Title
Greengenes: Chimera-checked 16S rRNA gene database and workbench compatible in ARB

Permalink
https://escholarship.org/uc/item/1259v4c3

Authors
DeSantis, T.Z.
Hugenholtz, P.
Larsen, N.
et al.

Publication Date
2006-02-01
Greengenes: Chimera-checked 16S rRNA gene database and workbench compatible with ARB

Authors:
DeSantis, T.Z.¹
Hugenholtz, P.²
Larsen, N.³
Rojas, M.⁴
Brodie, E.L.¹
Keller, K.⁵
Huber, T.⁶
Dalevi, D.⁷
Hu, P.¹
Andersen, G.L.¹

¹Center for Environmental Biotechnology
Lawrence Berkeley National Laboratory
1 Cyclotron Road, Mail Stop 70A-3317
Berkeley, CA 94720
USA

²Microbial Ecology Program
DOE Joint Genome Institute
2800 Mitchell Drive Bldg 400-404
Walnut Creek, CA 94598
USA

³Danish Genome Institute
Gustav Wieds vej 10 C
DK-8000 Aarhus C
Denmark

⁴Department of Bioinformatics
Baylor University
P.O. Box 97356, 1311 S. 5th St.
Waco, TX 76798-7356
USA

⁵Department of Bioengineering
University of California
Berkeley, CA 94720
USA

⁶Departments of Biochemistry and Mathematics
The University of Queensland
Brisbane Qld 4072
Australia

⁷Department of Computer Science
Chalmers University of Technology
Abstract
A 16S rRNA gene database (http://greengenes.lbl.gov) addresses limitations of public repositories by providing chimera-screening, standard alignments and taxonomic classification using multiple published taxonomies. It was revealed that incongruent taxonomic nomenclature exists among curators even at the phylum-level. Putative chimeras were identified in 3% of environmental sequences and 0.2% of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages within the Archaea and Bacteria.
Comparative analysis of 16S small sub-unit rRNA genes (hereafter abbreviated as 16S) is commonly applied to survey the constituents of microbial communities (4, 13, 23, 24), to infer bacterial and archaeal evolution (14, 19), and to design monitoring and analysis tools such as microarrays (5, 10, 17, 20, 29, 30). Because the production rate of 16S sequence records from uncultured organisms now exceeds that from their cultured counterparts, taxonomic placement of sequences lags behind. In fact, 43% of full-length 16S records in GenBank are amalgamated into pseudo-divisions “environmental samples” or “unclassified”. Annotation styles are inconsistent creating barriers for computational categorization of biological sources. Furthermore, since rRNA genes from environmental DNA are usually PCR amplified, it is suspected that many clandestine chimeric sequences are intercalated into the public databases. From a small sample of 1,399 sequence records from known phyla, it was estimated that 3% of the public data might contain chimeras (2). The permeation of these poor quality data along with barriers in exchanging nomenclature have led to several conflicting taxonomies. The probability of mistakenly adopting a chimeric sequence in a phylogenetic inference or as a reference for probe/primer design is rising noticeably. Lastly, ARB (21) database administration needs to be streamlined for those who maintain 16S collections on their local computers.

Greengenes addresses these concerns by providing four features: a standardized set of descriptive fields, taxonomic assignment, chimera screening and ARB compatibility. Heuristics are used to consider the author’s annotations and categorize each source as a named or unnamed isolate, an unnamed symbiont, or an uncultured organism. Other standard descriptors include sequence quality measurements, authors,
and a “study_id” that links all the records associated with a project. Greengenes maintains a consistent multiple sequence alignment of both archaeal and bacterial 16S genes to facilitate taxonomic placement. Taxonomy proposed by independent curators (NCBI, RDP (Bergey’s) (7), Wolfgang Ludwig (21), Phil Hugenholtz (16) and Norm Pace (23)) is tracked to promote user awareness of several estimations of phylogenetic descent allowing a balanced approach to node nomenclature when generating dendrograms. Comprehensive chimera assessment is a distinguishing characteristic of the Greengenes data assembly process. Each sequence is scored for chimeric potential, a break point is estimated and parent sequences are identified. Furthermore, since biologists often collect and visualize 16S relationships using the freely available ARB software, Greengenes simplifies the chore of keeping a research group’s private ARB database current by providing standardized alignments and an import filter (greengenes.ift) that imports the alignment and other standardized fields from 16S records vetted weekly from GenBank.

