UNIVERSITY OF CALIFORNIA
RIVERSIDE

Data Analysis and Query Processing in Wireless Sensor Networks

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Georgios Chatzimilioudis

June 2010

Dissertation Committee:

Dr. Dimitrios Gunopulos, Co-Chairperson
Dr. Vassilis Tsotras, Co-Chairperson
Dr. Srikanth Krisnamurthy
The Dissertation of Georgios Chatzimilioudis is approved:

Committee Co-Chairperson

Committee Co-Chairperson

University of California, Riverside
This work minimizes the cost of answering queries in wireless sensor networks. To answer a query, data generated by the sensors needs to be collected and processed. We optimize the cost by constructing sophisticated query trees. Queries are divided into two categories: queries that need data from all the nodes in the network and queries that need data from a subset of nodes only.

For the first type of queries we propose a distributed algorithm to construct a near-optimal balanced communication tree with minimum overhead. Such a tree has inherently minimal number of collisions during query execution, and therefore avoids numerous retransmissions. Our algorithm outperforms previous work both in tree construction overhead and in tree balance.

For the second type of queries we present methods for constructing query trees to route and perform in-network processing of data. First, we focus on snapshot queries and show that minimizing the problem is NP-hard. We propose a dynamic programming algorithm to compute the optimal solution for small problem instances. We also propose a low complexity, approximate, heuristic algorithm for solving larger problem instances efficiently. Finally, we adapt the Fermat point problem (1-median problem)
for a weighted graph, and propose a centralized solution that is used as heuristic in the above algorithms.

Dealing with continuous queries of the second category, we present an optimal distributed algorithm to adapt the placement of a single operator. Our parameter-free algorithm finds the optimal node to host the operator with minimum communication cost overhead. Three ideas, proposed here, make this feature possible: 1) identifying the special, and most frequent case, where no flooding is needed, otherwise 2) limitation of the neighborhood to be flooded and 3) variable speed flooding and eves-dropping. To our knowledge this is the first optimal and distributed algorithm to solve the 1-median (Fermat node) problem. In our experiments we show that for the rest of cases our algorithm saves 30%-80% of the energy compared to previously proposed techniques.

Contents

List of Figures viii

List of Tables xi

1 Introduction 1
 1.1 Introduction to Wireless Sensor Networks 1
 1.2 Motivating Applications 2
 1.3 Weakness of Wireless Sensor Networks 4
 1.4 Query Processing 6
 1.5 Overview of Thesis 7

2 Related Work 10
 2.1 Physical Layer techniques 11
 2.2 MAC Layer techniques 11
 2.3 Network Layer techniques 13
 2.4 Transport Layer techniques 15
 2.5 Application Layer techniques 16

3 System Model 19
 3.1 Definition of a Wireless Sensor Network 19
 3.2 Related Definitions 20
 3.3 Hardware Characteristics and Energy Consumption 22
 3.4 Estimating cost 23

4 Querying All Nodes 25
 4.1 Introduction and Motivation 25
 4.2 Related Work 30
 4.3 System Model 31
 4.4 Centralized Optimization Algorithm \((COPT)\) 33
 4.5 Our Distributed Tree Construction Algorithm \((MHS)\) 38
 4.5.1 Sequential Greedy Parent Selection 38
 4.5.2 Constructing an \(MHS\) Tree 40
 4.6 Experimental Evaluation 44
 4.6.1 Energy-driven Tree Construction \((ETC)\) 44
 4.6.2 Experimental Setup 46
 4.6.3 Quality Of The Resulting Query Routing Tree 46
 4.6.4 Tree Construction Overhead 47
List of Figures

1.1 Energy harvesting for battery-less nodes ... 3
1.2 Voltree monitoring application [167], a WSN application that greatly ben-

efits from energy-efficient query routing trees 5

4.1 Example of a sensor network with its possible implicit communication links 26
4.2 A First-Heard-From tree, shown by the bold edges, for a 4x4 grid network 27
4.3 A COPT solution. $\text{COV}_\text{COPT} = 2.43$... 38
4.4 An MHS solution. $\text{COV}_\text{MHS} = 3.01$ 43
4.5 An ETC solution. $\text{COV}_\text{ETC} = 4.67$.. 45
4.6 Grid network. Balance of tree .. 48
4.7 Grid with diagonals network. Balance of tree 48
4.8 Random network. Balance of tree .. 48
4.9 Grid network. Balance per tree level .. 49
4.10 Random network. Balance per level ... 49
4.11 Random network. Balance per tree level ... 49
4.12 Grid network. Maximum energy of a node 51
4.13 Grid with diagonals network. Maximum energy 51
4.14 Random network. Maximum energy of a node 51
4.15 Grid network. Total energy of network .. 52
4.16 Grid with diagonals network. Total energy 52
4.17 Random network. Total energy of network 52

5.1 An instance of a Sensor Network ... 63
5.2 The optimal query evaluation tree given by the $D\text{P}_{\text{opt}}$ algorithm 63
5.3 The query evaluation tree given by the Naivealgorithm 64
5.4 Another instance of a Sensor Network ... 67
5.5 Query plan produced by Phase 2 for evaluation tree of Figure 5.7 67
5.6 Query plan produced by Phase 2 for evaluation tree of Figure 5.8 68
5.7 Evaluation tree returned from Phase 1 without the optimization for net-

work in Figure 5.4 .. 69
5.8 Evaluation tree returned from Phase 1 with the optimization for network in Figure 5.4 .. 70
5.9 The general Fermat Point for triangle uvw in Euclidian space is at the

X mark denoted as EFP. The best node f to place the intersection

operator however is not even close. ... 75
5.10 Experiments on J-Sim with randomly generated data points. 77
5.11 Experiments on J-Sim with spatially correlated data points. 78
5.12 Experiments no objects were used and selectivity was constant. 81
5.13 Experiments no objects were used and selectivity was constant. The selectivity factor has values ranging from .3 to .9. 82
5.14 Experiments with randomly generated data points. 83
5.15 Experiments with spatially correlated data points. 84

6.1 Example of optimal operator placement: (a) Data flow during query execution before the operator placement is optimized, and (b) data flow during query execution after the operator placement is optimized. The Fermat node is an external node. The cost represents the cost of our objective function, not the actual communication cost. 88
6.2 Example of optimal operator placement: (a) Data flow during query execution before the operator placement is optimized, and (b) data flow during query execution after the operator placement is optimized. The Fermat node is a datanode. The cost represents the cost of our objective function, not the actual communication cost. 88
6.3 GIG [3] is not an optimal algorithm. An example where GIG misses the optimal operator placement (f). This happens because the distances from candidate nodes to the datanodes are overestimated. 101
6.4 Number of nodes involved in the flooding process (minimum, average and maximum value) using the same load for each datanode. When lines are missing it means there were no simulation runs possible for the combination of k and h values. 108
6.5 Number of nodes involved in the flooding process (minimum, average and maximum value) using the variable load for each datanode. When lines are missing it means there were no simulation runs possible for the combination of k and h values. 108
6.6 Number of candidate nodes that report to the leader node. The less candidates the less communication needed. Beneath the x-axis the group [0,4] is divided into more detailed groups to show the distribution for dFNS. 110
6.7 Quality of the first candidate node encountered while flooding (or the best of the first set). Quality is expressed by dividing the hosting cost of the actual Fermat node to the first candidate. The closer the ratio is to 1 the better the variable speed flooding function of the algorithm used. 111
6.8 Quality of first candidate node when datanodes have variable data loads. Comparison of variable speed flooding functions. 111
6.9 Total energy consumed (minimum, average and maximum value) for experiments with the same load for every source. When lines are missing it means there were no simulation runs possible for the combination of k and h values. 113
6.10 The maximum energy consumed by a single node (minimum, average and maximum value) for experiments with the same load for every source. When lines are missing it means there were no simulation runs possible for the combination of k and h values. 113
6.11 Total energy consumed (minimum, average and maximum value). When lines are missing it means there were no simulation runs possible for the combination of k and h values. 114
6.12 The maximum energy consumed by a single node (minimum, average and maximum value). When lines are missing it means there were no simulation runs possible for the combination of k and h values.

6.13 Total energy consumed (minimum, average and maximum value) only for simulation runs that needed to use flooding in order to find the Fermat node. When lines are missing it means there were no simulation runs possible for the combination of k and h values.

6.14 The maximum energy consumed by a single node (minimum, average and maximum value) only for simulation runs that needed to use flooding in order to find the Fermat node. When lines are missing it means there were no simulation runs possible for the combination of k and h values.
List of Tables

5.1 Notation .. 61
5.2 Dynamic Programming matrix C for DP_{opt} 65
5.3 Algorithms to be compared 80

6.1 Percentage of simulation runs where a datanode is the optimal node to place the operator and thus no flooding is needed 117
Chapter 1

Introduction

1.1 Introduction to Wireless Sensor Networks

Networks of small devices equipped with sensing, computing and communication ability are conceivable, as new fabrication and integration technologies have reduced the cost and size of micro-sensors, micro-processors and wireless interfaces. Sensor devices are tiny computers, often as small as a coin or a credit card, featuring a low frequency processor, an on-chip flash memory for local storage, a wireless radio for communication, on-chip sensors, and an energy source such as AA batteries, solar panels [186], energy harvesting [167] or energy scavenging modules [140].

Apart from the technological hardware advances that made WSN possible, a great amount of ongoing research has given WSNs a set of unique characteristics that make them the next multi-purpose tool for a wide range of tasks. Each node has the ability to sense elements of its environment, perform simple computations, and communicate either among its peers or directly to an external observer. A sensor network normally constitutes a wireless ad-hoc network, meaning that the sensors organize themselves in a network where data can be communicated from one node to any other over
multi-hop routes. Sensor nodes are able to organize themselves dynamically in a network topology while coping with node failures or node displacement/mobility. This great feature, together with the on-board energy source of each sensor, allows for unattended operation, operation in harsh environmental conditions, applications where sensor nodes are mobile and for large scale of deployment. To the versatility of the WSN adds the ability to deploy heterogenous type of nodes.

These systems promise to revolutionize biological, earth, and environmental monitoring applications, providing data at granularities unrealizable by other means. Large-scale deployments of Wireless Sensor Networks (WSNs) have already emerged in environment and habitat monitoring [6, 161, 186], industrial process monitoring and control [137, 96, 77], healthcare applications [6, 114, 100, 75, 122, 101], machine and structural health monitoring [6, 158, 92, 119], home and building automation [6, 71], urban monitoring [138, 23, 124], vehicular monitoring and traffic control [141, 52, 25].

1.2 Motivating Applications

Below, we describe the applicability of wireless sensor networks with some real-life examples.

Example 1 - People-Centric Sensing: People-centric sensing [23], aims to support sensor-enabled applications that engage the general public through the use of their own personal mobile devices. The recent miniaturization and integration of sensors into popular consumer mobile devices (e.g., iPhone, HTC Touch Pro) has enabled a myriad of new sensor based applications for personal, social and public sensing.

Figure 1.2, illustrates an example of a people-centric sensing scenario where cyclists journey through the main streets of a city [120]. Each cyclist is equipped with a
mobile device which has the ability to interact with its integrated sensors during the ride. The measurements retrieved from these sensors can be used to quantify various aspects of the cyclic performance (e.g., current/average speed, heart rate, burned calories), route details (e.g. uphill, downhill, obstacles) as well as the environmental conditions (e.g. CO$_2$ level, car density) during the journey. The continuous sharing of these collected data can be utilized both at the cyclist-group level (e.g., a cyclist comparing its current speed with the average speed with all cyclists) as well as the community level (e.g., creating a pollution map of the city).

Example 2 - Voltree Climate Sensor Network: Recently, Voltree Power [167] has engineered a bio-energy harvesting technology that allows sensor devices to recharge themselves by collecting the energy that is naturally produced by living trees or other large plants (Figure 1.3). This alternative, minimizes the cost of replacing batteries frequently, especially in large-scale deployments. Many Voltree devices form a wireless mesh network which is composed of many inexpensive sensor nodes that collect and
report data on temperature, humidity, wind speed and direction. Data collected by the nodes is recursively transmitted from each node to its neighbors (i.e., forming a query routing tree) until these measurements reach a central base station that records the data for further analysis. Such networks have already been deployed by the United States Department of Agriculture (USDA) at 5 different sites [167]. These networks complement the USDA Forest Service’s Remote Automated Weather Stations network. Such applications deploy Query Routing Tree structures as a primitive mechanism for percolating query results to nodes that query the network.

1.3 Weakness of Wireless Sensor Networks

Probably the weakest point of wireless sensor networks is the limited energy source of its nodes. The autonomy of the sensor nodes comes with a price: communication over the wireless channel needs a lot of energy. It is well established that communicating over the radio in a WSN is the most energy demanding factor among all other functions, such as storage and processing [111, 184, 176, 112, 182]. The energy
Figure 1.3: Voltree monitoring application [167], a WSN application that greatly benefits from energy-efficient query routing trees

cost for transmitting 1 bit of data using the MICA mote [39] is approximately equivalent to processing 1000 CPU instructions [111].

In addition, the wireless channel is unreliable due to collisions, node failures, obstacles and hostile environment parameters, causing many packets to get dropped [6, 189]. Collisions between data packets happen when multiple neighboring sensor nodes attempt to access the shared wireless channel and is the main cause of dropped packets [79]. Every dropped packet needs to be retransmitted adding to the energy consumption.

Increasing the lifetime of a WSN is essential, thus WSN applications have to be founded on the premise of energy-conscious algorithms. A sensor network is operational when its nodes are able to sense and to communicate with their neighboring nodes. A node can perform these functions as long as its energy source is not depleted. The duration for which a sensor network is operational is called lifetime and it can be estimated theoretically. Depending on the application it is defined by the time it takes for the first x nodes to get depleted [51]. Minimizing the maximum energy per node
prolongs the time for the first node to get depleted. The time it takes for a number of
nodes to get depleted can be prolonged balancing the maximum energy per node and
the total energy consumed in the network.

Supplementary approaches to cope with the energy challenge have been pro-
posed at virtually all layers of the sensing device stack ranging from the hardware
layer [134, 39] to the operating system layer [74], the programming language [60], the
network layer [190] and the data management layer (e.g., storage [184, 115], compres-
sion [43, 148], query processing [111, 176, 146, 112, 182, 36, 30, 31] and prediction [63]).
A decisive variable for prolonging the longevity of a WSN is to minimize the utilization
of the wireless communication medium. Therefore, a general theme in the above men-
tioned approaches is to reduce the number and size of messages communicated between
sensors in order to minimize the use of the radio transceiver.

1.4 Query Processing

Wireless sensor networks can be viewed as a network of tiny distributed databases,
where data needs to be collected and processed in order to satisfy a user request/query.
In wireless sensor network applications, like the ones discussed above, the user requests
information through one of the nodes. To answer a query, data generated by the sen-
sors needs to be collected and processed. The processing is done centralized on the
basestation or distributed on the nodes of the network (in-network processing).

Sophisticated query processing can greatly prolong the lifetime of the WSN.
Routing of data from their sources to their processing locations allows for great reduction
in the number and size of messages communicated between sensors. There is a vast
amount of research already undertaken in this respect. In this thesis new problems
are addressed and solved and new efficient solutions are proposed for already known problems. The proposed techniques are categorized according to the type of query they optimize.

We can distinguish between queries that only need data from a subset of nodes in the network and queries that need data from all the nodes in the network. A popular application field for the former type are geographical applications, where queries require information from several regions. Such queries are called multi-predicate queries (MPQ) and this term will be used throughout this work. An instance of such a query in a moving object monitoring application would be the following: “What objects passed through region A, B, and C?” The latter type can be found mainly in environmental monitoring applications and is called henceforth All Node Queries ANQ. “What is the temperature of every room in the building?”.

We can also distinguish between queries that need to be answered once (snapshot queries) and queries that need to be answered continuously as new data is being collected from the nodes (continuous queries). “What is the temperature read by each sensor at timepoint T” and “What objects passed through region A, B and C so far?” would be instances of snapshot queries. Respectively, “What is the temperature read by each sensor from this timepoint for the next 24 hours” and “What objects pass through regions A, B and C for the next 7 days” are instances of continuous queries.

1.5 Overview of Thesis

The main goal of this work is to optimize query execution in the face of communication cost. We optimize three kinds of queries: 1) All-Node Queries (ANQ), 2) snapshot Multi-Predicate Queries (MPQ), and 3) continuous Multi-Predicate Queries.
Optimizing All-Node Queries we propose a distributed algorithm to construct a balanced communication tree that will serve in gathering data from the network nodes, with the base-station as the final receiver. Our algorithm constructs a near-optimally balanced communication tree with minimum overhead. The balancing of the node degrees, at each level of the tree, results in the minimization of hot-spots and thus packet collisions, that would otherwise require numerous retransmissions and reduce the lifetime of the network. We compare our simple distributed algorithm against previous work and a centralized solution and show that for most network layouts it outperforms competition and achieves tree balance very close to the centralized algorithm. It also has the smallest energy overhead possible to construct the tree, increasing the lifetime of the network even more.

Optimizing snapshot Multi-Predicate Queries we propose a centralized algorithm that minimizes the cost of answering snapshot multi-predicate queries in wireless sensor networks. The important class of multi-predicate queries in horizontally or vertically distributed databases is addressed. We show that minimizing the communication cost for multi-predicate queries is NP-hard and we propose a dynamic programming algorithm to compute the optimal solution for small problem instances. We also propose a low complexity, approximate, heuristic algorithm for solving larger problem instances efficiently and running it on nodes with low computational power (e.g. sensors). Finally, we present a variant of the Fermat point problem where distances between points are minimal paths in a weighted graph, and propose a centralized solution. An extensive experimental evaluation compares the proposed algorithms to the best known technique used to evaluate queries in wireless sensor networks and shows improvement of 10% up to 95%. The low complexity heuristic algorithm is also shown to be scalable and robust to different query characteristics and network size.
Optimizing continuous Multi-Predicate Queries we present an optimal distributed algorithm to adapt the placement of a single operator in high communication cost networks, such as a wireless sensor network. Our parameter-free algorithm finds the optimal node to host the operator with minimum communication cost overhead. Three techniques, proposed here, make this feature possible: 1) identifying the special, and most frequent case, where no flooding is needed, otherwise 2) limitation of the neighborhood to be flooded and 3) variable speed flooding and eyes-dropping. When no flooding is needed the communication cost overhead for adapting the operator placement is negligible. In addition, our algorithm does not require any extra communication cost while the query is executed. In our experiments we show that for the rest of cases our algorithm saves 30%-85% of the energy compared to previously proposed techniques. To our knowledge this is the first optimal and distributed algorithm to solve the 1-median (Fermat node) problem.

The dissertation is structured as follows: Chapter 1 describes in detail the work done regarding the optimization of all-node queries. Snapshot and continuous Multi-predicate queries are optimized in Chapters 2 and 3 respectively. In all following Chapters the work is divided in introduction and motivation, related work, system model definition, the solutions proposed and its experimental evaluation, concluding with a summary.
Chapter 2

Related Work

Power conservation mechanisms have been proposed virtually at all layers of the traditional layered sensor communication stack. All these approaches attempt to decrease the energy consumption with two basic techniques: i) by disabling/hibernating the radio transceiver during periods of inactivity, and ii) by improving the sensor nodes operation (e.g., voltage scaling, employing multiple power levels). Most of these techniques are complementary to the techniques described in this paper while the rest come with their own trade-offs as we will show shortly.

