. 238) and again assuming that
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Fig. 4.— a) Offense: Solutions to equation (9) for a system of n = 100 lakes with initial susceptible
destinations S0 = 90, protection effectiveness ρ = 0.99, infected sources I = 10 and P and α varied as
indicated in the figure legend. Note that increasing the number of protected infected sources P has a similar
effect on overall infection rates as decreasing contacts α between infected and susceptible lakes. b) Defense:
The analogous solutions to equation (10), using the same values as in a), except that here it is susceptible
destination lakes that are protected. Note the asymptotic behavior as rate of new infections declines and
total infections approach S∗

D(∞) of equation (8). Introduction rate α affects the rate at which the asymptote
is approached, but not the ultimate value, while changing the number of protected susceptible destinations
PD does affect the asymptote.

spread is equally likely from all invaded
source lakes to all uninvaded destination
lakes, the probability of the nth infection
when invaders are contained at source lakes
can be expressed as

λn,O =






(m − n)(n − ps)α + (m − n)psαO,

for, n = 1, . . . , m − 1,

0, otherwise,
(11)

where m is the total number of lakes, n is
the number of invaded sources and ps is the
number of contained sources. The unpro-
tected and protected rates of introduction
to the (m − n) uninvaded destinations are
therefore expressed as (n − ps)α and psαO,
respectively. Thus, in this section we con-
sider transitions directly from S → I with
no intermediate exposed state E.

With the length of time that the sys-
tem remains at n invaded lakes being in-
dependent of the amount of time spent at
n−1 invaded lakes, the process is, by defini-
tion, Markovian. The inter-event times are

therefore exponentially distributed with
rate λn. Using the approximating integrals
and definitions for the constants C and α̃
in Appendix A, the expected time to full
invasion starting from n0 initially invaded
lakes is,

E[TOffense] ≈ (12)

Clog
[
(m − n0) [m − 1 − p(1 − α̃)]

[n0 − p(1 − α̃)]

]
.

Equation (12) is an explicit formula for the
expected time until all lakes are invaded,
given intervention at p sources, in terms of
the protected and unprotected conversion
rates. Following a similar approach for the
defensive strategy yields,

E[TDefense] ≈ (13)

Clog
[
(m − p − 1)(m − n0 − p(1 − α̃))

n0(1 + pα̃)

]

+
1

mαD
log

[
p(m − 1)
(m − p)

]
.
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Equations (12) and (13) provide another
straightforward tool for comparing con-
tainment to defensive protection. For ex-
ample, the expected time to full invasion
from n0 intially invaded lakes, under each
strategy, with p intervention lakes and rel-
ative effectiveness of protection α̃ can be
represented by level curves of E[T ] (Fig.
5a and b). Furthermore, Eqs. (12) and
(13) facilitate decision-making even within
a particular intervention strategy. For ex-
ample, E[T ] can be calculated for a variety
of combinations of p and α̃ allowing selec-
tion of a strategy based on these practi-
cal considerations. Note that α̃ ≈ 1 indi-
cates that intervention provides little pro-
tection, while values close to 0 indicate ef-
fective protection at the p lakes (see Ap-
pendix A.1).

Comparison of Figs. 5a and b reveals
that time until full invasion is greatly ex-
tended by defensively protecting destina-
tions. As can be seen in Eqs. (12), ex-
pected time to full invasion when con-
taining invaded lakes depends on a single
system-wide decrease in introduction prob-
abilities. In contrast, Eq. (13) contains two
terms, the first corresponding to the rela-
tively rapid invasion of all unprotected des-
tinations (but also allowing for invasion of
protected destinations at rate α̃), and the
second corresponding to the subsequent,
and relatively slower, invasion of the pro-
tected destinations (Figs. 5c and d). Thus,
at the regional scale, the advantage of of-
fense is realized early in the invasion pro-
cess (Fig. 6a), while the benefits of defense
accrue late in the process. The dominat-
ing effects of defense late in the process
do not justify wholesale endorsement of de-
fensive intervention, however, because the
collection of lakes remains below the half–
invasion threshold much longer with source
containment (Figs. 6a and b). Neverthe-
less, over the entire invasion epoch

E[TO] & E[TD]. (14)

These results agree with the qualitative
predictions from Eqs. (9)–(10) and Figs.
4a and b. Furthermore, carrying out the
necessary algebra and solving an inequality

involving the rate of decrease of uninvaded
lakes under each strategy,

λn,S
?
> λn,D, (15)

(m − n) [(n − pS)α0 + psαS ]
?
>

(m − n − pD)nα0 + pDnαD, (16)

reassuringly demonstrates the existence of
the switchpoint, n > m

2 , in this model as
well.