To exemplify the utility of the Greengenes data assembly process, and to interrogate the validity of prokaryotic candidate phyla, we aligned and chimera-checked over 90,000 public 16S sequences. Taxonomic classifications were applied from the major curators where available. Sequence data were imported from NCBI for complete or nearly complete gene sequences (>1250 nt in length) deposited as of April 2, 2006. Alignment of both archaeal and bacterial sequences was performed with the NAST aligner (8) against a “Core Set” of templates selected from a phylogenetically broad collection (16). The resulting multiple sequence alignment (MSA) was formatted so that each sequence occupies a consistent 7,682 characters or 4,182 characters, the later
enabling compatibility with RDP v8.1(22) alignments. Both these formats were concise enough for browsing in common MSA graphical interfaces such as ClustalX(28), MEGA(18) and the platform independent Jalview(6) as well as ARB. Other standard expansions such as the >20,000-character Ludwig alignment will be an alternate format available in future releases to give maximum flexibility to researchers.

For high-throughput chimera screening of the aligned sequences, the program Bellerophon (15) was used with two modifications. First, the algorithm was modified to reduce the number of potential parents considered in the partial trees allowing run time to scale linearly rather than logarithmically with the count of candidate sequences in a collection. Secondly, a new metric was implemented that weights the likelihood of a sequence being chimeric according to the similarity of the parent sequences. The more distantly related the parent sequences are to each other relative to their divergence from the candidate chimeric sequence, the greater the likelihood that the inferred chimera is real. The metric, called the divergence ratio, uses the average sequence identity between the two fragments of the candidate and their corresponding parent sequences as the numerator, and the sequence identity between the parent sequences as the denominator. All calculations were restricted to 1,287 conserved columns of aligned characters using a 300 base pair window on either side of the most likely break point. A divergence ratio > 1.1 and both fragment-to-parent similarities > 90% was required for classifying sequences as putatively chimeric.

Taxonomy was linked to each record by various methods. NCBI and RDP taxonomic nomenclature were extracted directly from the respective GenBank-formatted records. The Pace and Ludwig annotations were exported from curated ARB databases.
The Hugenholtz taxonomy was also derived from a curated ARB database in which tree topologies had been verified using RAxML-VI (27) for maximum likelihood inference. The general time reversible model of evolution (GTR) was applied together with optimization of substitution rates and site-specific rates according to a gamma distribution. Different search algorithms were considered depending on the run-time of the standard hill-climb (SHC) search method. If running in less than 8 hours, simulating annealing (SA) was processed with the default starting temperature and a termination time set to approximately 24 hours. If SA was not used and SHC terminated within 24 hours, SHC was used. Further, the rapid hill-climb (RHC) was used in all other cases when its running time was less than 24 hours. If RHC did not terminate within the set limit, the number of taxa was reduced. After 100 bootstrap replications, a consensus tree was calculated using Consense (12) and imported into ARB. This database (greengenes.arb) is available for download through Greengenes and is updated periodically.

Of the 90,000 NCBI records analyzed, 54% were derived from uncultured organisms, the majority of which have been deposited over the last five years (Figure 1). Only three studies have submitted greater than one thousand full-length clones, however, we expect the number of large 16S surveys to rise due to the availability and falling cost of high throughput sequencing. Bellerophon detection of putative chimeras in 3% of the sequences from uncultured organisms was not unexpected considering initial estimates (2). Surprisingly, 0.2% of sequences derived from pure cultures were also determined to be putative chimeras. Multiple distinct 16S rRNA genes have been encountered when creating clone libraries from colonies assumed to be pure cultures prepared from
numerous third party sources (Colleen Cavanaugh, personal communication). There is a possibility that isolated colonies contain symbiotic bacteria which increase PCR template complexity enabling chimera formation. In addition, thousands of full-length, 16S-annotated GenBank records only partially aligned using NAST. Future versions of NAST could be altered to allow alignment extensions across regions of low template similarity or to allow candidates to be aligned in sections using divergent templates. Both of these options may allow a greater abundance of chimeric data to be imported into Greengenes, but, perhaps, would capture novel phyla from the public repositories. Alternately, manually aligned sequences from novel phyla can be offered from the user community for recruitment to the Core Set advocating periodic re-evaluation of the partially aligned set.

Discovery of chimeras in 16S data collections is crucial if the data set will be a foundation for applied bioinformatics. They pose a fundamental problem when used as templates with probe selection software, a growing concern with the recent increase in 16S microarray probe development (3, 8, 11). The 15 to 30 bases surrounding the chimeric break-point can appear sufficiently unique from all other records in a database causing a probe selection algorithm to justifiably identify this region as a target’s signature and suggest complementary probes to be synthesized. These probes would appear highly valuable considering their minimal mis-hybridization potential, but, in fact, they would rarely be useful since they target non-existent organisms. Chimera test results from Greengenes allow greater control over input to probe selection software, will aid in avoiding artificial T-RFLP pattern predictions from the ARB-compatible TRF-CUT (25) and can increase the accuracy of sampling rarefaction curves (26).
The fraction of putative chimeras within the deposited sequences from an individual study varies from none to over 20% (Figure 1) suggesting that chimera screening is still not being uniformly applied by sequence generators. The problem is exacerbated in sparsely populated candidate phyla. For instance, bacterial phyla, ‘SAM’, and ‘5’ and the class GN4 (Proteobacteria) may require re-evaluation. Likewise the genera *Tistrella*, *Caldotoga*, *Dehalobacterium* and *Desulfovermiculus* are currently anchored by sequences with evidence of chimeric composition. Additional sequences could lead to the empirical rejection of certain classifications or may aid in defining the true breadth of sequence variation for these taxa.