In this section, we present an elaborate overview of techniques, that decrease communication related power consumption in WSNs. Following the widely adopted ISO/OSI communication stack [98] as categorization criteria, allows to accurately capture the main focus and limitations of each presented technique. We shall also refer to cases of cross-layer optimizations individually. For the remainder of this section, we will present the universe of techniques in a bottom-up manner, starting from the physical layer and moving up to the application layer where our own algorithms belong. We omit the Presentation and Session layers of the typical ISO/OSI stack as none of the
presented techniques addresses these layers specifically.

2.1 Physical Layer techniques

This layer relates to the low-level sensor device hardware (circuitry, MCU, transceiver, etc) thus the opportunity for software level power management is fairly limited. Yet, there are a few works [20, 69, 152] that look at individual and local power management optimizations.

Examples of these techniques are the Dynamic Voltage Scaling [20] and Embedded power supply for low power Digital Signal Processor [69] which are effective techniques for reducing the energy consumption of the CPU. The goal of these approaches is to adapt the processors power supply and operating frequency to match any given computation load without degrading performance. Dynamic Power Management [152] is another work that utilizes different power models to shut down various components (e.g., radio transceiver, CPU) when these are not required to operate. All of the above techniques, and generally any local power conservation mechanism at the physical layer, are supplementary to the algorithms presented in this dissertation.

2.2 MAC Layer techniques

The Medium Access Control (MAC) layer facilitates the transfer of messages to and from the physical layer. Most of the protocols developed for the MAC layer deploy explicit mechanisms to avoid collisions when multiple sensor nodes attempt to access a shared channel. Most of the sensor network related works presented in this layer [126, 177, 155, 151] minimize energy consumption by minimizing collisions and overall usage of the shared access medium.
The Coordinated Power Conservation algorithm (CPC) [155] is an example of a MAC-layer power management protocol that coordinates the sleeping intervals of sensor nodes with the aid of a backbone. CPC starts out by selecting a set of backbone nodes as CPC servers. Next all CPC clients that run on non-backbone nodes, request to turn the transceiver of the sensor node off when there is no communication activity, in order to conserve power and extend network lifetime. CPC servers running on backbone nodes serve as coordinators to synchronize sleeping schedules of nodes within their coverage areas. This solution is orthogonal to our problem and can be used in parallel to the solutions we give to the problem of minimizing communication cost.

Power-aware Multi-Access Protocol with Signaling (PAMAS) [151] is another MAC-layer power management protocol that utilizes two independent radio channels in order to avoid overhearing among neighboring nodes. Battery power is saved by intelligently turning-off sensor nodes that are not in active transmission. On the other hand, the popular Sensor-MAC (S-MAC) [177], utilizes a synchronization scheme that allows sensor nodes to realize periodic listening and sleeping during busy periods (i.e., when transmission from other nodes is detected). Furthermore, S-MAC consists of two additional components that handle: i) collision and overhearing avoidance by allowing sensor nodes, receiving control packages not destined, to them go to sleep, and ii) message passing by segmenting long messages into smaller ones and transmitting in bursts (i.e., RTS/CTS control messages are not used for each fragment). S-MAC has been further enhanced in [126] to minimize the end-to-end delay. Both PAMAS and S-MAC achieve high energy savings by allowing sensor to sleep periodically.

However, none of these approaches considers the underlying topology of the sensor network, intra-sensor relationships and high-level query semantics. In particular, these techniques do not consider the workload of a continuous query, rather they assume
a random variable workload. For general queries, we propose an algorithm to minimize collisions by constructing a near balanced routing tree. Nevertheless, since the S-MAC protocol has been successfully integrated in TinyOS [68] as one of the primary MAC protocols, these techniques extend the power management capabilities of our algorithms inherently.

Sensornet Protocol (SP) [133], introduces a unified link level abstraction that is part of the sensor network architecture proposed in [40]. Specifically, SP provides shared neighbor management and message pool interfaces that allow network protocols to exchange messages efficiently and choose neighbors wisely without concentrating on link specifics. To accomplish this, these interfaces encapsulate the mechanisms of the particular link and physical layers that operate below the Sensornet Protocol. The authors show that various link layer protocols can be expressed in terms of SP and subsequently mapped efficiently to various link level power management mechanisms.

2.3 Network Layer techniques

This layer is responsible for delivering packets from a source node to a destination node through some routing mechanisms. In WSNs, routing is accomplished using multi-hop messages, thus many mechanisms in this layer attempt to discover optimal routing paths for energy efficient delivery of messages through intermediate hosts [72, 64, 42]).

The Power-Aware Routing (PAR) [64] technique is a routing policy that balances the overall power in the network by discovering routes that consume the least possible energy. Since in a non-uniform network the majority of nodes do not consume power in an identical fashion, PAR favors nodes with larger power reserves. Another
technique is the *Minimum Connected Dominating Sets* (MCDS) routing algorithm [42] which employs a virtual backbone that provides shortest paths for routes, as well as route updates in cases of node movements, in order to minimize the overall energy required for routing multi-hop packets. Both PAR and MCDS approaches assume an a priori established query routing tree.

Both PAR and MCDS approaches assume an a priori established query routing tree. Any optimizations suggested by both approaches does not alter the state of the query routing tree. On the other hand, our algorithms differ from these approaches as they reconstruct the tree in order to minimize collisions or dataloads transferred prior to any further optimizations. Certain modules of PAR and MCDS (e.g., shortest path discovery) can be used in conjunction with our algorithms in order to achieve even more energy savings.

In *Modular Network Layer* [53] the authors decompose the network layer into smaller components that can be used by several protocols in parallel. This network layer operates on top of the popular Sensornet link-layer Protocol [133]. The intuition behind their approach is that the majority of network protocols have many commonalities. Encapsulating these commonalities and exposing them as service interfaces enables faster development of new protocols and run-time sharing of components. The authors evaluate their approach and find that the *Modular Network Layer* can reduce both the memory footprint and lines of code of network protocols that run concurrently. Consequently, this work is supplementary to our work, as our protocols could have been implemented using this intermediate framework rather than in a standalone.
2.4 Transport Layer techniques

The transport layer is responsible for the transfer of messages between two or more end systems using the network layer. One of the main objectives of the transport layer is the reliable and cost effective delivery of transferred messages between applications. The evolution of the techniques in this layer has been severely hampered by the fact that sensor networks feature node failures and collisions making reliable and cost effective communication often impossible.

One of the few works that addresses the above issues is the TCP-Probing communication protocol [165], which introduces the concept of a probe cycle instead of standard TCP re-transmissions, congestion window and threshold adjustments. During probe cycles, data transmission is suspended and only probe segments are sent. The proposed scheme achieves high throughput performance at the same time decreasing the overall energy consumption for transmission. This is done without damaging the end-to-end characteristics of TCP.

Flush [91] is another transport layer protocol for multi-hop wireless networks. Flush provides end-to-end reliability, reduces transfer time and adapts to time-varying network conditions. To accomplish these properties, Flush uses end-to-end acknowledgments, implicit snooping of control information and a rate-control algorithm that operates at each hop along a flow.

In contrast to the probe cycles of TCP-Probing and end-to-end acknowledgments of Flush, our algorithms either straightforwardly reduce collisions or reduce the effect of collisions and failures by minimizing the size of the messages to be sent. The aforementioned techniques would introduce further delays as well as more energy waste since the sensors would have to exchange more messages in order to synchronize.
2.5 Application Layer techniques

The main objective of this high level layer is to exploit the semantics of the network or application and low-level data in order to optimize the network structure among nodes and boost power management. Consequently, this layer has implicit interactions with lower levels of the communications stack (often referred to as cross-layer optimizations [7]). The techniques in this layer can be roughly classified in the following: i) local techniques, in which low-level data semantics dictate the reaction of the application, and ii) cluster-based techniques, in which the reaction of the application is dictated by the cluster semantics (e.g., network proximity).

In the first category, Application-Driven Power Management for Mobile Communication [94] and Adaptive Energy Conserving Routing (AdECoR) [172], are examples of application-layer techniques that enable the dynamic power configuration of the communication device. The intuition behind this approach is that although switching-off the communication device may result in energy conservation, it may also introduce delays in the network. AdeCoR attempts to find a trade-off between energy conservation and latency by utilizing application-level information and adjusting the sleep duration of the communication device. AdECoR differs from our work as its application-level information does not include the high level query semantics. Furthermore, the concept of introducing delays in order to conserve power is not acceptable in our problem setup as we assume that queries have specific response time requirements that must be met.

In addition, various data acquisition frameworks (e.g. [111, 112, 176, 102]) have been proposed that aim to minimize the utilization of the wireless communication medium only by minimizing the data sent or the time that the tranceiver is operating. Those techniques will be examined in more detail in the following chapter that detail
our algorithms.

The second class of application layer techniques includes those techniques that use clustering mechanisms. Works like LEACH [72], PEGASIS [106] and PEDAP [187] minimize the overall energy consumption in WSNs by rotating the cluster head nodes that collect data in a random manner. This rotation allows the distribution of the energy load evenly among the sensor nodes in the network without draining the energy resources of an individual sensor node. Another example is Geographical Adaptive Fidelity (GAF) [173], which obtains location information using the Global Positioning System (GPS) in order to connect sensor nodes to a virtual grid (i.e., a semantic overlay based on geographical proximity). It then saves energy by keeping sensor nodes located in a particular grid area in sleeping state. The sleeping schedule uses a turn-based approach that aims to balance the load incurred on each sensor. Finally, SPAN [32] builds on the observation that when a region of a shared-channel has a sufficient density of nodes, only a small number of them needs to be present at any time to forward traffic for active connections. To accomplish this, SPAN utilizes a distributed, randomized algorithm that allows sensors to make local decisions as to when sleeping is appropriate. GAF and SPAN, take advantage of global information to preserve energy. Both approaches switch off some sensors based on some application level parameters and force other sensors to seek alternate routing paths.

GPS and SPAN, like our work, take advantage of global information to preserve energy. Both approaches switch-off some sensors based on some application-level parameters and force other sensors to seek alternate routing paths. However, switching-off some sensors means that they cannot participate in a given query and as a result, valuable results may be lost even for shorts period of time. LEACH differs from our approach since all nodes that participate in a given query are considered equal peers.
and none plays a separate role (e.g., cluster head) nor has more energy reserves than others.
Chapter 3

System Model

3.1 Definition of a Wireless Sensor Network

For this work, the mathematical abstraction of a sensor network is that of an undirected graph. Nodes of the graph represent sensors in the network while edges represent bi-directional communication links. The latter are characterized by two nodes having the ability to send information to one another and may be defined as having noisy properties. Nodes have computational ability that is physically limited but these limits will not be considered restrictive for the algorithms discussed. Nodes are able to sense physical properties (e.g. temperature, magnetic field) at their location.

Let V denote a set of n sensing devices $\{v_1, v_2, ..., v_n\}$ in a wireless sensor network. Now let $G = (V, E)$ denote the network graph that represents the implicit network edges E of the nodes in V. The edges in E are implicit, because there is no explicit connection between adjacent sensor nodes, but nodes are considered neighbors if they are within communication range.

The simplification, that communication is possible between two nodes if their physical separation is less than the maximum communication distance R, will be used.
A connected graph is one wherein any two nodes have an uninterrupted path between them following edges of the graph. In the physical context, this means that any two nodes can communicate with a finite number of hops between them. Only connected graphs are considered - plural subgraphs with no communication link among them can be considered independently for this work. Since our nodes have a restricted communication range R, data will have to travel over a multi-hop path toward the querying node. A routing tree T is created connecting every node. The querying node q is the root of this tree and receives the information needed to answer the query. The tree connects all the nodes over a multi-hop path to the sink.

3.2 Related Definitions

Let S denote a set of n sensing devices \{s$_1$, s$_2$, ..., s$_n$\}. Assume that s_i ($i \leq n$) is able to acquire m physical attributes \{a$_1$, a$_2$, ..., a$_m$\} from its environment at every discrete time instance t. This generates at each t and for each s_i ($i \leq n$) one tuple of the form $\{t, a_1, a_2, ..., a_m\}$. This scenario conceptually yields an $n \times m$ matrix of readings $X :=(s_{ij})_{n \times m}$ for each timestamp. This matrix is horizontally fragmented across the n sensing devices (i.e., row i contains the readings of sensor s_i and $X = \cup_{i \in n} X_i$). Now let $G = (S, E)$ denote the network graph that represents the implicit network edges E of the sensors in S. The edges in E are implicit, because there is no explicit connection between adjacent nodes, but nodes are considered neighbors if they are within communication range R (i.e., a fundamental assumption underlying the operation of a radio network).

A user can run queries on a wireless sensor network. Wireless sensor networks can be viewed as a network of tiny distributed databases and queries can be posed through a node of the network. To answer a query, data generated by the sensors needs
to be collected and processed. The processing is done centralized on the basestation or distributed on the nodes of the network (in-network processing). We assume that nodes can pose queries over the sensor network. The sensor node that issues the query Q is called querying node and is denoted as q. We will use the terms querying node and sink interchangeably throughout this work.

We can distinguish between queries that only need data from a subset of nodes in the network and queries that need data from all the nodes in the network. A popular application field for the former type are geographical applications, where queries require information from several regions. Such queries are called multi-predicate queries (MPQ) and this term will be used throughout this work. We can also distinguish between queries that need to be answered once (snapshot queries) and queries that need to be answered continuously as new data is being collected from the nodes (continuous queries).

Continuous queries are answered in consecutive data acquisition rounds called *epochs*. An epoch is a small time period in which the query is answered once, like a snapshot query. A user specifies a continuous query Q to be evaluated once during the interval of an epoch (denoted as e), which is the time interval after which each s_i ($i \leq n$) will re-compute Q.

For simplicity let us adopt a declarative SQL-like syntax (similarly to [?, ?]) to express the ideas presented in this work in brevity. For instance, the following query declares that each sensing device should recursively collect the node identifier and the temperature from its children every 31 seconds and communicate the results to the sink.

```
SELECT nodeid, temp
FROM sensors
EPOCH DURATION 31 seconds
```

Note that our model also supports continuous aggregate queries. For instance,
the following query declares that each sensing device should aggregate the average light measurement for each room from its children every 31 seconds and communicate the results to the sink.

```sql
SELECT roomid, AVG(light)
FROM sensors
GROUP BY roomid
```

EPOCH DURATION 31 seconds

In order to process queries efficiently over a Wireless Sensor Networks (WSNs), sensors need to be organized in a Query Routing Tree T. A query routing tree is an acyclic subset of the communication graph G (i.e., a spanning tree) which is denoted as $T = (V', E')$, where $V' \subseteq V$ and $E' \subseteq E$. T can be constructed based on query semantics, power consumption, remaining energy and others. A query routing tree provides each sensor with a path over which query answers can be transmitted to the querying node and allows for waking window and data reduction techniques to optimize the energy consumption in the network. An epoch can use the same query tree T as the previous epoch and save the overhead of tree construction. Otherwise, it can be deemed more efficient to reconstruct or adapt the query tree for the new epoch.

3.3 Hardware Characteristics and Energy Consumption

The wireless sensor node, being a micro-electronic device, can only be equipped with a limited power source (<0.5 Ah, 1.2 V). In sensor networks power efficiency is an important performance metric, directly influencing the network lifetime. Application specific protocols can be designed by appropriately trading off other performance metrics such as delay and throughput with power efficiency.
Energy expenditure in data communication is far greater compared to data processing. The example described in [135], effectively illustrates this disparity. Mixers, frequency synthesizers, voltage control oscillators, phase locked loops (PLL) and power amplifiers, all consume valuable power in the transceiver circuitry. This involves both data transmission and reception. It can be shown that for short-range communication with low radiation power (0 dbm), transmission and reception energy costs are nearly the same.

In [149], the authors present a formulation for the radio power consumption (Pc) as

\[P_c = N_T (P_T (T_{on} + T_{st}) + P_{out} \ast T_{on}) + N_R (P_R (R_{on} + R_{st})) \]

where \(P_T / P_R \) is the power consumed by the transmitter/receiver; \(P_{out} \), the output power of the transmitter; \(T_{on} / R_{on} \), the transmitter/receiver on time; \(T_{st} / R_{st} \), the transmitter/receiver start-up time; and \(N_T / N_R \), the number of times transmitter/receiver is switched on per unit time, which depends on the task and medium access control (MAC) scheme used. We can further say that \(T_{on} = L/R \), where \(L \) is the packet size and \(R \) the data rate.

3.4 Estimating cost

For the objective function, that we use in our algorithms, we follow the same energy model as Coman et al [37]. The cost of shipping data from node \(u \) to node \(v \) is proportional to the data load \(w_u \) to be shipped, and the weight of the path used. The path weight \(W(u, v) \) is equal to the sum of the weights of all links \(l \in L \) that make up path \((u, v) \): \(W(u, v) = \sum_{l \in \text{links}(u,v)} w_l \), where \(w_l \) is the weight of the link \(l \in L \). The
cost of shipping data from node u to node v is defined as

$$t(u, v) = w_u \times W(u, v)$$

This simplified version is used only as an objective function in our algorithm to estimate communication cost. Note that the computation of the actual energy consumed by the network when transmitting a message over a path is more complicated. In the network simulator, that we used to run our experiments, the energy consumption model is much more realistic. It also takes into account the energy consumed by the neighbors of u and v since they also receive the packet.

To estimate the energy needed to answer a query Q over a query tree T once, we define $T(i, j)$ as the function that returns 1 whenever the edge (i, j) is used in the query evaluation:

$$T(i, j) = \begin{cases}
1 & \text{if communication edge } (i, j) \text{ is used} \\
0 & \text{otherwise}
\end{cases}$$ \hspace{1cm} (3.1)

The total communication cost C_Q of answering query Q will be:

$$C_Q = \sum_{i=1}^{m} \sum_{j=1}^{m} c \times T(i, j) \times B_i$$ \hspace{1cm} (3.2)

where nodes $i, j \in V$. This does not include the cost of disseminating the query or constructing the tree T.

24
Chapter 4

Querying All Nodes

We propose a distributed algorithm to construct a balanced communication tree that will serve in gathering data from the network nodes, with the base-station as the final receiver. Our algorithm constructs a near-optimally balanced communication tree with minimum overhead. The balancing of the node degrees, at each level of the tree, results in the minimization of hot-spots and thus packet collisions, that would otherwise require numerous retransmissions and reduce the lifetime of the network. We compare our simple distributed algorithm against previous work and a centralized solution and show that for most network layouts it outperforms competition and achieves tree balance very close to the centralized algorithm. It also has the smallest energy overhead possible to construct the tree, increasing the lifetime of the network even more.

4.1 Introduction and Motivation

Wireless sensor networks (WSNs) are the next multi-purpose tool for a wide range of tasks. The main characteristic that makes them so useful is the autonomy of the nodes due to their freedom of attachment. Nodes do not need to be attached to
one another in order to communicate; they communicate using radio transceivers over wireless channel. Also, they do not need to be attached to any static energy provider; they have batteries on board. The autonomy of the sensor nodes comes with a price: communication needs a lot of energy and on-board batteries have limited energy supplies. Further, the wireless channel in WSNs is unreliable with many dropped packets. Collisions between data packets, when multiple sensor nodes attempt to access a shared wireless channel, is the main cause of dropped packets. Every dropped packet needs to be retransmitted adding to the energy consumption.

Due to the limited energy source, WSN applications have to be founded on the premise of energy-conscious algorithms. A decisive variable for prolonging the longevity of a WSN is to minimize the utilization of the wireless communication medium. It is well established that communicating over the radio in a WSN is the most energy demanding factor among all other functions, such as storage and processing [182, 111, 112, 184, 176].

