Title
DIFFERENTIAL GEOMETRIC CONSTRUCTION OF THE GAUGED WESS-ZUMINO ACTION

Permalink
https://escholarship.org/uc/item/13d1p69s

Author
Manes, J.L.

Publication Date
1984
DIFFERENTIAL GEOMETRIC CONSTRUCTION OF THE GAUGED WESS-ZUMINO ACTION

J.L. Mañes

January 1984
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Differential Geometric Construction

of the Gauged Wess-Zumino Action

J. L. Manes

Lawrence Berkeley Laboratory
and
Department of Physics
University of California
Berkeley, California 94720

Abstract

A general expression for the gauged Wess-Zumino effective action is obtained by differential geometry methods. This expression is evaluated without the use of a "trial and error" method, and its dependence on the gauge fields is in the form of a finite polynomial. Our result is compared with that previously obtained by Witten.

L. Introduction

Some new developments have taken place recently concerning the mathematical structure of chiral anomalies. The use of differential geometry methods has made possible the explicit calculation of both abelian and non-abelian chiral anomalies without evaluating Feynman diagrams, and the form of the Wess-Zumino term as well as its new a priori quantization has been derived by Witten on the basis of topological considerations. Furthermore, Witten has used a "trial and error" method to gauge the Wess-Zumino term, and has found that the dependence of the resulting action on the gauge fields is in the form of a finite polynomial.

In this paper, a general expression for the Wess-Zumino action is obtained by differential geometry techniques. This expression, which is evaluated directly without the use of a "trial and error" method, yields the action in the form given by Witten, except for some minor discrepancies that we discuss in detail.

We consider a theory of fermions interacting with external gauge fields. The spinor field has internal degrees of freedom and transforms under a representation of a (flavor) group G with generators \( \{ A_k \} \). The Lagrangian includes vector and axial vector gauge fields \( V_\mu^k \) and \( A_\mu^k \):

\[
L = i \bar{\psi} \gamma^\mu \left( \partial_\mu - i A_\mu + i \lambda^k V_\mu^k - i \gamma_5 \lambda^k A_\mu^k \right) \psi
\]

(1)

We will use the symbol \( \gamma_5 \) for the equivalent matrix in 2n-dimensional
(Minkowski) space-time, i.e. \( \gamma_5 = -i' \prod_{\mu=0}^{2n-1} \gamma^\mu \), and \( \gamma_5^2 = 1 \). The fields \( V_u^k \) and \( A_u^k \) will be combined in the Lie Algebra-valued 1-forms \( V, A \) and \( V_s \):

\[
\begin{align*}
V &\equiv -i \lambda_k V^k \ \mathrm{d}x^k \equiv V^k \ \mathrm{d}x_k \equiv -i \lambda_k V^k \\
A &\equiv -i \lambda_k A^k \ \mathrm{d}x^k \equiv A^k \ \mathrm{d}x_k \equiv -i \lambda_k A^k \\
V_s &\equiv V + Y_5 A
\end{align*}
\]

(2)

A general local transformation on the spinor fields is written:

\[
\psi \rightarrow \exp \left( i \beta^k \lambda_k + i \alpha^k \lambda_k \gamma_s \right) \psi
\]

(3)

and if we define the O-forms:

\[
\beta \equiv -i \beta^k \lambda_k \ , \ \alpha \equiv -i \alpha^k \lambda_k \quad \text{and} \quad V \equiv \beta + \alpha Y_5 \equiv -i \gamma_s \lambda_k
\]

(4)

the transformation of the gauge fields can be written in a compact way:

\[
V_s \rightarrow g^{-1} V g + g^{-1} \gamma g
\]

(5)

where \( g = e^{i(g \in G \times G)\lambda} \).

It is well known that the vector and axial vector currents:

\[
\mathcal{J}_{\mu}^V = \overline{\psi} \gamma^\mu \lambda_k \gamma \psi \quad \text{and} \quad \mathcal{J}_{\mu}^A = \overline{\psi} \not{\gamma} \gamma_5 \lambda_k \gamma \psi
\]

(6)

satisfy anomalous non-conservation laws:

\[
D^\mu \mathcal{J}_{\mu}^V = - G^V_k (V, A) \quad \text{and} \quad D^\mu \mathcal{J}_{\mu}^A = - G^A_k (V, A)
\]

(7)

The functions \( G^V_k \) and \( G^A_k \) were obtained by Gross and Jackiw\(^6\) and Bardeen,\(^5\) who was able to remove the anomaly from the vector current by adding a suitable counterterm to the Lagrangian.