Figure 5d illustrates the relationship be-
tween protection effectiveness α̃, the num-
ber of protected lakes p, and mean first
passage time to full invasion E[T ], using
the switching point at n/2. These passage
times are, respectively, approximately 294%
and 6% longer than source or destination
protection alone, showing that employing
knowledge of the switching point in devel-
oping intervention strategies can substan-
tially prolong time to full invasion.

Discussion

Resources for slowing the spread of in-
vasive species are finite, making interven-
tion strategy an important consideration
in managing invasions. Nevertheless, with-
out a model, the magnitudes of differences
among competing strategies are not ob-
vious. Our simple models address the
question of whether containing invasive
species at invaded sources slows spread
more than preventing entry to uninvaded
destinations. The results indicate that the
answer depends on how many lakes are al-
ready invaded. The best strategy for maxi-
mally prolonging the expected time to full
invasion contains sources until the num-
ber of invaded lakes n = m

2 and protects
destinations thereafter. Thus, counterin-
tuitively, early in an invasion, when slow-
ing spread through the collection of lakes
is the priority, the best way to protect
uninvaded areas is to allocate resources
to containing invaded areas. The switch–
point then suggests that as an invasion pro-
gresses, this species–specific containment
at sources should give way to protection of
uninvaded sites.
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Fig. 5.— Expected time to invasion for the stochastic epidemic model (??). a) time to full invasion when
sources are protected, b) time until all unprotected destinations are invaded when destinations are protected,
c) time for invasion through protected destinations, d) time until full invasion when sources are protected
until m/2 lakes are invaded, then intervention is switched to the same number of destinations.

Our analyses provide tools for under-
standing intuitively how this switchpoint
arises. Specifically, protecting isolated des-
tinations early in the invasion process al-
lows organisms to spread from sources
at the unprotected rate to many unpro-
tected destinations, which then become
sources and contribute to the system-wide
spread rate. The ever-increasing number
of sources eventually overwhelms protec-
tion measures at remaining destinations.
Protecting destinations is nevertheless the
best strategy late in the process because
it yields lower per destination introduction
rates at protected sites than containment
at the same number of sources. Note that
when the goal is to prevent introductions
at areas with high conservation value, for
example, this lower per–site introduction

rate suggests that destination protection
always provides the best strategy. Thus,
the best intervention strategy depends on
the scale of management goals. Specifi-
cally, at the landscape–level, source con-
tainment and the switchpoint are optimal,
while at the local site–scale, destination
protection is optimal.

The approximating integrals allow di-
rect calculation of the expected time to
reach the switching point at m/2 invaded
lakes E[Tm/2], given numbers of invaded
sites, intervention sites, and intervention
efficacy. These calculations can thus quan-
tify expected differences between strategies
in terms of average time to reaching some
invasion milestone. For example, using the
half-invaded milestone at m/2, and some-
what arbitrary choices of parameters for
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Fig. 6.— a) Level curves of mean first passage time to the 1/2–invaded state given a) offensive intervention
at invaded p/n0 sources that prevents spread at efficacy α̃, and b) defensive intervtion for the same. p/n0

is the fraction of initially invaded lakes that become intervention sites and ˜alpha is the ratio of intevention
effectiveness to unmanipulated transmission.

illustration purposes, source containment
yields E[Tm/2] of approximately 340 time
units, while site protection yields 240. If
we imagine these time units to be weeks,
and boating seasons of 16 weeks duration,
this yields approximately 21 years for of-
fense, compared to 15 years for defense.