In data acquisition systems for WSNs data from every node of the network needs to be collected at a sink node. An example can be seen in Figure 1.1. The majority of existing approaches use a Query Routing Trees (denoted as T), which provides each sensor with a path over which query answers can be transmitted to the querying node.
Figure 4.2: A First-Heard-From tree, shown by the bold edges, for a 4x4 grid network

Energy-efficient query routing trees are useful in a plethora of systems such as People-centric Sensing [23], structural monitoring [92], urban monitoring [124] and environmental monitoring sensor networks [167, 162, 186] among others. In all of these environments a device requests sensor data from any available neighboring device through the establishment of an ad-hoc communication network. These adhoc links are usually founded on the premise of a Query Routing Trees and constructing optimized trees is of major importance in these scenarios.

T structures are usually constructed in an ad-hoc manner and therefore there is no guarantee that the query workload will be distributed equally among all sensors. In Figure 4.1 we can see an ad-hoc query routing tree created when each node connects to the node that it first heard the tree construction request from. Nodes with many incoming streams are called hot-spots. Various data acquisition frameworks (e.g. [111, 112, 176, 72, 106, 187, 102]) have been proposed that aim to minimize the utilization of the wireless communication medium, but they only try to minimize the data sent, the time that the transceiver is operating or alternate the root node to reduce energy consumption around the root.

The inherent imbalance of ad-hoc query routing trees leads to data collisions during transmission which represent a major source of energy waste. For instance in
it is shown that the execution of a query over a node with 10 children will lead to a 48% loss rate of data packets, while executing the same query over a node with 30 children will lead to a 56% loss rate. These figures translate into an approximately three-fold increase in energy demand due to inevitable re-transmissions of data packets. Consequently, unbalanced query routing trees can severely degrade the network health and efficiency.

Balanced query routing trees have the following desirable properties: i) they decrease collisions during data transmission, and ii) they decrease query response times and iii) they increase system lifetime and coverage. It is shown by the authors of [10] that constructing a balanced query routing tree T increases the lifetime of a WSN significantly. We provide algorithms and methods to create balanced query routing trees in a network.

We give a formal definition of balance in a query routing tree and propose a centralized algorithm that constructs good approximation of an optimally balanced tree. This algorithm is only used as a ground truth solution to compare against, as it has high complexity and high communication cost for acquiring the needed network information to run.

We devise a simple distributed algorithm that constructs a query routing tree with minimum deviation from the optimally balanced and is very suitable for use in wireless sensor networks. It is based on letting nodes select parents sequentially while “snooping” the wireless channel and counting the degree of their candidate parent nodes. When the time comes to select a parent, the node simply selects the parent with the minimum degree. The order of parent selection amongst nodes is decided locally by each node.

Our decentralized algorithm (MHS) performs very close to the optimal, espe-
cially in networks that resemble real world sensor network layouts. In addition, the overhead to run our algorithm is negligible compared to the baseline First Heard From tree construction used widely in ad-hoc sensor network. The messages exchanged between nodes during the whole process are limited to the very basic ones that are needed to connect two nodes with a hand-shake protocol. Our experimental evaluation also shows that our algorithm is a great improvement over the previously proposed algorithm [10], both in query routing tree balance achieved and in the energy overhead imposed for construction.

Our contributions can be summarized as follows:

- We define a balanced query routing tree in a way that takes into account the communication restrictions in a network. That allows us to decompose the balanced query routing tree construction problem into a set of simpler subproblems (Balanced Assignment Problem).

- We propose a novel distributed algorithm (MHS) to approximate the balanced query routing tree construction solution.

- We prove that MHS has the minimum possible communication overhead.

- We show through simulations that MHS improves the balance of the resulting query routing tree significantly over the previously proposed algorithm and for real world networks even performs as good as the centralized algorithm.

In the next sections we discuss related work (Section 2) present the system model and the definition of the balanced query routing tree problem (Section 3). In Section 4.4 we analyze the problem, decompose it into a set of simpler subproblems and present our centralized algorithm. The description of the novel distributed algorithm
follows in Section 4.5 to finish with the experimental evaluation (Section 4.6) and a short summary (Section 4.7).

4.2 Related Work

A distributed algorithm to create a query routing tree without the assumption that every node can transmit directly to the sink, has been proposed in [174]. Their algorithm balances the data load to be transmitted from one tree level to the next. The goal is to balance the data received and relayed by each node in the network. The energy savings by this work are mostly theoretical since they do not deal with collisions occurring from many nodes trying to communicate with the same parent. As shown by Andreou et al. [10] the energy loss due to hot-spots in the tree can not be neglected.

To the best of our knowledge the only previous work balancing a tree in order to minimize collisions is the work of Andreou et al. [10]. The algorithm they propose, called ETC, constructs an initial temporal unbalanced tree and then lets nodes communicate back and forth in order to reorganize and balance the tree. ETC adds a significant overhead in order to balance the tree: the number of packets exchanged is high. The most important downfall for ETC is that balancing is based on a global branching factor that in many network topologies results in a tree that is far from optimally balanced.

We propose a distributed algorithm (MHS) that constructs a query routing tree with minimum hot-spots (balanced tree). This translates in a reduced number of packet collisions during query execution. MHS has significantly reduced overhead for constructing a tree and the resulting tree deviates far less from the optimally balanced tree when compared to ETC as is shown in our experiments.
4.3 System Model

In this section we formalize our system model and the basic terminology that will be utilized in the subsequent sections. We give formal definitions and proposition that we use in our algorithms and use to define the balanced tree construction problem.

The querying node q is the root of the query tree T and receives the information needed to answer the query. The tree connects all the nodes over a multi-hop path to the sink. The nodes inside a tree can be divided in tree levels. A level is defined by how far the nodes are from the root. The level of the root is zero.

Proposition 1 Given a tree $T = (V, A)$ and two nodes $u, v \in V$ that are adjacent, $(u, v) \in A$, and at levels l_u and l_v respectively, it must be $l_u \neq l_v$ and $|l_u - l_v| = 1$

The node at the lower level ($\min\{l_u, l_v\}$) is called parent, and the other is called its child. An edge $(u, v) \in A$ is called an adoption of u from v.

Definition 2 Given a graph $G(V, E)$ and a sink q, the set of candidate parents of node $c \in V$, for constructing a tree $T = (V, A)$, is the set $P \subset V$ of nodes p for which an edge $(c, p) \in E$ exists and for the shortest hop distance l_c from c to the sink q and l_p from c to q it holds that $l_p = l_c - 1$.

Given a graph G and a sink q, if we construct a tree T by connecting each node only to one of its candidate parents, it is guaranteed that the level of any node i is equal to its shortest hop distance to the node q in G.

Proposition 3 If during the tree construction of T all nodes are connected to one of their candidate parents then it is guaranteed that the resulting tree will have minimum height (shortest path tree).
In this work we want to construct balanced shortest-path trees. This objective predefines in which level of the tree a node will belong to. Given a wireless sensor network, represented as a graph $G = (V, E)$, and a sink node q, we can immediately define the set of nodes $V_l \subset V$ that belongs to each level l of the tree rooted at q, for $0 < l < \text{height}(T)$.

For every pair of neighboring levels $l - 1$ and l there is a subset of edges $E_l \subset E$ that contains all the edges $(u, v) \in E$ with $u \in V_l$ and $v \in V_{l-1}$. The nodes $P \subset V_{l-1}$ that are connected to a node $c \in V_l$ are the candidate parents of c as defined in Definition 2.

The tree T needs to have minimum hot-spots in order to avoid collisions during query execution. A hot-spot in a query routing tree is a node that has more children attached to it than the other nodes. The number of children that a node has defines the degree of a node. Thus, balancing the degree of the nodes reduces the hot-spots in a tree. In a network where not all nodes can have a parent-child relationship we need to use the following general definition of a balanced tree.

Definition 4 A balanced tree T is a tree where at each level the variation of the node degree is the minimum possible.

The variation of the node degree of a set of nodes is a measure of how different their degrees are. Formally, we use the *Coefficient of Variation* (COV) in order to express this variation. Generally, COV is used as a normalized measure of dispersion of a distribution. It is defined as the ratio of the standard deviation (σ) to the mean (μ):

$$\frac{\sigma}{\mu}.$$

The coefficient of variation is useful because the deviation of data must always be understood in the context of the mean of the data. It is thus very suitable for comparing data of widely different means.
For ease of exposition consider the following directed tree $T = (V, E)$ with $V = \{s_1, s_2, s_3, s_4\}$ and $E = \{(s_2, s_1), (s_3, s_1), (s_4, s_2)\}$, where the pairs in the E set represent the edges of the tree. Node A is the root of the tree and has two children s_2 and s_3. In other words, node A is at level zero and has $\text{degree}_1 = 2$. The mean value of degrees in this level is $\mu = \text{degree}_1$ and the standard deviation σ is $\sigma = \sqrt{(\text{degree}_1 - \mu)^2} = 0$ Thus $\text{COV} = 0$ thus the tree in level zero is perfectly balanced. At level zero the tree is always perfectly balanced since there is only one parent at this level: the root. Similarly, for level one $\mu = (\text{degree}_2 + \text{degree}_3)/2$, $\sigma = \sqrt{(\text{degree}_2 - \mu)^2 + (\text{degree}_3 - \mu)^2} = 0.5$ and $\text{COV} = \sigma/\mu = 1$. Note that COV can not be always zero depending on the connections in the network.

The formal definition of the problem we solve (balanced tree construction problem) follows:

Definition 5 Given a network $G = (V, E)$ and a sink q, construct a shortest-path tree $T = (V, A)$ with $A \subset E$ that minimizes COV_l for each level $1 < l < \text{height}(T)$.

In the following sections we tackle this problem propose a centralized optimal algorithm that solves it and a simple distributed algorithm that approximates it.

4.4 Centralized Optimization Algorithm (COPT)

For simplicity of presentation in this section we change our notation as follows: $S = V_l$, $T = V_{l-1}$, $C = E_l$. We also use $\text{nit}_V(A)$ to denote all the nodes $v \in V$ incident to the edges in A. Similarly, $\text{eit}_C(S)$ denotes the edges $e \in C$ incident to nodes in S.

Our centralized optimization (COPT) of the balanced tree construction problem makes use of a routine that solves a smaller subproblem called Balanced Assignment Problem. Since we want to construct a shortest-path tree, we know in advance the set of nodes V_l that will compose each level l (see Section 3). Since, we can connect nodes
only of neighboring level the only thing we can do to minimize the COV$_T$ of the degrees in the tree T is to minimize the COV$_L$ for each level l individually.

The problem of constructing a balanced tree can be divided into the following subproblem: For each level l assign every node in S to a node in T, such that the COV of the node degrees in T is minimized. The works [21, 35, 28, 26] solve a similar problem of finding the assignment between S and T that minimizes the maximum node degree in T. We adopt one of the names used in these works and call our subproblem *Balanced Assignment Problem*.

COPT adapts the algorithm proposed by Chang and Ho [26] to solve our *Balanced Assignment Problem*. It then combines the individual solutions for every level to construct the optimally balanced query routing tree. An example of a solution given by *COPT* to a 4x4 grid network can be seen in Figure 4.3.

Assignment problems have been studied as early as 1865 by Jacobi [83] and exist in various disciplines. The assignment of each node in S of level l to some node in T of level $l - 1$ is a type of assignment problem [21]. Our *Balanced Assignment Problem* is defined as follows:

Definition 6 Given the bipartite graph $G = (S, T, C)$ we are looking for an assignment $A \subseteq C$ such that COV_T is minimized.

In literature a similar problem has been studied that minimizes a different, simpler objective, namely the maximum degree of T. Given a bipartite graph $G = (S, T, C)$ the proposed algorithms return an assignment $A \subseteq C$ such that $\max \{\text{degree}_i, \forall i \in T\}$ is minimized. Such algorithms are proposed in [21, 35, 28, 26].

We make use of the algorithm proposed by Chang and Ho [26], called *Cardinality*, which we adapt to be able to serve as a routine in our solution to the *Balanced Assign-
ment Problem. We call the adaptation Max_Degree and formally it solves the following problem: Given a bipartite graph $G = (S, T, C)$ and a partial assignment A_{part} return an assignment $A \subseteq C$ with $A_{part} \subseteq A$, such that $\max\{\text{degree}_i, \forall i \in T - \text{nit}_T(A_{part})\}$ is minimized. We repeat Max_Degree for each node in T that can reduce its degree further. The node of T that forces Max_Degree to terminate is identified and the edges to its children are put inside the partial result A_{part}. In each repetition of the Max_Degree process we feed the partial result of the previous call. Next we present the algorithm in Algorithm 1.

We present the changes made to the initial Cardinality algorithm to get Max_Degree. For more details on Cardinality please see the work of Chang and Ho [26]. The main change is in the input and the output. The input is a partial solution A_{part} containing already some edges $e \in C$. The output of Cardinality is the edge list A constructed during the for-loop (Lines 6 - 34). Instead, the solution of Max_Degree, denoted as A_{part}, only uses the input partial solution augmented by the edges from A that connect to node v (Lines 35 - 36). Node v is the node that forced the last increase in the maxDegree variable in Lines 29-30.

Now we are ready to present the Balanced Assignment Approximation (BAA - Algorithm 2). It makes use of the Max_Degree algorithm presented above. BAA runs Max_Degree as a subroutine and uses it to minimize the degree of every node in set T until no more degree can be decreased. After every call to the routine, the output A_{part} is fed as input to the next routine call. This way the routine just minimizes the degree of the nodes $u \notin A_{part}$. The Max_Degree routine is called iteratively until $\text{degree}_u = 1, \forall u \notin A_{part}$.

It is easy to see that BAA performs better than Cardinality for minimizing
Algorithm 1. Max_Degree

\textbf{Input:} bipartite graph \(G(S, T, C)\) with bipartition \((S, T)\) and a partial solution \(A_{part}\)

\textbf{Output:} new \(A_{part}\) for next iteration

1: \(A \leftarrow A_{part}\)
2: \(maxDegree \leftarrow 0;\)
3: \(S' \leftarrow S - nit_S(A_{part});\)
4: \(C' \leftarrow C \cap \text{eit}_C(S')\) \(\triangleright\) make sure we don’t connect an already connected child
5: \(v \leftarrow \text{nil};\)
6: \textbf{for all} \(s \in S'\) \textbf{do}
7: \hspace{1em} set all vertices in \(S'\) and \(T\) unscanned;
8: \hspace{1em} erase labels of all vertices in \(S'\) and \(T;\)
9: \hspace{1em} label \(s\) by “start”;
10: \hspace{1em} \(flag \leftarrow \text{true};\)
11: \hspace{1em} \textbf{while} \(flag\) is true \textbf{do}
12: \hspace{2em} \textbf{if} there is a labeled and unscanned vertex \(i\) \textbf{then}
13: \hspace{3em} \textbf{if} \(i \in S\) \textbf{then}
14: \hspace{4em} identify all edges \((i, j) \in C;\)
15: \hspace{4em} label each unlabeled node \(j\) by “i”;
16: \hspace{4em} mark \(i\) as scanned;
17: \hspace{3em} \textbf{else if} \(i \in T\) and \(\text{degree}(i) \geq maxDegree\) \textbf{then}
18: \hspace{4em} identify all edges \((j, i) \in A;\)
19: \hspace{4em} label each \(j\) by “i”;
20: \hspace{4em} mark \(i\) as scanned;
21: \hspace{3em} \textbf{else if} \(i \in T\) and \(\text{degree}(i) \leq maxDegree\) \textbf{then}
22: \hspace{4em} \text{Path} \leftarrow \backslash text{backtrack from }i\text{ to }s\text{ following the labels;}
23: \hspace{4em} A \leftarrow (A - \text{Path}) \cup (\text{Path} - A);
24: \hspace{4em} mark \(i\) as scanned;
25: \hspace{3em} \textbf{else}
26: \hspace{4em} find edge \((s, t) \in C'\) such that \(t \in T\) and \(\text{degree}(t) = maxDegree;\)
27: \hspace{4em} A \leftarrow A + (s, t);
28: \hspace{4em} v \leftarrow t;
29: \hspace{4em} maxDegree \leftarrow maxDegree + 1;
30: \hspace{4em} \text{flag} \leftarrow \text{false};
31: \hspace{3em} \textbf{end if}
32: \hspace{1em} \textbf{else}
33: \hspace{2em} \textbf{end while}
34: \hspace{1em} \textbf{end for}
35: \(Y \leftarrow \text{all}(i, v) \in A;\) \(\triangleright\) A is the solution to the assignment problem where the maximum degree of the nodes not in \(A_{part}\) is minimized
36: \(A_{part} \leftarrow A_{part} + Y;\)
37: \text{output}(A_{part});
Algorithm 2. BAA

Input: bipartite graph $G = (S, T, C)$
Output: assignment $A \subseteq C$ such that COV_T is minimized

1: $\text{reducedDegree} \leftarrow \text{inf}$
2: $A_{\text{part}} \leftarrow 0$
3: while $\text{degree}_u > 1, \forall u \notin A_{\text{part}}$ do
 4: $A_{\text{part}} \leftarrow \text{Max_Degree}(G, A_{\text{part}})$
5: end while

the variation of the node degrees. Minimizing the degrees of each parent, starting from
the nodes that with maximum minimum degree, forces the nodes with lower degrees to
share the assignments better. BAA calls \textit{Cardinality $|T|$} times in the worst case. In
every run i it needs to iterate $|C| - i$ nodes in the worst case. Since the complexity of
\textit{Cardinality} is $O(|S||C|)$ we can say that the time complexity of BAA is upper bound
by $(O(|T||S|\log|C|))$. It follows that for a graph $G = (V, E)$ a good upper bound for the
complexity of \textit{COPT} is $O(|V|^2\log|E|)$.

Although the algorithm \textit{COPT} would be very easy to implement in a dis-
tributed fashion, its complexity in the communication cost makes it unattractive. In
each loop of the algorithm \textit{Max_Degree} we scan a node. In a distributed implementa-
tion of BAA this would translate into a message between two nodes passing the process
control to the next node. Thus, the number of messages exchanged in a decentralized
version of \textit{COPT} would be $O(|V|^2\log|E|)$. It is actually cheaper to send all the needed
information from the nodes to the sink q and perform the algorithm centrally as it is
presented above. This would require only $O(|V|)$. The \textit{COPT} is mainly used to compare
against our distributed algorithm as the ground truth in the experimental evaluation in
Section 4.6.

The solution T given by \textit{COPT} can be seen in Figure 4.3. The deviation of
node degrees is $COV_{\text{COPT}} = 2.43$. The node degrees are $\text{degrees}_{\text{COPT}} = \{1, 1, 2, 1, 1,$
4.5 Our Distributed Tree Construction Algorithm (MHS)

We propose Minimum Hot-Spot (MHS), a distributed algorithm that creates a query routing tree connecting all nodes of the network and has minimum hot-spots. The overhead for constructing a tree is minimum compared to previous work.

In section 4.5.1 we will discuss the intuition and analyze the efficiency of our algorithm. Then, in section 4.5.2 we will present the process for requesting and constructing the tree.

4.5.1 Sequential Greedy Parent Selection

Given a graph $G = (V, E)$ assume we have a set of parents V_{l-1} and a set of children V_l and the superset of edges $C \subseteq E$ of the possible connections between V_l and V_{l-1}, we want to connect each child $v \in V_l$ to a parent $p \in V_{l-1}$ with minimum message exchange and avoiding hot-spots (nodes that have more children than others). This is the subproblem we solve for each tree level. Here we propose a method called sequential greedy parent selection that solves this problem.