Wess and Zumino\(^1\) showed that the functions \( G^V_k, G^A_k \) could be obtained from a functional \( W(V, A, \xi) \) containing the gauge fields and an additional field \( \xi \) (a meson octet in the case \( G \equiv SU(3) \)), such that \( e^{i\xi} \in G \), as:

\[
G_k^V = \frac{\delta W(V, A, \xi_s)}{\delta \beta^k} \bigg|_{\beta=0} \quad \text{and} \quad G_k^A = \frac{\delta W(V, A, \xi_s)}{\delta \alpha^k} \bigg|_{\beta=0}
\]

(8)

where \( V_s, A_s, \xi_s \) are the transformed of \( V, A, \xi \) by the local action of \( g \in G \times G \). In their original form the Wess-Zumino effective action \( W(V, A, \xi) \) was not apparently a finite polynomial expression in the gauge fields. As it was already noted, this fact only became clear with the explicit evaluation of the action by Witten,\(^4\) who obtained it as a functional \( W(R, L, U) \) depending on the left and right gauge fields and \( U = e^{i(g \in G \times G)} \).

More recently, it has been possible to obtain the functions \( G_k^V, G_k^A \) by differential geometry methods\(^1,2\) based on the use of the Wess-Zumino consistency conditions that these functions must satisfy. Also, Zumino\(^2\) has given an explicit expression for the action in the form \( W(R, L, g_R, g_L) = W(R, g_R) - W(L, g_L) \), where \( g_R \) and \( g_L \) are elements of \( G \). This expression is obtained directly as a polynomial in the gauge fields, but differs from the one given by Witten in that here we need two octets \( \xi_R \) and \( \xi_L \) of meson fields.

Since these differential geometry techniques are relatively unknown among physicists, we find it necessary to make this paper somewhat self-contained and to explain them in some detail. This is done in Section II, where proofs have been omitted in general, trying
instead to emphasize the notational conventions, definitions and main
equations used in the rest of this work. The reader is referred to the
original works\textsuperscript{1,2,7,8} for a more complete presentation of the subject.
These techniques are extended in Sections III and IV, which contain the
main results of this paper, so as to give a functional \( W(R, L, U) \)
depending on a single octet of meson fields. For the case of four-
dimensional space-time this functional is actually constructed and
compared with Witten's result in Section V.

II. Differential Geometry and the Effective
Functional \( W(R, L, g_R, g_L) \)

In what follows it will be more convenient to write the equations
in terms of the left and right gauge fields \( L \) and \( R \):

\[ V_s \equiv V + Y_s R = \hat{R} R + \hat{L} L \]

with \( R = V + A \) and \( L = V - A \). \( \hat{R} \) and \( \hat{L} \) are the right and left
projection operators:

\[ \hat{R} = \frac{1 + Y_s}{2}, \quad \hat{L} = \frac{1 - Y_s}{2} \]

Defining left and right spinors \( \psi_L = \hat{L} \psi \) and \( \psi_R = \hat{R} \psi \) the Lagrangian (1)
can be split:

\[ \mathcal{L} = i 
\begin{pmatrix}
\gamma^\mu & 0 \\
0 & \gamma^\mu
\end{pmatrix}
\begin{pmatrix}
\partial_\mu - i \lambda^\mu R^R \\
\partial_\mu + i \lambda^\mu R^L
\end{pmatrix} \psi_R + \left( R \mapsto L \right) \]

A general transformation \( g(x) \in G \times G \) will be written:

\[ g = e^{\beta_Y + \gamma_s \alpha} = e^{\hat{R}(\beta_Y + \alpha)} = \hat{R} g_R + \hat{L} g_L. \]

with \( g_R = e^{\gamma_Y} = e^{\beta_Y + \alpha} \) and \( g_L = e^{\gamma_Y} = e^{\beta_Y - \alpha} \). From (5), (9), and (11) it
follows that the gauge fields \( R \leftrightarrow A_R \) and \( L \leftrightarrow A_L \) transform
independently of each other:

\[ A_R \rightarrow g_R^{-1} A_R g_R + g_R^{-1} \frac{dg_R}{dt} g_R, \quad H = L, R \]

\[ F_R \rightarrow g_R^{-1} F_R g_R \]
where \( F_H = dA_H + A_H^2 \) (d is the exterior differential operator, and it is understood that \( A_H^2 \) stands for \( A_H \wedge A_H \)).