Analysis of the error introduced by ap-
proximating E[T ] with integrals (Appendix
A.1) reveals that the approximation is
more accurate when more lakes are pro-
tected, which also leads to the longest ex-
pected times to full invasion. This anal-
ysis also reveals that as lake number in-
creases, for a fixed number of contained
sources, the expected time to full invasion
decreases (Fig. 7). This counter–intuitive
result suggests that for a given number of
initially invaded and protected lakes, re-
gions with more lakes reach full invasion
more rapidly than regions with fewer lakes.
This arises because the larger number of
unprotected lakes convert to sources and
contribute to spread. Thus, the fraction of
initially invaded lakes contained early in
the invasion is a crucial parameter, because
unprotected destination lakes quickly be-
come uncontained sources.

Given finite resources, another practi-
cal issue is whether to use highly effective

methods at a few lakes, or less effective
methods at many lakes. This trade–off too
can be analysed with the level curves of ex-
pected time to full invasion. Indeed, this
approach complements previous results,
which showed that causing the extinction
of nascent foci dramatically reduces inva-
sion spread rates (Moody and Mack 1988).
Because eradication of aquatic invaders is
so rare (but see Mack et al. 2000, for some
exceptions), we have not modeled extinc-
tions. Thus, in our formulation of the
problem, intervention that affects nascent
foci is captured by increasing the effec-
tiveness of intervention at either sources
or destinations, because both effectively
reduce new colonization success. Our re-
sults contribute to this understanding by
demonstrating the conditions under which
each strategy is most effective. Moody and
Mack conclude that most efforts address
the most conspicuous invasions, when in
fact they should focus on exterminating
nascent foci. Our results suggest that
when post-establishment eradication is un-
likely, the most effective way to inhibit new
foci is to reduce spread from established
colonies to uninvaded habitat patches.

Conceptual similarities between the the-
ory of island biogeography and invasion of
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Fig. 7.— a) Level curves of mean first passage time to the 1/2–invaded state given a) offensive intervention
at invaded p/n0 sources that prevents spread at efficacy α̃, and b) defensive intervtion for the same. p/n0

is the fraction of initially invaded lakes that become intervention sites and ˜alpha is the ratio of intevention
effectiveness to unmanipulated transmission.

a network suggest that the elegant graph-
ical model typifying the former can use-
fully synthesize our results. For example,
in the language of island biogeography,
source intervention metaphorically moves
the “mainland” (i.e., contained invaded
lakes) further away from the “islands”
(i.e., uninvaded lakes), whereas destination
intervention makes the “islands” smaller
(i.e., protected destinations become less
likely to receive invaders). In the present
context, the equilibria between coloniza-
tion and extinction represent within–lake
population sizes, which are related to prob-
abilities of transitions between uninvaded,
exposed, and invaded lakes. Thus, the
introduction–extinction equilibrium con-
cept provides an intuitive connection be-
tween within–lake population dynamics
and between–lake spread. Our approach
adds to this understanding by quantify-
ing the switchpoint, and showing how to
balance intervention effectiveness with in-
tervention site number.
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Appendix A. Time to Full Invasion

Appendix A.1. Offense: Source Contain-
ment

When interactions among all invaded
and uninvaded lakes are equally likely, and
sources are contained (i.e., offense O), the
“birth rate” of new invasions is

This 2-column preprint was prepared with the AAS
LATEX macros v5.2.
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λn,O = (m − n)(n − p)α0 (A-1)
+(m − n)pαp,

= (m − n)[(n − p)α0 + pαp].(A-2)

where m is the total number of lakes, of
which n are invaded, and p are protected.
The rates of invasion for unprotected and
protected lakes are α0 abd αp respectively.
When the time between the (n − 1)th and
nth invasion is independent of the time be-
tween the nth and (n + 1)th, the process is
Markovian and the expected time between
invasions is exponentially distributed at
rate λn,O (Ross 1996). Thus, the expected
time between the nth and (n + 1)th invasion
is

E[Tn] =
1

λn,O
,

=
1

(m − n)[(n − p)α0 + pαp]
,(A-3)

and the expected time until all m lakes be-
come invaded, starting with n0 initially in-
vaded lakes is

E[Tn0→m,O] =
m−1∑

i=n0

1
(m − i)[(i − p)α0 + pαp]

. (A-4)

When m is large (see Fig. 7), Eq. (A-4) can
be approximated by the integral,

E[Tn0→m,O] ≈
∫ m−1

n0

1
(m − t)[(t − p)α0 + pαp]

dt, (A-5)

≈ C

∫ m−1

n0

[
1

(m − t)
+

1
(t − p(1 − α̃))