The minimum number of messages needed is one request from each child and
an one acknowledgement for each request (handshake) to confirm. In total these are $2 \times |C|$ messages. This is the number of messages our method needs to solve the above problem. The minimum amount of message guarantees the minimum possible overhead for constructing a tree. To perform this task we can not but let the child nodes greedily select their parent, since every child can send only one message.

To avoid hot-spots we balance the branching factors of the parents. We let the nodes perform the parent selection in sequential order. This way the parent selection can based on information snooped from previous child-parent interactions. We make use of maximum amount of information attained from minimum amount of messages. Making the children select parents in sequential order also has a positive side effect: collisions are reduced during the tree construction process.

We order the children by ascending order of their number of candidate parents. Nodes with more candidate parents should request an adoption later since they have more options. Information about the other nodes in the network is of no use to a node that has only one candidate parent, but it can aid a node that has more candidate parents make a sophisticated selection. In addition, letting a node with only a few candidate parents select later might force it to choose between two already over-branched parents.

To fully exploit the above intuition we implicitly define time-slots in which the parent selection takes place. The first time-slot is reserved for children that have only one candidate parent. The second time-slot is reserved for children that have two candidate parents, time-slot i is reserved for children that have i number of candidate parents. To get closer to an absolute sequential order amongst children that fall in the same time-slot, we add a small random timeout that shifts their parent selection inside their time-slot. Formally, the time-point t where node v will select one of its candidate
parents P to connect to is given by

$$t = \text{timeslotsize}(|P| + \text{random}) \quad (4.1)$$

4.5.2 Constructing an MHS Tree

In MHS the child nodes choose their parent. The request to connect to a parent is called here adoption request. Note that a node that receives an adoption request always accepts it and sends back an adoption acknowledgement. The number of children a node has is equal to the number of adoptions this node accepted.

Every node i stores its distance to the root $d(i)$ and the set of candidate parents in a heap called candidate parent heap CPH. The top element of the heap is the parent with the least number of adoptions. Note that the heap does not hold duplicates.

Next, we describe the MHS algorithm in an event-driven fashion: actions that must be taken when a specific event happens. Everything starts as soon as a node has a query Q that needs to be answered.

The querying node r creates a tree construction request $tcr(Q, u, d(u))$ containing the query Q, the neighbor node u who forwarded the tree construction request, and the shortest hop distance $d(u)$ from u to the root node r. Initially $u = r$ and $d(u) = 0$.

When a node i receives a tree construction request $tcr(Q, u, d(u))$ (Algorithm 3) it checks whether it received a tree construction request before (Step 1). If not, it sets its distance to the root $d(i)$, adds the node u to is candidate parent heap and forwards the tree construction request with its own data (Steps 2-4). If node i received a tree construction request before, it checks whether the new request comes from a node that is closer to the root than the nodes heard from so far (Step 5). If this is the case, it removes all nodes from the candidate parent heap and adds the new node u. It also
Algorithm 3. MHS - query dissemination

Event: node i receives a tree construction request $tcr(Q, u, d(u))$

Actions:
1: if $d(i) = \emptyset$ then
2: $d(i) \leftarrow d(u) + 1$
3: $CPH \leftarrow u$
4: broadcast($tcr(Q, i, d(i))$)
5: else if $d(u) < d(i) - 1$ then
6: $d(i) \leftarrow d(u) + 1$
7: $CPH \leftarrow \emptyset$
8: $CPH \leftarrow u$
9: broadcast($tcr(Q, i, d(i))$)
10: else if $d(n) = d(i) - 1$ then
11: $CPH \leftarrow u$
12: end if

Algorithm 4. MHS - request adoption

Event: node i does not receive any more tree construction messages

Actions:
1: $p \leftarrow CPH.pop()$
2: $t \leftarrow calculateAdoptionTimeout()$
3: broadcast_after_timeout($t, ar(i, p)$)

Algorithm 5. MHS - counting adoptions

Event: node i receives an adoption acknowledgement $aack(p, u)$

Actions:
1: if $u = i$ then
2: $myparent \leftarrow p$
3: else if $p \in CPH$ then
4: increase the number of adoptions of p in CPH by 1
5: end if
updates its own distance to the root $d(i)$ and re-forwards the tree construction request with the updated information (Steps 6-9). On the other hand, if the tree construction request comes from a node that is one hop closer to the root, it adds it to the candidate parent heap CPH (Step 11). If the request comes from node that is at the same or greater distance from the root, it gets ignored.

When a node i stops receiving tree construction requests (Algorithm 4) it pops the first entry p of the candidate parent heap CPH, which is the parent with the least number of adoptions (Step 1). It then calculates the time t to wait before sending an adoption request $ar(i, p)$ to the candidate parent p (Step 2-3). An adoption request $ar(u, v)$ contains the requesting node u and the chosen parent v. How the timeout t is calculated is described in section 4.5.1 and Equation 4.1.

A candidate parent p that receives an adoption request $ar(u, p)$ always accepts by sending back an adoption acknowledgement to the requesting node u. An adoption acknowledgement $aack(p, u)$ contains the parent p that accepted the request and the child u that initiated the request. In the next event-action description it becomes clear how a node counts the adoptions for its candidate parents.

When a node i receives an adoption acknowledgement $aack(p, u)$ (Algorithm 5) it checks whether the acknowledgement is for its own adoption request (Step 1). If yes, then node i sets its parent to p (Step 2). Else, if the acknowledgement comes from one of its candidate parents, it increments the number of adoptions for this parent by 1 (Step 3). In any other case, node i ignores the message.

As an example consider a 4x4 grid network. For each level l the node set V_l is $V_1 = \{9, 12, 14\}$, $V_2 = \{5, 8, 10, 15\}$, $V_3 = \{1, 4, 6, 11\}$, $V_4 = \{0, 2, 7\}$ and $V_5 = \{3\}$. The candidate parent list P_v of each node $v \in V$ is $P_0 = \{1, 4\}$, $P_1 = \{5\}$, $P_2 = \{1, 6\}$, $P_3 = \{2, 7\}$, $P_4 = \{5, 8\}$, $P_5 = \{9\}$, $P_6 = \{5, 10\}$, $P_7 = \{6, 11\}$, $P_8 = \{9, 12\}$, $P_{10} = \{\}$. ...
\{9, 11\}, \ P_{11} = \{10, 15\}, \ P_{15} = \{14\}. According to the size of their candidate parent list every node will have a selection time-point in the time-slot \(\text{timeslot}_1 = \{1, 5, 9, 12, 14\}\), \(\text{timeslot}_2 = \{0, 2, 3, 4, 6, 7, 8, 10, 11\}\). Notice, nodes of level one \(9, 12, 14\) do not take part in the parent selection process. The random parameter inside Equation 4.1 could cause any sequence inside a time-slot. Assume that the final selection sequence inside \(\text{time−slot}_2\) is \(11, 6, 0, 2, 3, 4, 7, 8, 10\).

![Diagram](image)

Figure 4.4: An MHS solution. \(COV_{COPT} = 3.01\)

The solution \(T\) given by \(MHS\) can be seen in Figure 4.5.2. The deviation of node degrees \(COV_{MHS}\) for \(T\) is \(COV_{MHS} = 3.01\), whereas for \(COPT\) it is \(COV_{COPT} = 2.43\) (Figure 4.3). The difference lies in the adoption of node 6 where for \(COPT\) it connects to node 10, whereas for \(MHS\) it connects to 5. This happens because of the intra-slot sequence of parent selection is defined randomly (Equation 4.1). Had been node 6 set to select and connect to a candidate parent first it would have connected to 10 and then 11 would be forced to connect to 5 which is a better solution. For \(MHS\) the node degrees are \(degrees_{MHS} = \{1, 1, 2, 1, 2, 1, 0, 1, 1, 1, 0, 0, 1, 0\}\), whereas for \(COPT\) they are \(degrees_{COPT} = \{1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0\}\) giving a lower degree deviation.
4.6 Experimental Evaluation

In this section we show with experiments that our algorithm is the best choice for creating a query routing tree with minimum hot-spots. We run experiments for various network layouts and identify the cases where our algorithm prevails. Our efficiency metrics include the balance of the tree, the maximum energy spent per node and the total energy spent in the network. We compare against our centralized algorithm COPT, and a previously proposed distributed algorithm summarized in the next paragraph.

4.6.1 Energy-driven Tree Construction (ETC)

The algorithm proposed in [10], called ETC, is executed as a 2 step process where an arbitrary tree is created first and then it is reorganized into a near-balanced tree.

In the first step (Discovery Phase) we want to get the the total number of sensors n and the height of the routing tree h at the sink q. When variables n and h are received, the sink calculates a uniform Optimal Branching Factor (β).

To get h and n at the sink an arbitrary query routing tree T' is constructed using the First-Heard-From (FHF) approach. During the construction, each node v_i also records its level l_i in the tree. A node v_i also maintains a child node list children and an candidate parent list. When the initial tree is done, the sink queries the network for the total number of sensors n and the height of the tree $h = l_{max}$. They also send their candidate parent lists to their current parent under T'. The nodes reply over the initial tree back to the sink and when variables n and h are received, the sink calculates the optimal branching factor $\beta = \sqrt[n]{n}$ for the whole tree.

In the second step (Balancing Phase) the sink disseminates the β value to the n nodes using the initial tree T'. Upon receiving β, each sensor conducts a number of
local rearrangements to its local topology in order to create a near-balanced topology.

In particular, when a node v_i receives β it tries to reassign as many of its children needed to reduce its degree such that $\text{degree}_{vi} < \beta$. It uses the candidate parent lists from its children received during the Discovery Phase to choose a new parent newParent for some of its children making sure not all are reassigned to the same new parent. Each child v_j that receives a parent reassignment tries to connect to the newly assigned parent newParent. Notice that if a node newParent cannot accommodate the connect request from a child v_j, then v_j has to report back to the current parent v_i and v_i has to pick a new parent from the candidate parent list. This procedure is repeated until completion or until the alternative parents are exhausted, where a different child is chosen for parent reassignment. If none of the children can be reassigned then they all stay connected to their current parent v_i.

As an example consider 4x4 grid network. ETC first constructs an arbitrary initial tree T' using the First Heard From technique. In our example it is the tree shown in 4.1. Then the querying node q collects information to compute β which in this case is $\beta = \sqrt[3]{16} = 4.06$. The node degrees for T' are $\text{degrees}_{T'} = \{0, 3, 1, 0, 2, 0, 0, 2, 1, 0, 0, 1, 0\}$ since all degrees are less than β no node reassigns any of its children and the resulting tree T for the ETC algorithm is the same as T' giving $COV_{ETC} = 4.67$.

Figure 4.5: An ETC solution. $COV_{COPT} = 4.67$
4.6.2 Experimental Setup

We run all the experiments on an Intel Core2 Duo 2.5Ghz processor with 3GB RAM running Ubuntu Linux. We used the wireless sensor network simulation framework SensorSim together with the compositional discrete event simulator J-Sim [87] to simulate a wireless sensor network and to implement our algorithms.

We use three layouts in our experiments: grid, grid with diagonal and random network. For the random network we randomly place n nodes in a 1000x1000 area and set their communication range to $2 \times 1000 / \sqrt{n}$ since this results in connected graphs that are not too dense. Note that the x-axis of every figure represents the square root of the number of nodes in the network. When $x = 9$ the network size is $n = 9 \times 9 = 18$ and when $x = 27$ the nodes in the network are $n = 27 \times 27 = 729$.

The random network emulates the wireless sensor networks in real world applications where nodes are usually placed randomly and obstacles, failures and transmission range variations prevent any predefined structured layout. Using the grid and grid with diagonals layouts it becomes clear how structure favors the ETC algorithm.

First, we present the performance of each algorithm, i.e. how well they balance the query routing tree (Section 4.6.3), and then we present the overhead that is needed to achieve this performance, i.e. the energy consumed (Section 4.6.4).

4.6.3 Quality Of The Resulting Query Routing Tree

The criteria for the performance of an algorithms constructing a query routing tree is the balance of the resulting tree. As defined in Section 3 the balance of the tree is expressed as the coefficient of variation COV of the degrees of the nodes. Although in our algorithms we try to minimize the COV for each level of the tree we measure the COV of all the nodes of the tree in the first set of experiments (Figures 4.6 - 4.8) and
the averaged value of the COV for each level in the second set (Figures 4.9 - 4.11). The smaller COV the more balanced the tree.

For the structured layouts (Figures 4.6, 4.7, 4.9, 4.10) it can be seen that the larger the network the better ETC performs, i.e. the more balanced the resulting tree is. Whereas, for MHS the performance stays almost constant. This phenomenon can be attributed to the fact that for the structured networks each node has the same amount of possible parents. When the number of candidate parents varies a lot in a network ETC performs poorly. For the random layout (Figures 4.8 and 4.11) that is closer to real world sensor networks, MHS is almost optimal for every network size, while ETC deteriorates with network size.

4.6.4 Tree Construction Overhead

Finally, we want to know how much overhead each algorithm poses to construct a query routing tree. The overhead is measured in energy consumed by the sensor nodes. To simulate the energy, we used the following parameters for our sensors: power consumption for transmission 0.660 Watts and power transmission for reception 0.395 Watts. The data rate of the radio is set to 19.2 kbps. In particular we record the maximum energy consumed by a node (Figures 4.12 - 4.14) and the total energy consumed by all nodes together (Figures 4.15 - 4.17).

We can see that the maximum energy per node (Figures 4.12 - 4.14) stays approximately constant as the network size increases. This is attributed to the distributed nature of MHS and ETC. The total energy (Figures 4.15 - 4.17) scales nicely with the
Figure 4.6: Grid network. Balance of tree

Figure 4.7: Grid with diagonals network. Balance of tree

Figure 4.8: Random network. Balance of tree
Figure 4.9: Grid network. Balance per tree level

Figure 4.10: Grid with diagonals network. Balance per level

Figure 4.11: Random network. Balance per tree level
network size. Note that the network size is increased exponentially, thus the total energy scales linear to the network size for MHS and ETC.

For comparison, we also show the energy that would be needed if we chose to construct our query routing tree using our centralized optimal COPT algorithm. The energy shown corresponds to acquiring the needed information from the network at the sink, disseminating the optimal solution back into the network and letting each node connect to its predefined parent. The cost of the centralized COPT is too high for it to be considered as an efficient solution in a real sensor network. Note that the actual values of for the COPT algorithm are shown in bold on top of the white bars, because the bars were too large to fit in the picture.

4.7 A Summary

We present a novel distributed algorithm (MHS) that, with the minimum possible number of messages, constructs a query routing tree that approximates the optimally balanced tree. The approximation achieved is better than the one in previous work. This algorithm can be used for acquiring data from the nodes of any distributed systems where main goal is to minimize the communication cost. Two points make our algorithm very attractive: the construction of the tree has the minimum possible communication cost and the balance of the resulting tree contributes to large communication cost savings during the tree usage. Wireless sensor networks are a distributed systems that greatly benefit from the deployment of our distributed algorithm MHS to construct all needed acquisitional query routing trees, as shown by our experiments.
Figure 4.12: Grid network. Maximum energy of a node

Figure 4.13: Grid with diagonals network. Maximum energy

Figure 4.14: Random network. Maximum energy of a node
Figure 4.15: Grid network. Total energy of network

Figure 4.16: Grid with diagonals network. Total energy

Figure 4.17: Random network. Total energy of network
Imbalanced query routing trees have many hot-spots, and hot-spots inherently cause a high number of collisions to occur on the communication medium. In wireless sensor networks this translates to extra communication cost. Using our algorithm for constructing the query routing tree the network lifetime of acquisitional wireless sensor networks is prolonged.
Chapter 5

Instantaneously Querying A Subset Of Nodes

The queries that require data only from a subset of nodes in the network are called \textit{Multi-Predicate Queries (MP-Queries)}. A routing tree must be constructed to collect and process data from the source nodes. Processing is done by operators placed at the internal nodes of the routing tree. To construct a tree (or in other words find the operator placement) that will require minimum energy consumption to execute the query is NP-hard.

This work minimizes the cost of answering snapshot multi-predicate queries in high-communication-cost networks. High-communication-cost (HCC) networks is a family of networks where communicating data is very demanding in resources, for example in wireless sensor networks transmitting data drains the battery life of sensors involved. The important class of multi-predicate queries in horizontally or vertically distributed databases is addressed. We show that minimizing the communication cost for multi-predicate queries is NP-hard and we propose a dynamic programming algorithm to compute the optimal solution for small problem instances. We also propose
a low complexity, approximate, heuristic algorithm for solving larger problem instances efficiently and running it on nodes with low computational power (e.g. sensors). Finally, we present a variant of the Fermat point problem where distances between points are minimal paths in a weighted graph, and propose a solution. An extensive experimental evaluation compares the proposed algorithms to the best known technique used to evaluate queries in wireless sensor networks and shows improvement of 10% up to 95%. The low complexity heuristic algorithm is also shown to be scalable and robust to different query characteristics and network size.

5.1 Introduction and Motivation

There is a need for intersecting lists of horizontally or vertically distributed data in various high communication cost (HCC) network applications. The intersection can take place at the sink or in-network, while the lists are routed towards the sink. Advances in the most commonly researched HCC networks, namely Wireless Sensor Networks, have made it possible to store large amounts of data on the sensors and reduce communication by transmitting data in batch [13][183].

Multi-Predicate Queries (MP-queries) are queries that consist of different predicates and are answered by the intersection of the individual answers for each predicate. In Figure 5.1 we can see a visual example of a sink issuing an MP-query whose predicates are answered by some source nodes. An instance of an MP-query: "Find the timestamps for which the temperature in region A and region B was 100, and the humidity in region C was 90%". More complex instances of MP-Queries are Spatio-Temporal Pattern (STP) queries, proposed and analyzed in [70]: "Find object IDs that crossed through region A at time \(T_1 \), came through area B at a later time \(T_2 \) and then stopped inside
We focus on snapshot instances of MP-Queries and the optimization of their in-network processing. A Dynamic Programming algorithm (*DPopt*) is proposed that does an exhaustive search for the possible routing trees and intersection operator placement and always finds the optimal solution. An optimal heuristic to branch and bound on the search space of *DPopt* is proposed. This heuristic is based on a variant of the Fermat point problem that has many practical application in various network problems. Due to its high complexity, *DPopt* is not useful for large problem instances and especially not for sinks with low computational power. For this reason we developed a low complexity suboptimal heuristic algorithm *2PH* which is shown to perform very close to the optimal solution. The basic intuition is that the transmission of big lists should be avoided and smaller lists should be used to intersect with them.

The goal of this paper is to minimize energy expenditure needed to perform in-network evaluation of snapshot multi-predicate queries in HCC networks. We take a holistic approach looking at all operators and optimize both their sequence and their placement. Our contributions:

- We address the important class of multi-predicate queries for high communication cost networks
- We analyze the complexity of identifying the optimal plan for executing a multi-predicate query and prove that the problem is NP-hard.
- We propose a dynamic programming algorithm *DPopt* to compute the optimal plan
- We present an important variant of the Fermat point problem, propose a solution and use it as a branch and bound method to reduce the search space and improve
the efficiency of the dynamic programming algorithm.

- We propose a fast suboptimal heuristic algorithm with performance very close to the optimal.

- An extensive experimental evaluation compares our algorithms to the best known technique used to evaluate queries in wireless sensor networks, and shows that savings from 10% up to 95% are possible. Our simple, heuristic algorithm is also shown to be scalable and robust to different query characteristics and network sizes.