The left and right currents have anomalous covariant divergences:

\[
\mathcal{D}_K \mathcal{J}^H = - \mathcal{G}_K^H (A_H) \quad \text{with} \quad \mathcal{J}^H = \nabla H \gamma K \lambda H
\]

The functions \( \mathcal{G}_K^H \) were obtained explicitly by Gross and Jackiw, and in fact:

\[
\mathcal{G}_K^H \equiv \eta_K \mathcal{G}_K^H , \quad \eta_K = - \eta_L = 1
\]

These functions can also be obtained by differential geometry methods without the use of Feynman diagrams. To this end we have to define a number of differential geometric objects. Given the left-right symmetry expressed in Equations (12) and (14), in what follows the index H will not be written. The first object is the n-th Chern character \( \Omega_{2n} \):

\[
\Omega_{2n} (A) = \text{tr} \mathcal{F}^n
\]

The form \( \Omega_{2n} \) is closed (\( d\Omega_{2n} = 0 \)), and as a consequence can be locally expressed as the total differential of a form \( \omega_{2n-1}^0 (A) \). An explicit expression for \( \omega_{2n-1}^0 \) is obtained by considering a 1-parameter family of gauge fields \( A_t \). Under an ordinary variation \( \delta t \), \( \Omega_{2n} \) experiences a variation given by:

\[
\delta \Omega_{2n} (A_t) = n \text{tr} (\delta A_t \mathcal{F}_t^{n-1})
\]

Choosing the parametrization \( A_t = tA, (16) \) can be readily integrated and we get for \( \omega_{2n-1}^0 \):

\[
\omega_{2n-1}^0 (A) = \frac{1}{n} \int_0^1 \delta t \left( A_t \mathcal{F}_t^{n-1} \right)
\]

with \( \mathcal{F}_t = dA_t + A_t^2 = t(A_t^2) = tF + t(t-1)A^2 \).

Since \( \omega_{2n-1}^0 \) is defined by \( d\omega_{2n-1}^0 = \Omega_{2n} \), we could add a total differential to (17). This fact will be exploited later in Sections III and IV.

\( \Omega_{2n} \) is invariant under gauge transformations. This allows the definition of a form \( \omega_{2n-1}^1 (A, v) (g = e^v) \) as follows. From the definition of \( \omega_{2n-1}^0 \):

\[
\delta_v \Omega_{2n} (A) = \delta_v \text{tr} \omega_{2n-1}^0 (A) = \text{tr} \left( \delta_v \omega_{2n-1}^0 (A) \right) = 0
\]

This means that \( \delta_v \omega_{2n-1}^0 \) is closed and can be locally expressed as a total differential:

\[
\delta_v \omega_{2n-1}^0 (A) = d \omega_{2n-2}^1 (A, v)
\]

The form \( \omega_{2n-2}^1 \) is important because it gives directly a solution to the Wess-Zumino consistency conditions, and contains the anomalous divergences \( \mathcal{G}_K \) in \((2n - 2)\)-dimensional space-time:

\[
\mathcal{K}_n \omega_{2n-2}^1 (A, v) = v^K \mathcal{G}_K , \quad \text{with} \quad \mathcal{K}_n = \frac{1}{n} \left( \frac{1}{2n-1} \right)
\]

(See appendix A for an explicit expression for \( \omega_{2n-1}^1 \)). We can now proceed to the construction of an effective functional. We define formally:

\[
\mathcal{W} (A) = \mathcal{K}_n \int_{D_{2n-1}} \omega_{2n-1}^0 (A)
\]
where $D_{2n-1}$ is a $(2n-1)$-dimensional disk which has as boundary space-time compactified to a sphere $S^{2n-2}$. Under a gauge transformation:

\[
\delta W^i = K_n \int_{D_{2n-1}} \delta \omega_{2n-1}^0 (A) = K_n \int_{D_{2n-1}} d \omega_{2n-1}^i (A, \nu) = \]

\[
= K_n \int_{S^{2n-2}} \omega_{2n-2}^0 (A, \nu) = \int_{S^{2n-2}} \nu^k G_k \] (22)

and $W'$ satisfies:

\[
\frac{\delta W'}{\delta \nu^k} \bigg|_{\nu^0} = G_k \] (23)