Comparison of five different taxonomies uncovered a surprisingly large disparity between expert curators. Loosely interpreting “phyla” to be any labeled grouping or division immediately subordinate to the domains Archaea or Bacteria, the five curations were compared in a Venn diagram (Figure 2). The main source of the disparity arises from discordant naming of novel candidate phyla, or absence of names for candidate phyla. For example Pace and Hugenholtz have independently named over a dozen phylum-level lineages, many of which are the same lineages, and RDP has not named any of these lineages. This is a consequence of the huge number of environmental sequences in the public databases and frequent redundant naming of environmental lineages in the literature. We hope that making multiple taxonomic classifications available through Greengenes will aid in standardizing classification, particularly classification of environmental lineages.

Greengenes is also a functional workbench to assist in analysis of user-generated 16S rRNA gene sequences. Batches of sequencing reads can be uploaded for quality-
based trimming and creation of multiple sequence alignments (9). Three types of non-
MSA similarity searches are also available; seed extension by BLAST (1), similarity
based on shared 7-mers by a tool entitled “Simrank”, or direct degenerative pattern match
for probe/primer evaluation. Results are displayed using user-preferred taxonomic
nomenclature and can be saved between sessions.

In summary, Greengenes offers annotated, chimera-checked, full-length 16S
rRNA gene sequences in standard alignment formats. The relational database links
taxonomies from multiple curators and multiple sequences from a single study. It was
revealed that incongruent taxonomic nomenclature exists among curators even at the
phylum-level. Bellerophon found putative chimeras in sequences derived from both
uncultured and isolated organisms. The data set can be compared to user-provided
sequences via web interface or can be imported directly into ARB for advanced analyses.
We anticipate that Greengenes will be valuable to researchers conducting environmental
surveys and in 16S rRNA microarray design.

In the immediate future, we plan to develop and implement a number of
community curation tools. This will allow the user community to actively participate in
improving the quality of the Greengenes database and ensure that time-consuming
manual improvements of sequence and sequence-associated data including taxonomic
corrections are propagated for the benefit of the whole community. Specifically five
curation tools are in development that should capture manual improvements: 1)
improvements in individual sequence alignments, 2) manual verification of putative
chimeras, 3) recruitment of novel lineages to the Core Set, 4) corrections in the
Greengenes description (the abbreviated description of the record usually taking the form
[habitat] clone [clone name] for environmental sequences), and 5) updating taxonomic
group names. One of the main challenges in the implementation of these tools will be to
ensure that only high quality manual edits are incorporated into Greengenes. For
example, for a suggested alignment alteration, the submitted sequence must a) match the
existing sequence, b) preserve the location of highly conserved positions in the 16S
rRNA gene and c) record the curator information as part of the update transaction. We
recognize a desire on the part of many users to contribute to a distributed curation effort
and we hope that Greengenes will become a resource to facilitate this aim.

Acknowledgments

We thank Kirk Harris and Norm Pace for sharing their ARB database and Richard
Phan for assistance with web graphics. The computational infrastructure was provided in
part by the Virtual Institute for Microbial Stress and Survival (http://VIMSS.lbl.gov)
supported by the U. S. Department of Energy, Office of Science, Office of Biological and
Environmental Research, Genomics:GTL Program and the Natural and Accelerated
Bioresiduation Research Program through contract DE-AC02-05CH11231 between
Lawrence Berkeley National Laboratory and the U. S. Department of Energy. Web
application development was funded in part by the Department of Homeland Security
under grant number HSSCHQ04X00037.
References


Figure 1. 16S rRNA gene sequencing projects producing over 200 full-length records. All projects were submitted to GenBank between October 2000 and February 2006. Sequences were generated from gastrointestinal (GI), soil (SO), vaginal (VG), aerosol (AR), culture collection (CC), insect (IN), water (WA), waste treatment (WT) or fecal (FC) sources as labeled on the x-axis and. Projects are ordered by sequence count.
Figure 2. Phyla-level nomenclature shared among independent curators represented as a five-way Venn diagram. Yellow spheres represent the 126 Phyla or Candidate Division names encountered in at least one of the five taxonomy systems (Pace, Hugenholtz, Ludwig, RDP, or NCBI). Numbers in parentheses are the count of Phyla or Candidate Division names recognized by an individual curator. Clusters of yellow spheres connected by more than one colored web symbolize names recognized by multiple curators. Image rendered by AutoFocus software (Aduna B.V., The Netherlands). A complete table of phyla-level nomenclature comparisons is available at: http://greengenes.lbl.gov/TaxCompare.