Our algorithms are general in the sense that they can be used for any kind of query involving a set of intersections. Also, they can easily be used within the core of previously proposed query optimizers for WSN (e.g., tinyDB [112]). To our knowledge, this is the first work to propose, develop and analyze algorithms for optimizing in-network processing of multi-predicate queries in high communication-cost networks.

5.2 Related Work

Motivated by boolean queries in text database systems, works [45] [14] [12] [15] consider minimizing the comparisons needed to intersect a collection of sorted lists. Lower and upper bounds for intersecting two lists have been analyzed, but those bounds correspond to intersecting lists by exchanging individual elements. We stay at the granularity of exchanging whole lists amongst nodes, which is shown by our experiments to be more cost efficient.

5.2.1 Distributed Databases

Semi-joins are by far the most widely studied and used technique in the area of distributed query processing with focus on minimizing communication cost. Semi-
joins are shown to be of benefit only for relations with very large tuples \cite{109,110}. Chang in \cite{27} proposes heuristic rules for considering the optimal sequence of joining distributed relations. However, his heuristics account only for uniform networks and do not account for single attribute relations. The work of \cite{33} is also using joins to reduce transmitted data. Their divide and conquer heuristic algorithm is developed for uniform networks and requires queries that involve both 'data reducing' and 'data increasing' join operators on different attributes in order to work. In our case we deal only with intersections which is always 'data-reducing' and which is defined between the same common attribute over all relations. Using their algorithm in our problem would return a random query tree.

Optimization techniques for queries have also been studied by Hellerstein \cite{73} where an algorithm is proposed for the optimal ordering of selections. Like theirs, our algorithms are also motivated by the Least-Cost Fault Detection problem \cite{123}, which puts selection predicates in inversely proportional order of their selectivity. The heuristic proposed in \cite{73}, however, can not be straightforwardly applied in our setup since the differential cost in our case depends on the path chosen so far for computing the intersection.

5.2.2 Wireless Sensor Networks

The work by Bonfils et al. \cite{18} deals with optimizing in-network query processing for continuous queries. They propose an operator placement that progressively adapts to minimize the communication cost as the query is running. The initial placement is done arbitrarily and can be very costly before it converges. This algorithm is efficient only for long-running continuous queries mostly found on WSN with streaming data.
Meliou et al. [116] consider gathering data from a small subset of sensors, where they propose a new query routing scheme where the query dissemination and the query evaluation are combined in one step. A fixed-size packet with the query is routed over all nodes of interest gathering their readings, and returned to the sink. The assumption that the size of the data gathered from each source is known is only viable in very specific applications. Furthermore, their algorithm does not account for the reduction imposed by intersecting two sets of data from different sources, thus it is not optimally applicable in our scenario.

Coman et al. [37] propose heuristics to optimize the placement of only a single binary join operator. In general, they pick the closest node to the optimal Euclidean location of joining. As we will show in this paper this heuristic is very dependent on the network layout and can result in a very costly plan. Yu et al. [180] are also interested in minimizing communication cost for a single binary equi-join of tuples coming from two different neighborhoods. They use synopsis to cut down on the data sent from each local neighborhood to the actual join operator and they compare against a method identical to what Coman et al. proposed in [37]. In our paper we want to optimize queries with more than one operator, thus we need to take a holistic approach looking at all operators and optimize both their sequence and their placement. If we assume that each predicate is answered by a neighborhood and not just by one node then we can incorporate the synopsis method by [180] in our framework for every operator placement.

5.3 Assumptions, Notation and Definitions

Several assumptions on the high-communication-cost network are needed to better analyze the theoretical aspect of the problem and study the behavior of the
proposed methods. We consider that the nodes in the network are stationary throughout the query injection and answer retrieval. Also, the network is symmetric, which means that if a node \(u \) is able to listen to node \(v \) then \(v \) can also listen to \(u \).

The basestation or querying node (called also sink) has full knowledge of the network which is a valid assumption if we use Link State routing (for example [34]). This assumption can be dropped in the case the nodes are aware of their location and the query consists of spatial predicates, since we can use geographic routing [89]. The way each site collects the data it needs is orthogonal to this work. Also, techniques to store and index data [105] [184] are complementary to this work.

We assume that we are able to estimate the selectivity of each intersection operator. The efficiency of the proposed query optimization techniques depend on the accuracy of this estimation. A zero cost solution is to use past query answers to estimate the selectivity of new intersections. Another solution is using end-biased samples [56] that provide high accuracy with small communication cost for correlated data. Techniques like histograms [107], sketches [164] and Bloom filters [17] have also been proposed and applied to estimate the selectivities of operators in a distributed system. Nevertheless, dealing with large datasets the cost of estimating the intersection selectivity is very low compared to the cost of query processing.

We will stay at the granularity of exchanging lists and not elements. As experiments show our algorithms always outperform exchanging elements.

Multi-predicate snapshot queries Our techniques target applications that make use of multi-predicate snapshot queries. Snapshot queries are instant queries that require their answer at the specific time of the query expression. Multi-predicate queries consist
of different predicates, that are simple queries like selections, range, skylines, etc. The answer to the multi-predicate query is computed by the intersection of the predicate answers.

Problem Definition Consider a wireless sensor network with a set N of n nodes $n_1, n_2, ..., n_n$. We have a multi-predicate query Q – consisting a set P of m predicates – injected at node $q \in N$. Each predicate is assigned to one node, so there is a subset S of N with m nodes that can answer the query. Each node $n_i \in S$ is called source and holds a predicate answer A_i. Our goal is to minimize the cost-function (3.2) of computing $\bigcap_{i=1}^{m} A_i$ and sending the result to the sink q.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>set of all nodes in the wireless sensor network</td>
</tr>
<tr>
<td>n</td>
<td>number of nodes in the network $n =</td>
</tr>
<tr>
<td>Q</td>
<td>multi-predicate query</td>
</tr>
<tr>
<td>P</td>
<td>set of the predicates $p_1, p_2, ..., p_m$ in query Q</td>
</tr>
<tr>
<td>m</td>
<td>number of predicates in query Q, $m =</td>
</tr>
<tr>
<td>q</td>
<td>querying node (sink)</td>
</tr>
<tr>
<td>S</td>
<td>set of source nodes, each holding a single predicate answer A_i. $S \subset N$</td>
</tr>
<tr>
<td>A_i</td>
<td>set of values held in source node s_i that is the answer to some predicate p_j</td>
</tr>
<tr>
<td>B_u</td>
<td>Bytes to be sent from node u</td>
</tr>
<tr>
<td>$Hops(u,v)$</td>
<td>Hops of shortest path from node u to node v</td>
</tr>
<tr>
<td>$D(u,v)$</td>
<td>Distance function we use as a heuristic</td>
</tr>
</tbody>
</table>
5.4 NP-hardness

Consider the simple case where all predicate answers are identical, thus any intersection of two sets will result in the same set again. In this case all the edges in our virtual graph will have static weight since the load transmitted over it will always be the same.

The definition of the Steiner Tree problem in graphs:

Steiner Tree in Graphs

Instance: Graph \(G = (V, E) \), a weight \(w(e) \in \mathbb{Z}_0^+ \) for each \(e \in E \), a subset \(R \subseteq V \), and a positive integer bound \(B \).

Question: Is there a subtree of \(G \) that includes all the vertices of \(R \) and such that the sum of the weights of the edges in the subtree is no more than \(B \)?

Thus, a special case of our problem is already reducible to the Steiner Tree problem, which is proved to be NP-hard by Karp [90]. Thus, our problem is NP-hard also.

5.5 Our Optimal Algorithm

The optimal solution can be constructively found by a Dynamic Programming algorithm that we will call \(DP_{opt} \). During \(DP_{opt} \), we need to compute a \((2^m - 1) \times n\) matrix \(C \). Every row of this matrix corresponds to a subset of \(S \) (\(S \) has \(m \) source nodes), and every column is a node in \(N \) (\(N \) has \(n \) nodes). Each cell \(c_{i,j} \) of the matrix \(C \) contains the minimum communication cost to get the intersection of subset \(i \) at node \(j \). For example, \(c_{\{s1,s2\},n6} \) corresponds to the minimum cost needed to compute the intersection of \(A_1 \) and \(A_2 \) and get the result at \(n_6 \). As another example, \(c_{\{s1,s2,s3\},n4} \) corresponds to the minimum possible cost to get the intersection of \(A_1, A_2, \) and \(A_3 \) at node \(n_4 \). In this case, \(n_4 \) could receive \(A_1 \cap A_2 = A_{12} \) from one node and \(A_3 \) from another and compute \(A_{12} \cap A_3 \), or \(n_4 \) could receive \(A_1 \cap A_3 = A_{13} \) from one node and \(A_2 \) from another and compute \(A_{13} \cap A_2 \), or \(n_4 \) could receive \(A_2 \cap A_3 = A_{23} \) from one node and
A₁ from another and compute \(A_{23} \cap A₁ \), or could even receive the whole intersection \(A₁ \cap A₂ \cap A₃ = A_{123} \) from a different node. The goal of \(DP_{opt} \) is to find which of the above ways is the cheapest and store its cost at \(c_{\{s₁s₂s₃\},n₄} \) (and the corresponding sub-plan). How to create the Dynamic Programming matrix \(C \) for \(DP_{opt} \) is described in detail later.

Assume that \(C \) has been completed. The last row of this matrix will store, for each node in \(N \), the minimum cost of that node being the final recipient of the complete intersection. The cost in \(c_{\{s₁s₂s₃\},q} \) will correspond to the cost of the optimal plan for answering the MP-Query \(Q \).

In matrix \(C \) each row corresponds to a subset \(Sᵢ \subset S \) and is constructed as follows. For each cell \(c_{Sᵢ,v} \) we consider each possible split of \(Sᵢ \) into two sets \(Sᵢ₁ \) and
S_{i2}. We access the corresponding rows for S_{i1} and S_{i2}, and we measure the cost that these two nodes send the partial intersections to v. We also consider the whole set S_i being sent directly from a different node. Thus we need to consider all columns of the same row which might not yet be filled out. We compute the minimum of these costs and store it to $c_{S_i,v}$ (together with the corresponding sub-plan in a separate data structure). If this new cost affects other columns in the same row we update them. The computational cost of evaluating query Q according to our DP_{opt} is mainly:

$$c_{S_i,v} = c_{S_{i1},u} + c_{S_{i2},w} + B_u \text{Hops}(u,v) + B_w \text{Hops}(w,v)$$

where S_{i1} and S_{i2} the non-overlapping splits of S_i and $u,v,w \in S$.

Table 5.2 shows the Dynamic Programming matrix C for our example in Figure 5.1 where the sources s_1,s_2,s_3 have cardinality 20 and every time we intersect we get 1/2 of the smallest input elements. The first two rows are easy to complete: there are no possible splits of the single-element sets thus for each set we compute the cost of sending it to the node in each column. For instance, cell $(1,1)$ represents cost $c_{\{s_1\},n_1}$ of sending set $\{s_1\}$ to node n_1, 20 bytes traveling over 2 hops $n_2 \to n_6 \to n_1$ makes 40. In the same manner the other cells of rows 1-3 are computed. For rows 4-6 we can split the two-element sets only one way. For instance, set $\{s_1s_3\}$ can be only split into set $\{s_1\}$ and set $\{s_2\}$. $c_{\{s_1s_2\},n_1}$ represents the optimal cost of sending the result.
of set \(\{s_1 s_2\}\) to node \(n_1\). To find this optimal cost we need to test all possible ways of computing the result of \(\{s_1 s_2\}\). The optimal solution is sending both to node \(n_1\) with costs \(c_{\{s_1\},n_1} = 40\) and \(c_{\{s_2\},n_1} = 20\) read from cells (1,1) and (2,1) respectively. This gives a total of 60 which is written into cell (4,1). The rest of the cells in rows 4-6 are computed in the same way. For row 7, where we have the 3-element set \(\{s_1 s_2 s_3\}\), we follow the same steps, only this time we have 3 possible splits \(\{s_1 s_2\}-\{s_3\}\), \(\{s_1 s_3\}-\{s_2\}\), and \(\{s_2 s_3\}-\{s_1\}\). For each possible split we need to test all scenarios of getting the result of each subset and send it to the appropriate node \(x\), write the minimum cost into cell (7, \(x\)) and store the plan used in a separate structure for reference. For \(x = n_3\), which is the sink, we can get subset \(\{s_1 s_2\}\) with cost 30 as indicated by \(c_{\{s_1 s_2\},n_3}\) and subset \(\{s_3\}\) with cost 40 as indicated by \(c_{\{s_3\},n_3}\) for a total cost of 70. An alternative is to get subset \(\{s_1 s_3\}\) with cost 50 and subset \(\{s_2\}\) with cost 20 for a total cost of 70. Another possible split is getting subset \(\{s_2 s_3\}\) with cost 30 and subset \(\{s_1\}\) with cost 40. We can also get the whole set \(\{s_1 s_2 s_3\}\) from node \(n_2\) with a total cost of 40, which is also the optimal solution that is written in \(c_{\{s_1 s_2 s_3\},n_2}\). We can see that there are two optimal solutions: \(s_3 \rightarrow s_2 \rightarrow s_1 \rightarrow s_2 \rightarrow q\) and the one shown on figure 5.2 both with cost 40.
It is easy to prove that $DPopt$ is an optimal algorithm for our problem definition, since it searches the solution space systematically and exhaustively. We can also show that the computational cost of $DPopt$ is given by the following expression:

$$
\sum_{i=1}^{m} \sum_{k=1}^{\binom{m}{i}} \left[n^3 \left(\binom{m}{i} \right) \binom{i}{k} \right]
$$

(5.1)

where m is the number of predicates in the query and n is the number of nodes in the network. That is, for each i-length combination S_i of source nodes, one row of the matrix has to be constructed, and for each of the n cells in this row, for each of the splits of S_i into two sets S_{i1} and S_{i2}, n^2 pairs of cells must be examined from the corresponding previous rows of the matrix. It holds that

$$
\sum_{i=1}^{m} \binom{m}{i} = 2^m - 1 \quad \text{and} \quad \sum_{k=1}^{i} \binom{i}{k} < \sum_{k=1}^{i} \binom{i}{k}
$$

we can simplify the complexity expression of our $DPopt$ with the upper bound

$$
\sum_{i=1}^{m} \sum_{k=1}^{i} \left[n^3 \left(\binom{m}{i} \right) \binom{i}{k} \right]
$$

$$
= n^3 \sum_{i=1}^{m} \left(\binom{m}{i} \left(2^i - 1 \right) \right) = n^3 \ast \left(3^m - 2^m - 1 \right)
$$

Thus, the time complexity of $DPopt$ is $O(n^3 \ast 3^m)$. The space complexity is equivalent to the size of the matrix $O(n \ast 2^m)$.

5.5.1 Our Heuristic Algorithm

In this section, we propose a suboptimal 2-phase heuristic algorithm ($2PHdeep$) that operates much faster than $DPopt$ and in most of the cases finds a solution very close to the optimal. This algorithm is breaking up the problem into two phases: 1) find an query tree that dictates the operator sequence, and 2) iteratively optimize the operator placement on this query tree.
Figure 5.4: Another instance of a Sensor Network

Figure 5.5: Query plan produced by Phase 2 for evaluation tree of Figure 5.7

DPopt is too slow and computationally demanding for large problems. In this section, we propose a suboptimal 2-phase heuristic algorithm (2PH) that operates much faster and in most of the cases finds a solution very close to the optimal. This algorithm is breaking up the problem into two phases: 1) find an evaluation tree that dictates the operator sequence, and 2) iteratively optimize the operator placement on this evaluation tree.

Distance Function

Our distance function is based on the cost function (3.2) given in section 5.3 and is the following:

\[D(u, v) = H_{uv} \cdot B_u \]

(5.2)
Figure 5.6: Query plan produced by Phase 2 for evaluation tree of Figure 5.8, where H_{uv} is the hop-distance between nodes u and v, and B_u are the number of bits to be transmitted from u.

Phase 1

Simple bottom-up (agglomerative) hierarchical clustering is used. First, for each source-node a single-element cluster is initialized containing the source (note that the sink is not involved in the clustering process). Each cluster C has a load B_C, which is the estimated result size of the intersection of the lists of its children C_1 and C_2.

$$B_C = |\bigcap\{C_1, C_2\}| \quad (5.3)$$

Each cluster also has a representative node denoted as $C.repr$ with a representative load B_C. This node plays the role of the sink for the sources in the cluster. $C.repr$ is chosen over the sources composing cluster C only, and is the source that minimizes the cost

$$x = Hops(C_1.repr, s) * B_{C_1} + Hops(C_2.repr, s) * B_{C_2}$$

The result of **Phase 1** is the evaluation tree where each of the m leaves holds a single-element cluster containing a source and the root holds a cluster composed of all sources. For example the evaluation tree for the network in Figure 5.4 can be seen in Figure 5.7.

The distance of two clusters is determined by the distance of their representative nodes expressed by function (5.2). For resolving ties we propose some heuristic tie
breaking rules:

1. Prefer the pair that is farthest from the sink. Data is likely to travel from the outer sources towards the sink.

2. Prefer the pair that will result in the smallest intersection. This way the next transmission is going to be cheaper.

Clusters are merged according to single linkage and the dimensionality of the problem space is low, thus the time complexity for Phase 1 is $O(m^2)$ [68], where m is the number of predicates in the query.

![Evaluation tree](image)

Figure 5.7: Evaluation tree returned from Phase 1 without the optimization for network in Figure 5.4

Phase 2

The task here is to optimize operator placement given the *evaluation tree* of Phase 1. The *evaluation tree* is traversed top-down to optimize the operator placement for each internal tree-node. At each step we consider two source nodes s_1, s_2 and one destination node $dest$ and try to find the optimal operator placement node f that
minimizes $Hops(s_1, f) \times B_{s_1} + Hops(s_2, f) \times B_{s_2} + Hops(f, \text{dest}) \times B_f$. Starting from the root of the evaluation tree we decide where to place the operator for the current tree-node.

The algorithm can be seen in Algorithm 6.

Algorithm 6 2PH Phase2(dest)

1. for each child C of dest do
2. $C_1 = \text{left child of } C$
3. $C_2 = \text{right child of } C$
4. find node f that minimizes

 $Hops(C_1, \text{repr}, f) \times B_{C_1} + Hops(C_2, \text{repr}, f) \times B_{C_2} + Hops(f, \text{dest}) \times B_f$
5. set node f as operNode of C
6. call 2PH Phase2(C)
7. end for
8. return

The algorithm scans the whole tree to determine operNode for each internal node of the tree which takes $O(\log m)$ for balanced trees and $O(m)$ for unbalanced trees.

To perform step 3 in Algorithm 6 we need to check all network nodes which is $O(n)$.

Figure 5.8: Evaluation tree returned from Phase 1 with the optimization for network in Figure 5.4
The time complexity for Phase 2 is thus $O(n \times m)$, where n is the number of nodes in the network and m is the number of predicates in the query Q. The total complexity of $2PH$ is $O(n \times m)$.

5.5.2 Optimization by Forcing Deep Trees

The algorithm described above has a major drawback: the evaluation tree it produces is very often bushy whereas the optimal solution is usually a left-deep tree connecting all the sources in a chain and fully exploiting the reducibility of the intersection operator. To take this into consideration we propose an optimization for Phase 1 of the $2PH$ algorithm. Before merging two clusters C_1 and C_2 we first check if it is more profitable to put one cluster C_1 as a child of the other cluster C_2 instead of having them as siblings (see Algorithm 7). Assume that $B_{C_1} < B_{C_2}$ where B_{C_1} is the load of cluster C_1 and B_{C_2} is the load of cluster C_2. Then the cost siblingCost of the resulting plan when two clusters are made siblings is

$$
\text{siblingCost} = B_{C_1} \times \text{Hops}(C_1.\text{repr}, C_2.\text{repr}) \\
+ B_C \times \text{Hops}(C_2.\text{repr}, q)
$$

where C is the cluster resulting from merging C_1 and C_2, B_C is the size of the intersected lists given by Equation 5.3, and q is the sink.