This definition of $W'$ is not totally satisfactory, since although $\omega_{2n-1}^0$ is a finite polynomial in the gauge fields, is not a total differential, and when we try to express it as an integral over $2n-2$ dimensional space-time, the integrand becomes no local, i.e., contains interactions of arbitrary high order. This problem can be fixed by considering the following property of $\omega_{2n-1}^0$:

\[
T(g) \omega_{2n-1}^0 (A, F) \equiv \omega_{2n-1}^0 (A g, F g) = \]

\[= \omega_{2n-1}^0 (A, F) + \omega_{2n-1}^0 (g^{-1} d g, 0) + d \alpha_{2n-2} (A g) \] (24)

with $A g \equiv T(g) A = g^{-1} A g + g^{-1} d g$ and $F g = g^{-1} F g$

In this expression $\omega_{2n-1}^0 (g^{-1} d g, 0)$ has a topological significance.\(^4\)

We will refer to it as $A_{2n-1}(g)$. An explicit expression follows easily from (17):

\[
\omega_{2n-1}^0 (g^{-1} d g, 0) \equiv A_{2n-1}(g) = (-1)^n \beta(n, n) \text{tr} (g^{-1} d g)^{2n-1} \] (25)

where $\beta(n, n)$ is the $\beta$-function:

\[
\beta(n, n) = \frac{\Gamma(n) \Gamma(n)}{\Gamma(2n) \Gamma(n-1) \Gamma(n-1)} = \frac{(n-1)!(n-1)!}{(2n-1)!} \] (26)

An expression for $A_{2n-2}$ in which it appears as a finite polynomial in $A$ and $V \equiv d g g^{-1}$ can be found in Appendix A. Since $F$ is a function of $A$, we will write $\omega_{2n-1}^0 (A, F) \equiv \omega_{2n-1}^0 (A)$. From (12) we have the group property:

\[
T^i(g) T^j(h) = T^j(h g) \] (27)

and we get the identity:

\[
T^i(g) \omega_{2n-1}^0 (A) = T^i(h^* g) T^j(h) \omega_{2n-1}^0 (A) = T^i(h^* g) \omega_{2n-1}^0 (A h) \] (28)

In other words, $T(g) \omega_{2n-1}^0 (A)$ is invariant under the transformation $A \rightarrow A h, g \rightarrow h^{-1} g$. If we define:

\[
W(A, g) = K_n \int_{D_{2n-1}} \omega_{2n-1}^0 (A) - T(g) \omega_{2n-1}^0 (A) \] (29)

by (27) we have:

\[
\frac{\delta W}{\delta \nu^k} = \frac{\delta W'}{\delta \nu^k} = G_k \] (29)

and by (24) $W(A, g)$ can be written:

\[
W(A, g) = - K_n \int_{D_{2n-1}} A_{2n-1}(g) + d \alpha_{2n-2} (A, g) - \]

\[= - K_n \int_{D_{2n-1}} A_{2n-1}(g) - K_n \int_{S^{2n-2}} \alpha_{2n-2} (A g) \] (30)

Now the gauge fields appear only in the second integral, which is explicitly a finite polynomial in $A$ and $V \equiv d g g^{-1}$ as given by (A.3). There exists only a finite number of vertices containing the gauge fields.
and $g$. Since $\Lambda_{2n-1}(g)$ cannot be written as a total differential, we still have an infinite number of vertices, but only in the field $g$.

Taking into account the signs given by (14), the complete functional is:

$$W(R, L, g_R, g_L) = W(R, g_R) - W(L, g_L)$$

where $g_R(x) = e^{ig_R(x)}$ and $g_L(x) = e^{ig_L(x)}$ are elements of $G$.

III. The Functional $W(R, L, U)$:

In this section we modify the functional $W(R, L, g_R, g_L)$ so as to make it depend on a single field $U(x)$ ($U \in G$) instead of $g_R$ and $g_L$. To this end we define:

$$\omega_{2n-1}^0(R, L) = \omega_{2n-1}^0(R, g_R) - \omega_{2n-1}^0(L)$$

and notice that by (28), (31) and (32) the effective functional can be written:

$$W(R, L, g_R, g_L) = \int_{D_{2n-1}} \omega_{2n-1}^0(R, L) - T(g_R, g_L)\omega_{2n-1}^0(R, L)$$

