Title
Characterization of deinococcus radiodurans for actinide precipitation

Permalink
https://escholarship.org/uc/item/1005b87d

Author
Nitsche, Heino

Publication Date
2003-05-07
Characterization of Deinococcus radiodurans for Actinide Precipitation

Cynthia-May S. Gong1,2, Kathy Bjornstad3, Robert J. Silva1, Eleanor Blakely3, Jay D. Keasling2, Douglas S. Clark2, Heino Nitsche1,2

1Nuclear Sciences Division, Lawrence Berkeley National Laboratory, Building 70, Berkeley, CA 94720
2College of Chemistry, University of California at Berkeley, 3Life Sciences Division, Lawrence Berkeley National Laboratory. HNitsche@lbl.gov. phone: (510) 486-5209 fax: (510)486-7444

Deinococcus radiodurans is being developed for bioprecipitation and biostabilization of heavy metals and actinides with a bioprecipitation system capable of polyphosphate accumulation, inducible degradation, secretion, and actinide phosphate precipitation.

The effects of light-ion irradiation similar to actinide alpha radiation in aqueous suspension have also been studied; increasing lethality corresponding to increasing linear energy transfer (LET) of the radiation is seen.

The interaction of strain R1 with UO$_2^{2+}$ has been studied and compared to engineered strains. The non-engineered uranyl sorption load is less than half of the engineered strains and more than hundredfold less than a polyphosphate accumulation engineered strain of *Pseudomonas aeruginosa*. Chemical studies of the cell-uranyl binding strength and pH sorption edges support spectroscopic data indicating that a carboxyl surface group, consistent with known characteristics of *D. radiodurans* S-layer, interacts with and binds the uranyl. A strain engineered with the putative polyphosphate accumulation genes shows promise for use in applications of uranyl bioprecipitation and its efficacy and contrast to the non-engineered strain will be discussed.