The cost of making cluster C_1 child of cluster C_2 is equal to:

$$
\text{descendantCost} = B_{C_1} \times \text{Hops}(C_1.\text{repr}, s) \\
+ \text{costDifference} + B_C \times \text{Hops}(C_2.\text{repr}, q) \quad (5.4)
$$

where costDifference is the difference in cost of creating cluster C_2 since now its members that lie on the path from s to $C_2.\text{repr}$ are going to be intersected with the
Algorithm 7 2PH_Merge(C_1, C_2)

1: if $B_{C_1} < B_{C_2}$ then
2:
3:
4:
5: else
6:
7:
8: else
9:
10: end if
11: if $siblingCost > descendantCost$ then
12:
13:
14:
15: else
16: end if
17: return

list C_1, thus transmitting less data amongst them. This makes $costDifference$ always negative. The cost of equation 5.4 is computed by function $Descendant_Cost()$ shown in algorithm 8. The node containing source s that minimizes the cost of transferring the data from $C_1.repr$ to C_2 is used as parent of $C_1.repr$ (line 1). Then, the evaluation tree of C_2 is updated so that the nodes on the path from s to $C_2.repr$ get merged with the new attached cluster C_1 and their load recalculated (lines 4-7). During this update the cost difference achieved from the updated loads is computed as $costDifference$ (line 7). For example, the evaluation tree for the network in Figure 5.4 can be seen in Figure 5.7 and the corresponding query plan in Figure 5.6. This heuristic greatly improves performance as experiments show. We call this version $2PHdeep$.

72
Algorithm 8 Descendant_Cost(C_1,C_2)

1: $s =$ source from C_2 that minimizes $B_{C_1} \ast \text{Hops}(C_1\text{.repr}, s)$
2: treenode = leaf node containing s
3: $\text{costDifference} = 0$
4: while treenode is not the root do
5: \hspace{1em} $\text{oldB} = B_{\text{treenode.cluster}}$
6: \hspace{1em} merge C_1 to treenode.cluster
7: \hspace{1em} $\text{costDifference} = (\text{oldB} - B_{\text{treenode.cluster}}) \ast \text{Hops}($treenode, treenode.parent$)$
8: end while
9: return $B_{C_1} \ast \text{Hops}(C_1\text{.repr}, s) + \text{costDifference}$
\hspace{1em} + $B_{C} \ast \text{Hops}(C_2\text{.repr}, q)$

The complexity of Descendant_Cost() depends on step 1 and the while loop of steps 4-6. The while loop is a bottom-up tree traversal from one leaf to the root which takes $O(\log m)$ time and Step 1 is $O(m)$. We can maintain a kd-tree for the source nodes and get s in $O(\log m)$ instead.

Lemma 7 The overall time complexity for the 2PHdeep algorithm is $O(m^2 \log m)$.

5.6 Branch And Bound Heuristic

In both algorithms proposed so far we deal with the same subproblem: given two source nodes s_1, s_2 and a sink node q in a graph find the optimal node f to place the intersection operator in order to minimize the communication cost. So far in our algorithms we have been using exhaustive search to find node f. In this section we will propose some heuristics to cut down on the search space for f and accelerate all proposed algorithms.

The subproblem mentioned above is the building block of both our algorithms and we will call it General Fermat Point in a Graph and the optimal node will be called
Fermat node. To the best of our knowledge the General Fermat Point in Graphs has not been identified prior to this work.

General Fermat Point in Graphs (GFPG)

Instance: Graph \(G = (V, E) \), three nodes \(n_1, n_2, n_3 \) with weights \(w_1, w_2, w_3 \) respectively and a positive integer bound \(B \).

Question: Is there a node \(f \) of \(G \) that connects to each of the three nodes \(n_1, n_2, n_3 \) over a multi-hop path and such that the sum of the weighted hop-distance from each of the three nodes to \(f \) is no more than \(B \)?

Works [154][153][37] deal with the same subproblem and as a solution they use the closest node to the general Fermat point in Euclidian space [38]. This is a straightforward heuristic with an approximate solution. For this method to be efficient the network has to be dense, nodes need to have equal communication range and they need to be evenly distributed. If those characteristics do not hold then the proposed heuristic can easily end up with a very bad choice for \(f \) as can be seen in Figure 5.9.

For our heuristic algorithm 2PH the above proposed suboptimal heuristic is good enough since it does not need to guarantee optimality and it is easy to implement. To find the general Fermat point in Euclidian space it takes constant time and using the a k-d tree we can find the closest node to the point in \(O(\log n) \) time. This replaces the exhaustive search for the optimal Fermat node that had a complexity of \(O(n) \) and makes the time complexity of Phase 2 be just \(O(\log n \times m) \). Thus the time complexity of algorithm 2PH becomes \(O(\log 2phn \times m + m^2) \).

For our DPopt algorithm we need to use a heuristic that will guarantee optimality. We propose a method to find the optimal solution for the GFPG problem by cutting down drastically the initial search space of size \(n \). Assuming that Fermat node is \(f \), and \(x = \text{Hops}(u, f) \), \(y = \text{Hops}(v, f) \), \(z = \text{Hops}(q, f) \) we use the following integer programming:

Given \(B_u, B_v, B_{uv}, \text{Hops}(u, q), \text{Hops}(u, v), \text{Hops}(v, q) \) find \(x, y, z \) that
minimize \[B_u \cdot x + B_v \cdot y + B_{uv} \cdot z \]
such that:

\[z + x \geq \text{Hops}(u, q), \quad z + y \geq \text{Hops}(v, q), \]
\[x + y \geq \text{Hops}(u, v), \]
where \(x, y, z \) are integers
\[x, y, z, B_i, \text{Hops}(i, j) > 0, \forall i, j \in \{u, v, q\} \]

\[B_u \cdot x + B_v \cdot y + B_{uv} \cdot z < B_u \cdot \text{Hops}(u, v) + B_{uv} \cdot \text{Hops}(v, q) \quad (5.5) \]
\[B_u \cdot x + B_v \cdot y + B_{uv} \cdot z < B_v \cdot \text{Hops}(u, v) + B_{uv} \cdot \text{Hops}(u, q) \quad (5.6) \]
\[B_u \cdot x + B_v \cdot y + B_{uv} \cdot z < B_u \cdot \text{Hops}(u, q) + B_v \cdot \text{Hops}(v, q) \quad (5.7) \]

For node \(f \) to be different from \(s_1, s_2, q \) it needs to satisfy inequalities 5.5, 5.6 and 5.7. Assume a solution \(\lambda \) exists for the above integer programming problem thus there might be a node outside the sources and the sink that satisfies \(\text{GFPG} \). All integer points \(P \) that lie in 3D space in the area formed by the hyperplanes of the constraints and the constraint \(B_u \cdot x + B_v \cdot y + B_{uv} \cdot z \geq \lambda \) are possible hop-distance combinations for our \textit{Fermat} node \(f \). For each \((x, y, z) \in P\) we try to find a node \(f \) in our network (graph) that is exactly \(x \) hops away from node \(u \), \(y \) hops away from node \(v \) and \(z \) hops away from node \(q \). This is performed by taking all \(x \)-hop neighbors of \(u \), all \(y \)-hop neighbors from
and all z-hop neighbors from q. All nodes that satisfy this condition are candidate Fermat nodes. We now only need to search amongst those candidate nodes, instead of all the nodes in the network, to get the Fermat node.

Taking Figure 5.9 as an example with $B_{s_1} = 10$, $B_{s_2} = 10$ and $B_{s_1s_2} = 5$ then the solution for the integer programming is $x = 2, y = 2, z = 2$ with cost 50. All the integer (x, y, z) points in the area between the solution and the constraints are $(2, 2, 2), (2, 2, 3), (1, 3, 3), (3, 1, 3)$. In the network there is only one node f satisfying $x = Hops(u, f), y = Hops(v, f), z = Hops(q, f)$ for any of the above points, thus this is our Fermat node.

5.7 Hybrid algorithm

The proposed heuristic algorithm 2PHdeep can be combined with the DPopt optimal algorithm to form a hybrid. We use the heuristic algorithm 2PHdeep to produce a fixed operator sequence to consider when running the DPopt algorithm. This way DPopt does not need to compute the cost of all possible combinations of splits, but just of the fixed, predefined splits. The output then is the optimal operator placement for the given fixed operator sequence. In other words we run Phase 1 of the 2PHdeep algorithm and use the produced evaluation tree to cut down search space of DPopt. The solution will be suboptimal and the total complexity of the hybrid method is dominated by the complexity of the dynamic programming phase.

Lemma 8 The complexity of Hybrid is $O(m^2*n^3)$, where m is the number of predicates in the query and n is the number of nodes in the network.

Proof As mentioned in Section 5.5 the complexity of DPopt is
During the *Hybrid* algorithm the sets to be considered and their splits are already set by the *evaluation tree*. For each set size there are at most \(m \) sets in the tree and for each set there is only 1 split defined. This makes the \(\sum_{k=1}^{i} \binom{i}{k} \) part of equation 5.1 become 1 and the \(\binom{m}{i} \) part of the equation become \(m \). Now the equation can be transformed into \(\sum_{i=1}^{m} n^3 \cdot m \cdot 1 \) and simplified into \(m^2 \cdot n^3 \).

5.8 Evaluation

First, we present two algorithms that will be used as comparison in our experiments.
5.8.1 Naive Algorithm

The routing algorithms for wireless sensor networks that have been proposed in literature are not sophisticated enough to exploit the characteristics of multi-predicate queries to reduce communication cost effectively. The best routing algorithms proposed in literature use opportunistic aggregation while streaming data to the sink [81] [95] [111]. This technique is also used for any type of aggregation query in the query optimizer of tinyDB [112]. First, the sink disseminates the query to all nodes of the network and during this process a communication (routing) tree is established (Figure 5.3). In the second phase, in a level-wise fashion, nodes send to their parents information which is then relayed to the level above, until all information reaches the sink. If a node receives two or more sets of values from its children or is a source, it computes the intersection.
of these sets before sending to its parent. As an example, consider the network of Figure 5.1 and the resulting communication tree of Figure 5.3, established after the query has been disseminated to the network. First, nodes \(s_1\), \(s_2\) and \(s_3\) transmit to their parents. \(s_2\) intersects \(A_1\) (received from \(s_1\)) with \(A_2\) (i.e., its own set) to produce \(A_1 \cap A_2\). This is sent to its parent \(q\) (the sink). \(n_4\) relays \(A_3\) to its parent and at the sink the final intersection is computed.

We will call this existing algorithm *Naive*. All proposed algorithms will be compared to *Naive* which represents the state of the art technique used in WSNs to answer multi-predicate queries.

5.8.2 Element Exchange

Another method to answer MP-Queries in a network is to communicate elements instead of communicating whole lists. Based on this idea there are algorithms to minimize the needed number of comparisons in order to get the intersection [45]. We adapted the so called *Adaptive* algorithm presented in [15] to be run distributed by the source nodes inside the network.

In our implementation each source \(s_i\) that receives an element \(e_j\) from the previous source either forwards it if it is common with one of its own elements, or sends out the element \(e_k\) from its own list that has an immediate larger value than \(e_j\). This is done cyclicly over all sources and whenever an element visits a source twice it is sent straight to the sink. This continues with the next larger element until a list runs out of elements. The task of the sink before running the query is to define the order in which the sources will communicate in a circle.

We will call this algorithm *ElEx* and we order the sources by picking a random source to start with and then picking as a successor the closest one from the remaining
in a greedy fashion.

Table 5.3: Algorithms to be compared

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2PH</td>
<td>The 2PH algorithm presented in Section 5.5.1</td>
</tr>
<tr>
<td>2PHdeep</td>
<td>The 2PH algorithm that implements the optimization proposed in Section 5.5.2</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Algorithm that combines the evaluation tree returned from 2PHdeep and the Brute Force operator placement given by DPopt</td>
</tr>
<tr>
<td>DPopt</td>
<td>The optimal solution as presented in Section 5.5</td>
</tr>
<tr>
<td>ElEx</td>
<td>The element exchange algorithm (5.8.2)</td>
</tr>
</tbody>
</table>

5.8.3 Experiments

Experiments were run on a network simulator in C++. We used two network layouts: a uniform grid with varying number of nodes from 10 to 150 and a random network with 150 randomly placed nodes in a space of 1000x1000 with communication radius of 125. The first experiments were run without any objects, only considering list sizes and a constant selectivity as parameter for the intersections, in order to see the impact of the intersection selectivity on our algorithms. This selectivity mostly depends on the size of the smallest list taking part in the intersection, but also on the number of all lists involved in the intersection and their sizes. For further experiments we used two datasets. One dataset has 1000 objects and for each object random points are uniformly generated over the whole network space and stored on appropriate nodes. Datapoints are generated until each node contains approximately half the objects in order to avoid early
empty intersection which would favor our algorithms. The second dataset is generated using a network-based data generator for moving objects [19] in order to evaluate the algorithms in the case of a realistic dataset with spatial data correlation. We used the Oldenburg road map and 8000 object to be generated. Their movement simulated for 1000 timesteps for a total of 200000 points in space. Random queries were generated by randomly picking a sink node and sources with varying number of sources m.

The efficiency of each algorithm is expressed as the percentage of the cost needed by the Naive algorithm described above (5.8.1). In our simulator the energy dissipated for communication is based on the models presented in [72] with the transmission range set constant. In our simple simulator fixed costs such as message headers are not considered since our cost model is not targeted to any particular sensor device or network protocol. Thus, the number of elements sent over a link is used to calculate

Figure 5.12: Experiments no objects were used and selectivity was constant
cost units. Ignoring the packet overhead greatly favors the element exchange algorithm \textit{ElEx} since a large amount of packets are used to send little data (1 element per packet).

All measurements are averaged over 20 random queries for each different parameter: network size n, predicate number m, selectivity $select$, and dataset used. Table 5.3 summarizes the notations we will use for each individual algorithm. Note that due to its high complexity $DOpt$ could not be run for predicates more that 8.

Impact of intersection selectivity The gain over the \textit{Naive} algorithm becomes smaller as the intersections get less selective. The selectivity value can be translated as multiplying the smallest input list with it in order to get the size of the intersection result. Thus, bigger values mean less selective intersections. We can see in Figure 5.12 that the less selective the intersection the smaller the gain compared to \textit{Naive}. For the
constant selectivity experiments the \(EIEx \) algorithm could not be run because no real objects were used in this experiments, thus no elements to exchange. The calculation of the cost was based on list sizes, which were originally assigned in random to the sources, and the selectivity factor for the intersections.

Impact of query size \(m \) The more predicates we have in the query the larger the improvement compared to \(Naive \), as shown in Figures 5.13, 5.14, 5.15. This is expected since the more predicates the more lists need to be intersected and thus the more data will be reduced before reaching the sink. Note that the intersections might even end up in an empty result, in which case we send an “empty”-element through the rest of the operator nodes and the sink to convey the empty result. For the experiments run on the random dataset where no spatial correlation in the data exists (Figure 5.14) we
Figure 5.15: Experiments with spatially correlated data points.

can also see the performance of ElEx. For small number of predicates it performs even worse than Naive. This is because sources are highly probable to be far apart and need to exchange many elements in order to reach the intersecting result. With more sources (predicates) the distance between sources is bound to be smaller thus resulting in more “local” element exchange. For the correlated dataset (Figure 5.15) the performance of ElEx is better. Even when for small number of sources the data has to travel further in order to intersect, when it does so, the intersection is much smaller due to the spatial correlation of the data: the further away you go the less common elements you have. This is why for larger values of \(m \) the cost of evaluating a query compared to the Naive cost is very low because there are many lists to intersect and the probability of non-common objects is higher.

The heuristic algorithm 2PHdeep performs always better than the algorithm
used so far (Naive). It always outperforms the element exchange algorithm ElEx even if the latter is favored by the cost function as mentioned earlier. Even more notable is the fact that it performs always very close to the optimal solution (DPopt), showing robustness to the selectivity and the correlation of the data, to the size of the queries and the network.

5.9 Summary and Conclusion

Recent research has focused on processing joins in wireless sensor networks. None so far has tackled the problem of in-network processing of queries with multiple intersections in a holistic manner. We show that the problem of minimizing communication cost of such queries is NP-hard and develop a dynamic programming algorithm together with a heuristic to compute the optimal solution for small problem instances. The heuristic used is based on a variation of the general Fermat point problem which is for the first time addressed and solved here. We also propose a much faster sub-optimal algorithm that is almost as efficient as the optimal.

The extensive experimental evaluation compares the proposed algorithms to the most widely used technique used to evaluate queries in wireless sensor networks and shows that an improvement of 10% to 95% is possible. The low complexity heuristic algorithm is also shown to be scalable and robust to different query characteristics and network size. Also, it is straightforwardly implementable into the optimizer of TinyDB [112]. The proposed algorithms, can be applied to any high communication cost network where there is a need to combine (intersect) data from different sources.
Chapter 6

Continuously Querying A Subset Of Nodes

We present an optimal distributed algorithm to adapt the placement of a single operator in high communication cost networks, such as a wireless sensor network. Our parameter-free algorithm finds the optimal node to host the operator with minimum communication cost overhead. Three techniques, proposed here, make this feature possible: 1) identifying the special, and most frequent case, where no flooding is needed, otherwise 2) limitation of the neighborhood to be flooded and 3) variable speed flooding and eves-dropping. When no flooding is needed the communication cost overhead for adapting the operator placement is negligible. In addition, our algorithm does not require any extra communication cost while the query is executed. In our experiments we show that for the rest of cases our algorithm saves 30%-85% of the energy compared to previously proposed techniques. To our knowledge this is the first optimal and distributed algorithm to solve the 1-median (Fermat node) problem.
6.1 Overview and Motivation

Network applications often need to perform in-network query processing. Sensor networks are being deployed in the physical or urban environment to benefit scientific research or security surveillance. An example of a query in a network, that is monitoring traffic in a busy downtown area, could be “How many cars took the same route of passing through intersections A, B and C?” To avoid the cost of communicating all the data lists from the nodes in regions A, B and C to the querying node, the query must be executed in-network. Data lists generated on the source nodes are fed into operators on intermediate nodes that combine several lists from different sources. The amount of data is reduce due to the selectivity of the operators and the final data that reaches the querying node is the final answer.

Operators, that do the in-network processing, can be placed on nodes of the network. They take in elements from source nodes, process them, and send the output elements to either another operator node or to the sink. Shipping elements over an edge in the graph imposes a cost that is dependent on the weight of the elements. Therefore, the placement of the operators can greatly affect the cost of answering a query since it affects the number of edges the elements have to travel over and the weight of the elements, since usually the output weight is not the sum of the input weights. There has been extensive research on finding a good placement for every operator of a query.

It is also usual to have continuous queries that require an answer over a continuous period of epochs. In most applications the sources and operators are not producing the same weight of elements in every epoch. Similarly, nodes in the network might be mobile resulting in different hop-distances between nodes in every epoch. Therefore, the
Figure 6.1: Example of optimal operator placement: (a) Data flow during query execution before the operator placement is optimized, and (b) data flow during query execution after the operator placement is optimized. The Fermat node is an external node. The cost represents the cost of our objective function, not the actual communication cost.