Here $T(g_R, g_L)$ defines the action of an element $g = g_R + g_L \in G \times G$:

$$T(g_R, g_L)\omega_{2n-1}^0(R, L) = \omega_{2n-1}^0(R, g_R, L)$$

If we define the $n$-th Chern character for the whole group $G \times G$ as:

$$\Omega_{2n}(R, L) = \Omega_{2n}(R) - \Omega_{2n}(L)$$

then $\omega_{2n-1}^0(R, L)$ as given by (32) is a solution to the equation:

$$\Omega_{2n}(R, L) = d\omega_{2n-1}^0(R, L)$$

In the next section we will show that another solution $\tilde{\omega}_{2n-1}^0(R, L)$ to (36) can always be found, such that it is invariant under vector gauge transformations:

$$\delta_{\beta} \tilde{\omega}_{2n-1}^0(R, L) = 0$$

By (36) it can only differ from (32) by a total differential:
W_{2n-1}^\circ (R, L) = \omega_{2n-1}^\circ (R, L) + d S_{2n-2} (R, L) \quad (38)

If we consider the functional:

\[ \widetilde{W} (R, L, g_R, g_L) = K_H \int_D \omega_{2n-1}^\circ (R, L) - \nabla (g_R, g_L) \widetilde{W}_{2n-1}^\circ (R, L) \quad (39) \]

and use Stokes theorem (D_{2n-1} = S^{2n-2}), we can see that \( \widetilde{W} \) is related to \( W \) by:

\[ \widetilde{W}(R, L, g_R, g_L) = W(R, L, g_R, g_L) - K_H \int_D \omega_{2n-1}^\circ (R, L) \quad (40) \]

By the group property \( T(g_R, g_L) T(h_R, h_L) = T(h_R g_R, h_L g_L) \), the last piece of (40) is invariant under the local transformation:

\[ R \rightarrow R h_R \quad L \rightarrow L h_L \quad g_R \rightarrow h_R g_R \quad g_L \rightarrow h_L g_L \quad (41) \]

This means that:

\[ \frac{\delta \widetilde{W}}{\delta U^a} = \frac{\delta W}{\delta U^a} = G^H \quad ; \quad H = L, R \quad (42) \]

Also, in the next section \( S_{2n-2}(R, L) \) will be calculated explicitly as a finite polynomial in the gauge fields. \( \widetilde{W} \) is thus local in \( R \) and \( L \), and by (42) is a satisfactory effective functional.

Now we use the group property to combine \( g_R \) and \( g_L \) into one single field:

\[ T (g_R, g_L) \widetilde{W}_{2n-1}^\circ (R, L) = T (g_R g_L) \nabla (e, g_R g_L) \widetilde{W}_{2n-1}^\circ (R, L) \]

\[ = T (g_R g_L) \widetilde{W}_{2n-1}^\circ (R, L, g_R g_L) \]

\[ = T (e, g_R g_L) \widetilde{W}_{2n-1}^\circ (R, L) \]

since \( T(g_R, g_L) \) is a vector gauge transformation and has no effect on

\[ \delta_{2n-1} \]. If we define \( U \equiv g_R g_R^{-1} \in G \), we have:

\[ T (g_R, g_L) \widetilde{W}_{2n-1}^\circ (R, L) = T (e, U) \widetilde{W}_{2n-1}^\circ (R, L) \quad (44) \]

where \( e \) is the identity element of \( G \), and from (41) \( U \) transforms as

\[ U \rightarrow U^L \quad U \quad (45) \]

We can now define the effective functional \( W(R, L, U) \):

\[ W(R, L, U) = \widetilde{W}(R, L, g_R, g_L) = K_H \int_D \omega_{2n-1}^\circ (R, L) - T (e, U) \widetilde{W}_{2n-1}^\circ (R, L) \quad (46) \]

By (38) and (24) the last piece can be written:

\[ T (e, U) \widetilde{W}_{2n-1}^\circ = \omega_{2n-1}^\circ (R, L, U) - d S_{2n-2} (R, L, U) \quad (47) \]

and the final expression is:

\[ W(R, L, U) = K_H \int_D \Lambda_{2n-1} (U) + K_H \int_S \chi_{2n-2} (L, U) - S_{2n-2} (R, L, U) \quad (48) \]

where \( L_U = U^L L_U + U^L dU \), and \( U(x) = \exp \{ i \xi(x) \} \) is an element of \( G \).