]
dt, (A-6)

where, C =
1

α0[m − p(1 − α̃)]
, (A-7)

and, α̃ =
αp

α0
. (A-8)

Thus, α̃ is the relative effectiveness of inter-
vention, compared with unmanipulated in-
troduction rates. Solving Eq. (A-6) yields,

E[Tn0→m,O] ≈

C ln

[
(m − n0)(m − 1 − p(1 − α̃))

(n0 − p(1 − α̃))

]
, (A-9)

which makes it clear that full invasion time
increases with total lake number m, de-
creases as the number initially invaded n0

increases, increases with the number pro-
tected p, and increases with relative inter-
vention effectiveness α̃.

Figure 7a shows that the approximate
solution behaves qualitatively like the ex-
act summation, while Fig. 7b quantifies the
error, when all invaded lakes are interven-
tion sites (e < 5%), and when only half are
intervention sites (e < 10%), for numbers of
lakes n >≈ 20.

Appendix A.2. Defense: Site Protection

Following a similar strategy for defense
yields the invasion rate equation,

λn,D = (m − n − p)nα0 + pnαp, (A-10)
= n[(m − n − p)α0 + pαp], (A-11)

with expected inter-event time,

E[Tn→n+1] =
1

λn,D

=
1

n[(m − n − p)α0 + pαp]
. (A-12)

Summing Eq. (A-12) over all inter-event
times only provides an approximation, be-
cause although protected lakes p can be in-
vaded and thus contribute to n, the sum
does not account for this. Nevertheless,
Eq. (A-12) is exact at α̃ = 0 and α̃ = 1,
the y–axis bounds in Figs. 6a–d. Thus,
at these bounds, the summation is exact,
while for intermediate values of α̃, E[T ] is
slightly over-estimated.

The calculation for defense also differs
because the approximating integral,

E[Tn0→m−p−1, D] ≈

C

∫ m−p−1

n0

[
1
t

+
1

(m − t − p(1 − α̃))

]
dt, (A-13)
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is only valid up to m − p lakes. Thus,
the invasion of the remaining p lakes re-
quires a separate calculation, and because
we do not assume that p is large enough
to approximate the sum with an integral
(p ≈ 10), in practice we directly calculated
the sum,

E[Tm−p→m,D] =
1
αp

m−1∑

i=m−p

1
i(m − i)

. (A-14)

Time to full invasion under defense is
therefore,

E[Tn0→m−1, D] ≈

C ln

[
(m − p − 1)(m − n0 − p(1 − α̃))

n0(1 + pα̃)

]

+
1
αp

m−1∑

i=m−p

1
i(m − i)

, (A-15)

where the first term is the solution to Eq.
(A-13), and C and α̃ are given by Eqs. (A-
7) and (A-8) respectively.

Appendix A.3. Strategy Switch

The expected time to full invasion, given
a strategy switch from offense to defense
when the number of invaded lakes is m/2
has 3 components. First, we calculate the
expected time until m/2 lakes are invaded,
given source intervention with

E[Tn0→n/2−1,O] ≈

C

∫ m/2

n

[
1

(m − t)
+

1
t − p(1 − α̃

)
]

dt,(A-16)

which has solution,

E[Tn0→n/2−1,O] ≈

Clog
[
(m − n0) [m/2 − 1 − p(1 − α̃)]

(m/2 + 1)(n0 − p(1 − α̃))

]
.(A-17)

We then approximate the expected time to
invasion of the (m−p)−(m/2+1) unprotected
destination lakes with

E[Tn/2→m−p−1,D] ≈

C

∫ m−p−1

m/2

[
1
(t)

+
1

m − t − p(1 − α̃
)
]

dt, (A-18)

with solution,

E[Tn/2→m−p−1,D] ≈

C ln

[
(m − p − 1)(m/2 − p(1 − α̃))

m/2(1 + pα̃)

]
. (A-19)

The third time component of the invasion
process is given by Eq. (A-14). Thus, in-
corporating the strategy switch at m/2, the
time to full invasion shown in Fig. 5d is the
sum,

E[Tswitch] =
E[Tn0→n/2−1,O] + E[Tn/2→m−p−1,D]

+ E[Tm−p→m,D]. (A-20)
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