Figure 6.2: Example of optimal operator placement: (a) Data flow during query execution before the operator placement is optimized, and (b) data flow during query execution after the operator placement is optimized. The Fermat node is a datanode. The cost represents the cost of our objective function, not the actual communication cost.

initial operator placement might not be good enough for future epochs. It is a large overhead to re-run the algorithms for finding a good placement for all the operators of the query. Instead, the technique followed in literature is to update the placement of just the operators that are affected by the weight change in order to keep the cost of query execution in the next epoch to a minimum. This operator placement update needs to
be done with the least amount of communication cost overhead possible.

In Figures 6.1 and 6.2 let the nodes s_1, s_2 and q be the sources and the sink (henceforth called altogether datanodes) that send/receive data from the binary operator hosted at node h. Let w_i be the weight of the data to be sent from node n_i. We can see that by picking the right node to host the operator with the right distances from the datanodes, we can reduce the objective function for the communication cost of executing the query (difference between Figures 6.1(a), 6.2(a) and 6.1(b), 6.2(b)). Depending on the data loads and the path lengths, the optimal node to place the operator can be either an external node (figure 6.1), or one of the datanodes, i.e. a source or sink (figure 6.2). Our algorithm finds the optimal new placement for an operator while creating far less communication cost overhead than previous work. Note that we do not assume that the communication cost can be computed by summing the data-load sent over each link. We just use this as an objective function to estimate the actual communication cost. In our experiments we use a more accurate model for the communication cost.

Especially in high communication-cost applications minimizing the communication cost is the key issue. High communication cost networks play an important role in real world applications, as much as they do in research. The communication cost can be posed by monetary, temporal, resource or energy demands. As an example of a high communication cost network we will use a wireless sensor network throughout the paper. Wireless sensors have very limited energy resources. The task that has by far the highest demand in energy on a wireless sensor is the transmission and reception of data. Thus, the cost to pay for communicating is in form of energy. Minimizing the total energy consumed makes the whole network more energy sufficient, and minimizing the maximum energy consumption per node increases the network’s lifetime.

Our distributed Fermat node search algorithm ($dFNS$) achieves two goals: find-
ing the best node to place an operator and minimize communication cost doing so. To achieve this, it 1) identifies the special case where no flooding is needed, 2) if flooding is needed, it minimizes the flooding radius, and 3) uses variable speed flooding and eaves-dropping. Our algorithm is parameter-free, decentralized, optimal, and outperforms previously proposed methods in minimizing communication cost overhead.

As shown in our experiments, there is a high chance (56%-85%) that the optimal node to place the operator is a datanode (source or sink), like in the example of Figure 6.2. Such a case can be identified by our algorithm and the operator is simply placed on the optimal datanode without any further communication cost to find the optimal operator node.

In any other case, \(dFNS \) finds the optimal operator node (Fermat node) by extending a flood from each of the datanodes. We generate a set of possible distance combinations that the new hosting node can have to produce a smaller hosting cost. Using these candidate distance combinations \(dFNS \) calculates the minimum possible radius for each flood, guaranteeing that the nodes that participate are kept to a minimum without compromising the optimality of the algorithm.

We adapt our proposed algorithm to existing work in wireless sensor networks. Using an existing framework for answering multi-predicate snapshot queries, we extend the framework to deal with continuous queries. The framework answers continuous queries in epochs and adapts the operator placement to data load changes. In our experimental evaluation, we compare against the only other existing distributed algorithm for operator placement updates and show that using our proposed algorithm we can save 30%–80% of the communication cost overhead.

In the following section, we present previous work done in this area. We formulate our problem definition and preliminary annotation in section 6.3 to be able to
describe our algorithm in detail in section 6.4. In section 6.5 the framework in which our algorithm is implemented is described and in section 6.6 we present our thorough experimental evaluation that shows the efficiency of our algorithm.

6.2 Related Work

The vast majority of the literature on operator placement in wireless sensor networks focuses on finding a good operator placement at query initialization as described in the introduction. Those algorithms are centralized; i.e., the basestation knows the location of the sensors or has complete knowledge about the network [156][84][8][129][30].

Ying et al [178] propose a distributed algorithm to do the same task as above, namely static operator placement. Nodes exchange information with their neighbors iteratively until they find the optimal placement for all given operators. Any node that has found a better cost for routing data or placing the operator, broadcasts this information to its neighbors. This algorithm is suited only for initial operator placement for queries with many operators, since it involves every node inside the network. Further, using this technique, it is hard to guarantee convergence, optimality, and low communication cost overhead.

Instead of sticking to a static plan, dynamic environments require adaptive query processing. A comprehensive survey on adaptive query processing is presented by Deshpande et al [49]. They categorize all techniques proposed that focus on using runtime feedback to modify query processing in a way that provides better response time, more efficient CPU utilization or network utilization. Our work would fall under the category of adaptive join processing with non-pipelined execution.

Next, we cite literature that deals specifically with operator placement adap-
tation, picking a new hosting node for one of the operators. There are two categories here: algorithms that pick the best neighboring node as the new host and converge to the optimal operator placement with time, and algorithms that find the best hosting node immediately. The former method is also called operator migration and we will call the later method *placement update*.

An alternative to operator placement update is operator *migration*, where the operator is moved gradually from one node to the next node towards the optimal placement. Algorithms following this principle are simple and their decision making is only local. On the other hand, it takes several epochs of query execution to reach the optimal operator placement. For the same reason, these methods suffer greatly from oscillating changes, that might force it to migrate an operator to a different direction before even reaching the optimal placement. Further, they are prone to local minima and impose extra cost during query execution in order to probe for a better operator host on every neighbor; [125][18][131] are works in this category.

Finding directly the optimal hosting node is the approach adopted in this paper. This problem is the same as the 1-median problem or single facility location problem in graphs. There is extensive literature on centralized algorithms for this problem [132], but not on distributed algorithms. In a distributed environment we can not adapt any of the centralized algorithms, since they all require that a central authority knows the topology of the whole network.

Zoe Abrams and Jie Liu in their paper named “Greedy is Good” (GIG) [3] propose a decentralized solution for the 1-median problem in graphs. They try to find the optimal hosting node by flooding a small neighborhood around each *datanode*. It follows the intuition that the optimal hosting node will be somewhere close to all the datanodes. Their algorithm, *GIG*, aims to minimize the nodes involved in the flood
by making use of some parameters set by the user. Surprisingly, they do not aim to minimize the number of messages exchanged by those nodes and thus the communication cost overhead is not minimized. Further, their algorithm does not guarantee to find the optimal operator node as we will see in the example in Figure 6.3.

We propose a parameter-free algorithm based on the same principles as GIG, but show how using the right techniques the right heuristics we can achieve a 30%-100% energy reduction compared to GIG. Some extra points that distinguishes our work from previous work is the following:

- our algorithm is distributed and we only collect a negligible amount of network information.
- we do not assume any location awareness for the nodes. It follows that we cannot use geographical routing to our advantage.
- our algorithm does not impose any overhead during the query execution phase.
- our algorithm is parameter-free, thus its efficiency is independent of any user input.
- our algorithm guarantees optimality.

6.3 Distributed Fermat Node Search: Preliminaries

Assume that in the network seen in Figure 6.1(a) the colored nodes are 3 customers s_1, s_2 and q. Each customer i needs quantity w_i from a commodity produced by a service that is currently hosted in node h. The cost of servicing customer i is the cost of sending weight w_i over the shortest path from node h to i. Find the node, that minimizes the cost of servicing the customers, to host the service. This is also known as the 1-median problem and can be extended to an arbitrary number of customers. We
deal with an equivalent problem in wireless sensor networks, where we have an operator that collects data from a number of sources (s_1 and s_2) and sends the result of the operation to a sink (q). In Figures 6.1 and 6.2 we are dealing with binary operators (two sources, one sink).

We assume that sending data of weight w from node i to the operator host h and sending the same amount of data from operator host h to node i imposes the same cost. This is why we generalize and call both, sources and sinks, datanodes. Now the problem of finding the optimal operator placement is similar to the Fermat point problem [169], the three factory problem [65], and to the 1-median problem or single facility location problem, which are special cases of the uncapacitated K-median (UKM) problem and the uncapacitated facility location (UFL) problem respectively [132]. We call the optimal node to place the operator Fermat node and formulate our problem as follows:

Fermat node (or 1-median) problem definition Given a weighted graph $G(N, L)$ and a set of datanodes $D \subseteq N$, find the Fermat node f in the graph that minimizes the cost of shipping data from the nodes in D to node f.

For the objective function that we use in our algorithm we assume that the cost of shipping data from node u to node v is proportional to the data load w_u to be shipped and the weight of the path used. The path weight $W(u, v)$ is equal to the sum of the weights of all links $l \in L$ that make up path (u, v): $W(u, v) = \sum_{l \in \text{links}(u, v)} w_l$, where w_l is the weight of the link $l \in L$. The cost of shipping data from node u to node v is defined as

$$t(u, v) = w_u \times W(u, v)$$

This simplified version is used only as an objective function in our algorithm to estimate communication cost. Note that the computation of the actual energy consumed by the
network when transmitting a message over a path is more complicated. In the network simulator we used to run our experiments, the communication cost model is much more realistic.

Hosting cost, c, is the cost of sending data from the nodes in D to the hosting node h. It is equal to

$$c = \sum_{d \in D} t(d, f) \quad (6.1)$$

To minimize this cost we need to find the *Fermat* node and place the operator there. Finding the *Fermat* node does not come without an overhead. The problem we solve in this paper is the following:

Our problem definition Given a weighted graph $G(N, L)$, with identical link weights, and a set of weighted datanodes $D \subset N$, solve the *Fermat* node problem while minimizing the number of nodes involved in the process and the number of message exchanged between these nodes.

The communication cost in a wireless sensor network is the energy consumed for performing communication. The total communication cost is the sum of the energy consumed by each node in the network. The maximum communication cost is the maximum energy consumed by a single node. By minimizing the number of nodes involved and the messages exchange between them, we keep the total communication cost and the maximum communication cost per node to a minimum.

Networks are inherently distributed, thus no node has global knowledge about the network topology. This rules out the application of one of many proposed algorithms in literature (Section 6.2), that solve the *Fermat node problem*. We propose a fully distributed algorithm, that does not require the gathering of network information in order to compute the *Fermat* node. In the rest of the paper we will make extensive use of the following notions, that are formally defined here:

Shortest path length is the length of the shortest path between two nodes,
i.e. u and v, and is denoted as $|(u, v)|$. We assume that the graph has bidirectional links, thus $|(u, v)| = |(v, u)|$.

Data nodes is the set of nodes D that either transmit data (source nodes) or receive data (sink node) to/from the node that hosts the m-ary operator (hosting node). The opposite of the datanode set is the external nodes set $X = (N - D)$. *Leader* node is the node that decides on initiating and terminating the dFNS algorithm.

Note that we do not deal with erroneous readings, incomplete or imprecise data, where we would need specialized techniques for probabilistic or model-base query execution [47]. We also do not assume any correlation between data that could assist us in saving energy during query execution [46]. In our problem setup the only information we need about the data is what data node it is coming from or going to, and the load.

Distance Combination, α, denotes the k-ary set of shortest path lengths from all datanodes in D to the hosting node h.

$$\alpha = [\alpha_1, \alpha_2, .. , \alpha_k] = [(d_1, h)], [(d_2, h)], .. , [(d_k, h)]$$

where $d_i \in D$ and $k = |D|$. Each distance combination α has its hosting cost c_{α}. Note, when we have an m-ary operator it means we have m inputs and one output. It follows that the number of datanodes is $m + 1$ and thus $m + 1 = k$.

Flooding is the task of broadcasting data from one node to all its neighbors and repeating this for each neighbor. Each node broadcasts the data only once. By setting a restriction to the flooding *radius*, the broadcast message travels only *radius* hops away (Hops-To-Live = *radius*). This limits the nodes in the network that are flooded.
6.4 Our Distributed Fermat Node Search Algorithm

We assume that a node \(h \), that hosts an operator with datanodes \(D \), knows the shortest path distances between any pair of datanodes in \(D \). Note that the datanodes \(D \) of a single operator are only a very small subset of the nodes in the network (\(|D| \ll |N|\)). This information can be piggy-backed from each datanode \(d \in D \) to node \(h \), since there is direct unicast communication between them. The task of retrieving this information for each datanode \(d \) can be performed with efficient algorithms proposed in literature, such as doubling broadcast distance. Other than the datanodes of an operator, no other node in the network need to know their distance to any other node.

Each datanode \(d \) has its own hosting cost \(c_d \). We call best datanode \(b \) the datanode with the minimum hosting cost \(c_b = \min\{c_d\}_{d \in D} \). Using \(b \) as the solution to the Fermat problem is called datanode solution. There are cases where it is impossible for an external node to have better hosting cost than datanode \(b \). Identifying those cases is simple and imposes no communication cost. All our techniques make use of hosting cost \(c_b \) of the best node.

6.4.1 Candidate Nodes

Candidate nodes are called the nodes in the network that have a hosting cost less than the hosting cost \(c_b \) of the best datanode. We need to compare all candidate nodes in order to find the actual Fermat node. Minimizing the number of candidate nodes is one of the key features of our algorithm. Note that there can be several nodes with the same minimum hosting cost, thus there can be several Fermat nodes. We just need to pick one of them.

To be able to calculate the hosting cost of an external node, we need to know its distance to the datanodes. Although external nodes might serve as relay nodes, they
never communicate directly with any datanode, thus we cannot assume that they know their distance to each datanode in advance. To find the distance from an external node to each datanode we can initiate a flood from each datanode counting hops.

Nodes inside the intersection of all floods know the distance to all datanodes. This is true since we assume that the flood reaches a node over the shortest path from the initiator. These nodes can now calculate their hosting cost and, if it is smaller than c_b, they become candidate Fermat nodes. Candidate nodes report their hosting cost to the leader node, that decides what node is the actual Fermat node.

By reducing the number of candidate nodes, and therefore the messages (reports) sent to the leader node, we can save on communication cost. dFNS includes the hosting cost c_b of the best datanode in the initial flooding message as a cost threshold. Nodes, that have a hosting cost higher than this cost threshold, are not considered candidate nodes. Nodes that have a better hosting cost designate themselves as Fermat candidates and update the cost threshold inside the flooding message before it gets forwarded. We also let candidate nodes eaves-drop messages sent by their neighbors in order to increase the probability that a message with a lower cost threshold is received to minimize the number of candidates.

6.4.2 Calculating All Candidate Distance Combinations

We compute all candidate distance combinations A and their respective hosting cost c_α, $\alpha \in A$. This is the basic building block for our algorithm. To efficiently compute this set we use information about the shortest path lengths between the datanodes D. The distance combination that violate the shortest path length between the datanodes (triangle inequality) and have a greater hosting cost than c_b, the hosting cost of the best datanode b, are discarded. Formally the restrictions for each distance combination α
are:

\[|(d_i, d_j)| \leq a_i + a_j, \quad \forall i, j \in D \]

(6.2)

\[c_\alpha < c_b \]

The distance combination with the minimum hosting cost is called ideal distance combination and is denoted as \(\epsilon \). Depending on the network, a node with the distance combination \(\epsilon \) might exist or not. If a candidate node has the ideal hosting cost \(c_\epsilon \), then no further action is needed to distinguish it as the Fermat node.

The algorithm we propose to compute the distance combinations is optimized to find the set fast and effectively, pruning combinations that do not satisfy the constraints in Equation (6.2) early. We start from the distance combination that corresponds to picking the best datanode \(b \) as the Fermat node. In this distance combination the value for \(|(b, f)| \) will be 0. The other distances start from the minimum value possible that satisfies the constraints. We recursively increment each distance by 1. The pseudocode is shown in Algorithm 9. This algorithm returns the set of all possible distance combinations that would result in a smaller hosting cost than \(c_b \). It also designates the ideal distance combination \(\epsilon \).

The function \(\text{maximumDistance}(\text{distanceList}, i) \) returns the maximum distance that a node can have from datanode \(d_i \) so that it satisfies the constraints of Equation 6.2 and does not exceed the maximum distance between \(d_i \) and \(d_j \), where \(j > i \).

6.4.3 No Flooding Cases

If we get a distance combination set, that is empty when running the \(\text{CDCGenerator()} \) algorithm, it means that there cannot exist an external datanode with better
Algorithm 9. CDCGenerator(distanceList, i)

Event: list of datanodes and their loads,

distance between every pair of datanodes

1: $l_{current} = \text{minimumDistance}(\text{distanceList}, i)$
2: distanceList ← $l_{current}$
3: while (distanceList satisfies constraints AND $l_{current} < \text{maximumDistance}(\text{distanceList}, i)$) do
4: if distanceList.size == number of datanodes then
5: C ← distanceList
6: update bestCombination
7: else
8: C ← CDCGenerator(distanceList, i + 1)
9: end if
10: $l_{current} = l_{current} + 1$
11: remove last entry of distanceList
12: distanceList ← $l_{current}$
13: end while
14: return C

hosting cost than the best datanode b. In those special cases, no flooding is needed to
look for external candidate nodes. Node b is the optimal new operator host and our
algorithm terminates by placing the operator there. Contrary to their characterization
as special, these cases comprise 56%-85% of the cases as shown by experiments.

6.4.4 Flooding Radius

Flooding the whole network from each datanode in D poses a very big com-
munication cost. Our algorithm efficiently restricts the flooding radius, guaranteeing at
the same time that the Fermat node will be found.

The same intuition is used in the GIG algorithm [3], only they use a suboptimal
Figure 6.3: GIG [3] is not an optimal algorithm. An example where GIG misses the optimal operator placement (f). This happens because the distances from candidate nodes to the datanodes are overestimated.

method to restrict the flooding. In addition, GIG cannot guarantee optimality since the distance from an external node to a datanode can be overestimated. This can be seen in Figure 6.3. According to GIG flooding is extended until all floods intersect, in this case node m. Then m broadcasts a message to every node inside the flooding union, which would be every node in this example, counting hops from m. This way the distance \(|(x, d)|\) from a node \(x\) to a datanode \(d\) is calculated as \(|(x, d)| = |(x, m)| + |(m, d)|\), which is clearly an overestimation. In our example the distance between node f and q is incorrectly estimated as \(|(f, q)| = 5\) by GIG (following the solid edges) and correctly as \(|(f, q)| = 4\) by dFNS (following the dashed edges). As a result the GIG algorithm would chose node m as the new operator node, although the actual Fermat node and optimal new operator node is f. The hosting costs estimated by GIG and our algorithm can also be seen in Figure 6.3.

There is a maximum radius that each datanode has to flood in order to be able to reach every candidate distance combination. The maximum radius is set to guarantee completeness, i.e. if there is an external node with hosting cost better that \(c_b\) of the best datanode it will be found. For the maximum radius of datanode \(d_i\) we use the
maximum value of $\alpha_i \forall \alpha \in A$.

6.4.5 Flooding Speed

Increasing the likelihood that the floods will intersect at the Fermat node first, increases the likelihood that more nodes inside the flood intersection will receive a lower cost threshold. This in turn leads to fewer nodes reporting to the lead node as Fermat candidates, thus saving on communication cost. We define a primary speed for each flood in order for them to reach the ideal distance combination ϵ at the same time point.

After the floods reach the ideal distance combination ϵ they will keep expanding until they reach the maximum radius. We define a secondary speed for the foods that will make their intersection grow faster toward the distance combinations with the lower hosting costs.