\( W(R, L, U) \) is the Wess-Zumino effective action. The first integral contains the Wess-Zumino term and the second one is the result of its gauging. Notice that, by (37), \( S_{2n-2} \) has the following behavior under vector gauge transformations:

\[ \delta_{\beta} \omega_{2n-1}^\circ (R, L) = - \partial_{\beta} S_{2n-2} \quad (49) \]

and it follows that:

\[ \frac{\delta}{\delta \beta^k} \left( W(R, L, U) + \int_S S_{2n-2} (R, L) \right) = \frac{\delta W(R, L, U)}{\delta \beta^k} = G^H (R, L) \quad (50) \]

i.e. the addition of \( S_{2n-2} (R, L) \) to the Lagrangian removes the anomaly from the vector current. \( S_{2n-2} (R, L) \) is thus equivalent, in four
dimensions, to the counterterm used by Bardeen\(^5\) to conserve the vector current and we will refer to it simply as "the counterterm". An expression for \(S_{2n}^\mu(R, L)\) valid for any \(n\) is derived in the next section.

It is an interesting fact that the counterterm, which was first used by Bardeen to get the conserved vector current form of the anomaly, appears in our method as an essential ingredient in the construction of \(W(R, L, U)\), which by (42) gives the anomaly in the left-right symmetric form

\[
\text{(15)}
\]

**IV. The Counterterm**

To find solutions to the equation

\[
d\omega_{2n} = \Omega_{2n}(R, L) \tag{36}
\]

in a systematic way it is convenient to express \(\omega_{2n}\) as a function of \(V_+ = \hat{\gamma} R + \hat{\gamma} L\):

\[
\Omega_{2n}(V_+) = \frac{2}{D} \operatorname{tr} \left( \gamma_5 F^+ \right) \equiv \Omega_{2n}(R, L) \tag{51}
\]

where \(F^+ = dV_+ + V_+^2 = (dR + R\gamma \hat{\gamma} + (dL + L\gamma \hat{\gamma})\hat{\gamma}\), and \(D \times D\) is the dimension of the Dirac matrices. The equivalence of (35) and (51) follows from the fact that \(\hat{\gamma}\) and \(\hat{\gamma}\) are projection operators and \(\gamma_5 = \hat{\gamma} - \hat{\gamma}\).

We consider a 2-parameters family of gauge fields:

\[
\hat{A}_{\lambda\mu} = \lambda V_+ + \mu V_- \tag{52}
\]

with \(V_- = V - \gamma_5 \lambda = \hat{\gamma} L + \hat{\gamma} R\). An ordinary variation \((\delta \lambda, \delta \mu)\) of the parameter induces a variation in \(\omega_{2n}\) given by:

\[
\delta \omega_{2n} (\hat{A}_{\lambda\mu}) = \frac{2n}{D} \operatorname{tr} \left( \gamma_5 \delta \hat{A}_{\lambda\mu} F_{\lambda\mu} \right) \tag{53}
\]

where \(\delta A_{\lambda\mu} = \delta \lambda V_+ + \delta \mu V_-\) and \(F_{\lambda\mu} = dA_{\lambda\mu} + A_{\lambda\mu}^2\).

Now we observe that \(\omega_{2n}(A_{10}) = 0\) and:

\[
\Omega_{2n}(\hat{A}_{10}) = \Omega_{2n}(V_+) \tag{54}
\]

\[
\Omega_{2n}(\hat{A}_{01}) = \Omega_{2n}(V_-) = -\Omega_{2n}(V_+) \tag{55}
\]
From this it follows that $\Omega_{2n}(V_\pm)$ can be expressed as the differential of a line integral:

$$\Omega_{2n}(V_\pm) = \frac{2n}{D} \int \text{tr} \left( \lambda_5 \delta A_{\lambda\mu} F_{\lambda\mu}^{n-1} \right) = \frac{n}{D} \int \text{tr} \left( \delta_5 \lambda_5 R_{\lambda\mu} F_{\lambda\mu}^{n-1} \right)$$

where the integrals are along the oriented paths (a), (b) or (c) shown in Fig. 1. Each path gives a different solution to Equation (36). In particular, if we integrate along the straight line $\mu = 0$ we get the solution (32):

$$\frac{2n}{D} \int_0^1 \lambda \text{tr} \left( \lambda_5 V_\pm F_{\lambda\mu}^{n-1} \right) = n \int_0^1 \lambda \text{tr} \left( \delta_5 R_{\lambda\mu} F_{\lambda\mu}^{n-1} \right) = \omega_{2n,0}(R) - \omega_{2n,0}(L)$$