The flooding speed is implemented by delaying the relay (broadcast) of the flooding message at every node. More specifically, a timeout is defined at flood initialization, that each node should obey before re-broadcasting the flooding message. This timeout is defined by multiplying the estimated time it takes for the message to travel over one hop by a delay factor. Based on the ideal distance combination ϵ, we compute the primary delay factor pf of the flood for each datanode $d_i \in D$ as follows:

$$\text{pf}(i) = \max\{e_i\} / \epsilon_i - 1$$

When the delay factor is 0 then the flooding message gets forwarded immediately.

To calculate the secondary delay factor sf we reverse the order of the pf. The datanode d_i with the maximum pf will have a secondary delay factor equal to the
minimum pf. The datanode d_j with the minimum pf will have a secondary delay factor equal to the maximum pf and so on. The intuition about this is that the cheapest distance combinations will be the ones with minimum values satisfying the triangle inequality between the datanodes.

6.4.6 The $dFNS$ algorithm

Here we describe the $dFNS$ algorithm as general steps taken inside the network. Assume each operator node has some pre-specified criteria that decide whether an operator placement update is needed or not. These criteria could involve monitoring the change in the data loads of the datanodes, the change in the location of the datanodes, the remaining energy on the operator node, and estimations on whether an operator placement update would be worth the cost overhead for a cheaper query execution in the next epoch. What happens after this decision is taken is described next and shown in pseudocode in Algorithm 10.

Assume there is an operator placed on node h, that sends/receives data from datanodes D. Thus, it knows the data loads for every node in D. When the criteria of node h to update the operator are met, node h becomes the leader node and initiates the $dFNS$ algorithm (Algorithm 10). It calculates all candidate distance combinations using Algorithm 9. If the candidate distance combination set is empty, the leader informs all datanodes that the new operator placement has changed to b. Otherwise, if there are candidate distance combinations for external nodes, the leader computes the time-point to initiate flooding for synchronization. Without synchronization variable speed flooding would not have the desired effect. The leader sends a message to all datanodes in D containing the time point to initiate the flooding and the candidate distance combinations.
Using the candidate distance combination set, datanode d_i can calculate the hosting cost c_b of the best datanode. It also can compute the minimum and maximum radius, and the primary and secondary speed of its flood, described in Section 6.4.5 and 6.4.4 respectively. d_i prepares a flooding message that contains the cost threshold set to c_b, the timeout needed to realize the primary speed, the timeout needed to realize the secondary speed, the minimum radius, and the maximum radius of the flood. d_i initiates its flooding at the given time-point broadcasting its flooding message. All the candidate nodes send their report to the leader. After all reports are received, the leader calculates the best candidate node, informs the datanodes about the new operator host and passes on any information regarding the operator to the new host node.

When an external node n receives a flooding message from datanode d_i for the first time it stores it and performs a series of checks. If n is not beyond the minimum radius then it just forwards the message. Any consecutive receptions of the same message are ignored. Otherwise, if n has received a message from all the datanodes in D it can calculate its hosting cost c_n. If c_n is smaller than the cost threshold contained in any of the flooding messages, node n updates the cost threshold inside every flooding message that was not yet forwarded and stores c_n. Also, n sets a timeout to report to the leader node as a candidate node. A final check that node n performs when receiving a message from datanode d_i is whether it is not on the maximum radius so it can forward the message it received.

Every candidate node that has not reported yet to the leader performs eavesdropping on its neighbors. When such a candidate node receives a message containing a lower cost threshold than its hosting cost, it cancels the timeout for reporting to the leader node and withdraws its designation as a candidate node. This way the number
Algorithm 10: The general dFNS steps

Steps taken by leader node:

1: \(A = \text{CDCGenerator}(\emptyset, 0) \)

2: if \(A = \emptyset \) then

3: Place operator on \(b \)

4: else

5: Set timepoint \(t \) for initiating flood

6: \(m \leftarrow t, A \)

7: send message \(m \) to \(D \)

8: end if

9: timeout until all candidate nodes have reported

10: choose best candidate as new operator host

11: inform datanodes about new operator host

12: send operator information to new operator host

Steps taken by each datanode \(d_i \in D \):

1: compute minimum and maximum radius

2: compute primary and secondary speed

3: initiate flood at timepoint \(t \)

of candidate node reports sent to the leader node are minimized.

6.4.7 Optimality of dFNS

Our algorithm always finds the node in the network that minimizes the hosting cost as defined in objective function 6.1.

Theorem. Algorithm dFNS is optimal

First, all possible distance combinations \(A \), that have a better hosting cost than the best datanode, are found using Algorithm 9. This is true since the algorithm is exhaustive. The radius for the flood of datanode \(d_i \) is set to the maximum value of \(\alpha_i \forall \alpha \in A \). This guarantees that all possible nodes with distance combinations equal to
the ones in the candidate set A will be inside the intersection of all floods. This allows them to calculate their hosting cost and become candidate nodes.

6.5 Initial Operator Placement

Our distributed Fermat Node Search algorithm ($dFNS$) can be used in any framework that optimizes continuous queries, to always keep the operator placement optimal. Further, frameworks that are made to optimize snapshot queries can be adapted for answering continuous queries by using $dFNS$. The query execution is divided in epochs. As soon as the query execution terminates, the operator nodes check whether their operator meets the placement update criteria. If those are met $dFNS$ is triggered and the operator placement is optimized before the next epoch comes around. Note again, that $dFNS$ has no overhead whatsoever during query execution. The overhead is most of the time negligible even when an operator placement update takes place. We have a communication cost overhead only in the less frequent cases, where a flood is needed to find the new optimal operator host. And this is still far smaller than previously proposed algorithms.

Several initial operator placement algorithms have been proposed in the literature as discussed in Section 6.2. Unfortunately, most of them are centralized, assuming global knowledge of the network. When answering snapshot queries, the initial placement should be as optimized as possible, which cannot be achieved without collecting network information. For continuous queries, however, the goodness of the initial operator placement is much less of an issue, as the query executes for several epochs. A rough initial placement is calculated with the information that is locally present or is collected locally without significant overhead. This lets us drop the heavy assumption
of global network knowledge. After the query execution in the first epoch is over, we can check the criteria for each operator and, if they are met, run \textit{dFNS} to optimize the operator placement for consecutive epochs.

For this paper we use our algorithm proposed in [30] for finding an initial operator placement. Instead of assuming global knowledge at the query node, we exploit the unavoidable query dissemination in order to collect some information about the network with minimum overhead. Every node, that receives the query dissemination and has data needed for answering the query, sends to the querying node its position and a summary of its data. Techniques for building a summary of small size and high information have been previously proposed in the literature [56][107][164][17]. Using this information the query node can roughly estimate the hop-distance between the datanodes and the selectivity of each operator.

6.6 Experimental Evaluation

The experiments were run on an Intel Core2 Duo CPU at 2.5GHz with a 4GB RAM. We implemented the algorithms in Java and used J-Sim [87] as our network simulator. We used the energy model of J-Sim to account for the energy spent by the network when transmitting data.

Comparison is done against the algorithm proposed by Zoe Abrams and Jie Liu in [3], noted as \textit{GIG}. The \textit{GIG} algorithm needs two parameters from the user in order to run: α defining the radius of the initial flood and a function $G()$ defining how the radius is increased for each consecutive flood. Its performance heavily depends on these parameters. We set $\alpha = 1$ and for the function that defines the flooding radius we used $G(r_{\text{new}}) = r_{\text{previous}} + 1$. Those choices are justified by the fact that most of
Figure 6.4: Number of nodes involved in the flooding process (minimum, average and maximum value) using the same load for each datanode. When lines are missing it means there were no simulation runs possible for the combination of k and h values.

Figure 6.5: Number of nodes involved in the flooding process (minimum, average and maximum value) using the variable load for each datanode. When lines are missing it means there were no simulation runs possible for the combination of k and h values.
the resulting networks have the datanodes in close proximity and only a small flooding radius is needed. We also implemented the variable speed flooding function that is only suggested as a future optimization in [3]. This function sets the flooding speed of datanode i to be inversely proportional to the data load of datanode i.

For the experiments we create a network with 512 nodes randomly scattered in a physical space of size 1000x1000. We randomly place the datanodes in a square region of size 200x200 at the center of the space. This is done so that the flooding process can reach a large number of nodes without hitting the edge of the network, and we get more accurate results regarding the efficiency of the algorithms. This is the same network setup as in [3].

We run experiments for m-ary operators with $m = 2, 3, 4$, thus we have $k = 3, 4, 5$ datanodes respectively, showing the efficiency of the compared algorithms for different types of operators. For each value of k we run 80 simulations. The amount of the communication cost overhead is immediately dependent on how far the datanodes are from each other, since the further apart the bigger the floods will have to be. Therefore, our experiments are grouped by metric h. We sum the distances from the datanodes to the Fermat node returned by the algorithm

$$h = \sum_{d_i \in D} |(d_i, f)|$$

Reproducing Experiments Of GIG

For the first set of experiments we copied the operator migration experiments conducted in [3]. The authors used the same data load w for all the datanodes and used three metrics: number of nodes involved in the flooding process (Figure 6.4), number of candidate nodes (Figure 6.6) and quality of the first candidate (Figure 6.7).
Figure 6.6: Number of candidate nodes that report to the leader node. The less candidates the less communication needed. Beneath the x-axis the group $[0,4]$ is divided into more detailed groups to show the distribution for $dFNS$.

All figures denoted as “same load runs” belong to the first set of experiments. We got approximately the same results for the GIG algorithm as in [3]. Our proposed algorithm ($dFNS$) outperforms GIG in this first set of experiments.

In Figure 6.4 the minimum, average and maximum number of nodes involved in the flooding process is shown when running each algorithm for $k = 3, 4, 5$ datanodes. The simulation runs are grouped by h, how far apart the datanodes are. For each value of h the leftmost three lines belong to $dFNS$, whereas the rightmost three lines belong to GIG. Some lines are missing, since not all combinations of k and h are possible. For example, when we have $k = 5$ distinct datanodes it is impossible to find an operator node whose sum of distances to the datanodes is less than 4, $h < 4$. We can have $h = k - 1$ only if the Fermat node returned by the algorithm is one of the datanodes itself and every other datanode is only 1 hop away from the Fermat datanode.

One would expect that GIG would always involve less nodes in its flooding
Figure 6.7: Quality of the first candidate node encountered while flooding (or the best of the first set). Quality is expressed by dividing the hosting cost of the actual Fermat node to the first candidate. The closer the ratio is to 1 the better the variable speed flooding function of the algorithm used.

Figure 6.8: Quality of first candidate node when datanodes have variable data loads. Comparison of variable speed flooding functions.
than $dFNS$, since it stops flooding as soon as the floods intersect for the first time. As Figure 6.4 shows, though, $dFNS$ has a far smaller mean value of the number of nodes involved than GIG. We can also see that $dFNS$ always has lines that touch the x-axis. All this can be attributed to the fact that $dFNS$ identifies the special cases where a datanode is the Fermat node, and avoids flooding. The mean value is closer to the x-axis because there are many such special cases runs.

For the second metric, we plot the number of candidate nodes produced by each algorithm in a histogram in Figure 6.6. The less candidate nodes, the fewer candidate node message have to be sent to the leader node to decide on the best candidate. We can see that $dFNS$ has never more than 4 candidates. This happens because our algorithm looks for candidates only in the intersection of its extended floods, whereas GIG looks for candidates inside the whole union of its floods. Below the x-axis the group of [0-4] candidate is broken down just to show the distribution for our algorithm.

In Figure 6.7 we can see the quality of the first candidate. The quality is expressed by the ratio λ equal to the hosting cost of the actual Fermat node over the hosting cost of the first candidate node found. If $\lambda = 1$ it means the first candidate node is the actual Fermat node. The first time all floods intersect, there are one or more candidate nodes inside the intersection, which will all report to the leader. The one with the best hosting cost is called the first candidate node. This is how the first candidate is defined for both algorithms. The quality of the first candidate depends solely on the variable speed flooding function used. We can see that our variable speed flooding function has always a better first candidate.

The simulations described so far were conducted solely for the purpose of
Figure 6.9: Total energy consumed (minimum, average and maximum value) for experiments with the same load for every source. When lines are missing it means there were no simulation runs possible for the combination of k and h values.

Figure 6.10: The maximum energy consumed by a single node (minimum, average and maximum value) for experiments with the same load for every source. When lines are missing it means there were no simulation runs possible for the combination of k and h values.
Figure 6.11: Total energy consumed (minimum, average and maximum value). When lines are missing it means there were no simulation runs possible for the combination of k and h values.

Figure 6.12: The maximum energy consumed by a single node (minimum, average and maximum value). When lines are missing it means there were no simulation runs possible for the combination of k and h values.
matching the experiments in [3], in order to compare our algorithm head on against GIG. The second set of experiments is a fairer comparison between the two algorithms, since in real world applications the datanodes usually have different data loads.

We run all of the above experiments again with variable data loads. We varied the loads of the datanodes slightly with a Gaussian distribution around weight w used in the previous experiments. A greater variation in the loads would leave us with only a few runs where no datanode is a Fermat node, which is the only case where we can study these heuristics. The results regarding the first metric can be seen in Figure 6.5. We excluded the results for the other two metrics because the result were identical to the “same load” simulations seen in Figures 6.6 and 6.7.

Actual Communication Cost Overhead

We also conducted our own experiments using as metrics the total energy and the maximum energy per node consumed for finding the new Fermat node. After all, this is what we are trying to minimize with our algorithm. These are more important metrics compared to the above and the ones that actually define the performance of the algorithms.

Figures 6.11 and 6.12 show that $dFNS$ clearly has a smaller energy overhead for determining the optimal hosting node. GIG’s limited cost flooding results in reflooding the neighborhood incrementally, thus yields a very big total energy cost. In addition it refloods the whole flooding union to look for candidate nodes. In our algorithm very often we do not need to flood in the first place. This keeps the mean value of total energy low. In the case where flooding is needed, our algorithm might use slightly larger flood radii, but it floods only once, and no further communication between nodes is needed.
Figure 6.13: Total energy consumed (minimum, average and maximum value) only for simulation runs that needed to use flooding in order to find the Fermat node. When lines are missing it means there were no simulation runs possible for the combination of k and h values.

Figure 6.14: The maximum energy consumed by a single node (minimum, average and maximum value) only for simulation runs that needed to use flooding in order to find the Fermat node. When lines are missing it means there were no simulation runs possible for the combination of k and h values.
Table 6.1: Percentage of simulation runs where a datanode is the optimal node to place the operator and thus no flooding is needed

<table>
<thead>
<tr>
<th></th>
<th>$k = 3$</th>
<th>$k = 4$</th>
<th>$k = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>same load</td>
<td>85%</td>
<td>84%</td>
<td>83%</td>
</tr>
<tr>
<td>variable load</td>
<td>68%</td>
<td>66%</td>
<td>56%</td>
</tr>
</tbody>
</table>

to find any candidate nodes.

To simulate the energy in the previous experiments, we used the following parameters for our sensors: power consumption for transmission 0.660 Watts and power transmission for reception 0.395 Watts. The data rate of the radio is set to 19.2 kbps. The value used for the load of each transmission was 1Kb.

These differences are affected by the fact that $dFNS$ takes advantage of the cases where a datanode is a Fermat node in order to save energy by avoiding flooding. We can see in Table 6.1 that the majority of cases have a datanode that is the actual Fermat node and thus we do not need to look any further for the optimal operator placement.

How Good Is $dFNS$ In Finding External Fermat Nodes

One important thing that the experiments so far make obvious is the importance of identifying the special cases where flooding can be avoided. But how well does our algorithm do for the minority of cases where floods are needed? In this subsection we evaluate our function for finding the external Fermat node. We collect information only from the simulation runs where no datanode is a Fermat node. We will call these runs *floody runs*.

Figures 6.13 and 6.14 show that $dFNS$ still outperforms GIG, although the savings are less significant compared to the cases where no flooding is needed. Figure 6.13 shows the minimum, mean and maximum values of the total energy consumed for
finding the external Fermat node. Similarly, Figure 6.14 shows the minimum, mean and maximum values of the maximum energy per node.

6.7 Summary

We present a new algorithm to update the placement of a single operator in order to keep the continuous query execution cost low in each epoch. Our algorithm imposes minimal communication cost overhead for finding the optimal node to host the operator. We implemented this algorithm inside a framework for answering continuous queries in a wireless sensor networks. In our experiments it is shown that the cost overhead of our algorithm is reduced by 50% – 100% compared to previously proposed techniques.

Our distributed Fermat Node Search algorithm (dFNS) can be used in any framework that optimizes continuous queries, to always keep the operator placement optimal. After network and application specific criteria are set, that will decide whether an operator placement update is needed, our algorithm can be seamlessly adapted to find the new optimal operator placement.
Chapter 7

Conclusions

This work reduces energy consumption in wireless sensor networks. It achieves this by reducing the data transferred throughout the network. Data transferred can be reduced either directly using query operators, or indirectly by avoiding retransmission due to collisions in the wireless channel.

We present a novel distributed algorithm \((MHS)\) that, with the minimum possible number of messages, constructs a query routing tree that reduces collisions during query execution. Two points make our algorithm very attractive: the construction of the tree has the minimum possible communication cost and the balance of the resulting tree contributes to large communication cost savings during the tree usage.

We tackled the problem of in-network processing of queries with multiple commutative operators in a holistic manner. We show that the problem of minimizing communication cost of queries is NP-hard and develop a dynamic programming algorithm to compute the optimal solution for small problem instances. We also propose a much faster heuristic algorithm \((2PH_{deep})\) that is almost as efficient as the optimal. The extensive experimental evaluation compares the proposed algorithms to the most widely used technique used to evaluate queries in wireless sensor networks and shows
that an improvement of 10% to 95% is possible. The heuristic algorithm is also shown to be scalable and robust to different query characteristics and network size. Also, it is straightforwardly implementable into the optimizer of TinyDB [112]. The proposed algorithms, can be applied to any high communication cost network where there is a need to combine (intersect) data from different sources.

We present a new algorithm to update the placement of a single operator in order to keep the continuous query execution cost low in each epoch. Our algorithm imposes minimal communication cost overhead for finding the optimal node to host the operator. We implemented this algorithm inside a framework for answering continuous queries in a wireless sensor networks. In our experiments it is shown that the cost overhead of our algorithm is reduced by 50% – 100% compared to previously proposed techniques. Our distributed Fermat Node Search algorithm (dFNS) can be used in any framework that optimizes continuous queries, to always keep the operator placement optimal. After network and application specific criteria are set, that will decide whether an operator placement update is needed, our algorithm can be seamlessly adapted to find the new optimal operator placement.

Optimal operator placement updates for query trees with multiple operators is left for future work. Also, query tree construction for continuous queries in passively mobile sensor networks needs to be tackled. Wireless sensor networks and their applications belong to the intersection of different problem areas. They have many aspects of optimization and there are algorithms specifically developed for wireless sensor networks needed. There are still a lot of new holistic energy conserving solutions to be researched, combining different optimization aspects.
Bibliography

[107] Richard J. Lipton, Jeffrey F. Naughton, and Donovan A. Schneider. Practical selectivity estimation through adaptive sampling. pages 1–11, 1990.

[117] Xiaofeng Meng, Hui Lei, Stéphane Grumbach, and Hong Va Leong, editors. 9th International Conference on Mobile Data Management (MDM 2008), Beijing, China, April 27-30, 2008. IEEE, 2008.

[178] Lei Ying, Zhen Liu, Donald F. Towsley, and Cathy H. Xia. Distributed operator placement and data caching in large-scale sensor networks. In INFOCOM [1], pages 977–985.