The same result is obtained by integration along the line $\lambda = 0$. It is easy to show (see Appendix B) that the solution obtained when we integrate along $\mu + \lambda = 1$ is invariant under vector gauge transformations, i.e.:

$$\tilde{\Omega}_{2n,0}(R, L) = \frac{n}{D} \int \text{tr} \left( \delta_5 \lambda_5 R_{\lambda\mu} F_{\lambda\mu}^{n-1} \right)$$

From (56), (57), and (38) an expression in which $dS_{2n} = (R, L)$ is represented by a closed line integral is readily obtained (see Fig. 2):

$$\frac{n}{D} \int_{\Delta} \text{tr} \left( \delta_5 \lambda_5 R_{\lambda\mu} F_{\lambda\mu}^{n-1} \right) = \tilde{\Omega}_{2n,0} - \omega_{2n,0} = dS_{2n-2} (R, L)$$

(Here all the integrals are along straight lines)

A more convenient expression giving directly $S_{2n-2}(R, L)$ is constructed from (58) in Appendix B. The result is:

$$S_{2n-2}(R, L) = \frac{n(n-1)}{D} \int \text{tr} \left( \lambda_5 \lambda_5 V_\pm V_\pm F_{\lambda\mu}^{n-1} \right)$$

where the integral is over the interior of the triangle represented in Fig. 2. The following property is useful in the actual evaluation of (59): given the trace of a monomial containing $\gamma_5$ and the fields $V_\pm$ and/or $F_\pm$, the reversal of all the signs in $V_\pm$ and $F_\pm$ reproduces the original expression with opposite sign. For instance:

$$\text{tr} \left\{ \gamma_5 V_\pm V_\pm F_\pm^2 \right\} = - \text{tr} \left\{ \gamma_5 V_\pm V_\pm F_\pm^2 \right\}$$
V. An Application

In this section the functional \( W(R, L, U) \) is actually constructed for the case \( n = 3 \), i.e. four-dimensional space-time. \( W \) contains three functions that have to be evaluated:

\[
W(R, L, U) = K_3 \int_{D_5} \Lambda_5(U) + K_3 \int_{S^4} \alpha_4(L, U) - S_4(R, L, U) \tag{60}
\]

From (25):

\[
\Lambda_5 = \frac{1}{10} \text{tr} \left( U^{-1} dU \right)^5
\tag{61}
\]

and from (A.3)

\[
\alpha_4(L, U) = \frac{1}{2} \text{tr} \left\{ (dUU^*) (LdL + dLL + L^3) - \frac{1}{2} (dUU^*) L (dUU^* L - (dUU^*) L) \right\}
\tag{62}
\]

\( S_4 \) is obtained from (59) as a function of the fields \( V_+ \) and \( V_- \):

\[
S_4 = \frac{1}{4} \text{tr} \left\{ Y_5 V_+ (V_+ F_+ + F_+ V_+ - V_-^3) + \frac{Y_5}{4} V_+ V_+ V_+ V_+ \right\}
\tag{63}
\]

Using the fact that \( \hat{F} \) and \( \hat{F} \) are projection operators and that in four dimensions \( \text{tr} \left( \hat{F} \right) = \text{tr} \left( \hat{F} \right) = 2 \), \( S_4 \) may be written in terms of \( R \) and \( L \):

\[
S_4(R, L) = \frac{1}{2} \text{tr} \left\{ (L \hat{R} - RL)(F_+ + F_+) + R^2 L + L^3 + \frac{1}{2} L R L R \right\}
\tag{64}
\]

In this last expression we have to make the substitution:

\[
L \rightarrow L = U^{-1} L U + U^{-1} dU
\tag{65}
\]

The normalization constant \( K_3 \) is given by (20):

\[
K_3 = \frac{-1}{24 \pi^2}
\tag{66}
\]

After collecting the terms arising from (61), (62), and (64) with (65), and making the substitution:

\[
\begin{align*}
R dU^{-1} dL U - R dU^{-1} dL U & \longrightarrow -dR dU^{-1} L U \\
\text{(the left and right hand side of (67) differ by the total differential of RdU^{-1}L)}
\end{align*}
\tag{67}
\]

we obtain:

\[
W(R, L, U) = \frac{i}{24 \pi^2} \int_{D_5} \text{tr} \left( U^{-1} dU \right)^5 - \frac{i}{48 \pi^2} \int_{S^4} \mathcal{Z}
\tag{68}
\]

where the 4-form \( \mathcal{Z} \) is:

\[
\mathcal{Z} = -\text{tr} \left\{ U_0 \left( L dL + dLL + L^3 \right) - \left( U_0 \right)^3 L \right\} - \text{tr} \left\{ R \rightarrow L \right\}
\]

\[
+ \frac{1}{2} \text{tr} \left( U_0 L U_0 L \right) - \frac{1}{2} \text{tr} \left( R \rightarrow L \right) - \text{tr} \left( U^4 U R^3 \right) + \text{tr} \left( U R U^4 L^3 \right)
\]

\[
- \text{tr} \left\{ U^5 L U \left( R dR + dR \right) \right\} + \text{tr} \left\{ U R U^4 \left( L dL + dL \right) \right\}
\]

\[
- \text{tr} \left\{ U R U^4 L U \right\} - \text{tr} \left\{ U^{-1} U R U R \right\}
\]

\[
+ \text{tr} \left\{ L dU R U R U R \right\} + \text{tr} \left\{ R dU^{-1} U R U \right\}
\]

\[
- \text{tr} \left\{ dL U R U R \right\} + \text{tr} \left\{ dR dU^{-1} U R \right\}
\]

\[
+ \frac{1}{2} \text{tr} \left\{ R U^{-1} U R U^{-1} U L \right\}
\]

\[
\tag{69}
\]
Here $U_L$ stands for $dUU^{-1}$ and $U_R$ for $U^{-1}dU$.

Equation (69) is our final result. To compare it with the expression obtained by Witten\textsuperscript{4} we must notice that $A_R = -iR$ and $A_L = -iL$ due to a different convention in the definition of the covariant derivative. We find some minor differences with Witten's effective functional, which he calls $f$, which doesn't seem to have the prescribed transformation properties. If one makes the following changes in $Z_{\text{VA}}(\Phi)$:

1. Delete the coefficient $\frac{1}{2}$ in front of $A_{\mu L}A_{\nu L}U_{\alpha R}A_{\beta R}U^{-1}$.
2. Interchange $R \leftrightarrow L$ in the second term of the third line:

$$R_{\mu L}U^{-1}(\partial_{\nu R}A_{\mu R})\partial_{\nu L}U \rightarrow R_{\mu R}U^{-1}(\partial_{\nu R}A_{\nu L})\partial_{\nu L}U$$

3. Add $iA_{\mu L}A_{\nu L}A_{\alpha L}$ to the expression $(A_{\mu L}A_{\nu L})A_{\alpha L} + A_{\mu L}(A_{\nu L}A_{\alpha L})$ in the second line.

then the final expression transforms correctly, and the relation with (69) is:

$$\tilde{f} = W - \frac{i}{4\pi^2} \int \text{tr} \left( L U F_R U^{-1} - d U (U^{-1}dU) \right)$$

The last term, being a total differential, vanishes upon integration by parts, and the first term is invariant under both vector and axial vector gauge transformations and is therefore irrelevant.

Witten has established the \textit{a priori} quantization of the Wess-Zumino action in the sense that $W$ has to be multiplied by an integer which he has found to be equal to the number of colors $N_c$.\textsuperscript{4} Taking this into account, the anomalous contribution of the field $U$ to the baryon current can be calculated directly from (69). To this end, consider a local transformation of the fundamental spinor fields in the Lagrangian (1) given by:

$$\psi(x) \rightarrow \exp \left( i \frac{U^\alpha(x)}{N_c} \right) \psi(x)$$

where $1/N_c$ is the baryon number of a fermion (quark). By (3) and (4) this corresponds to a generator $\lambda_0$ given by:

$$\lambda_0 = \frac{1}{N_c}$$

where $1$ is the $f \times f$ unit matrix ($f$: number of flavors).

Then the anomalous vector baryon current is easily computed:

$$J_o^v = \int \frac{d^4x}{8\pi^2} \left( \frac{1}{N_c} \text{tr} \left( i U L^3 + i U R^3 \right) \right) = \frac{1}{2\pi^2} \text{tr} \left( U^\alpha dU \right)$$

since $\text{tr} \left( U_L^3 \right) = \text{tr} \left( U_R^3 \right) = \text{tr} \left( U^{-1}dU \right)^2$. Notice that $J_o^v$ (anomalous) vanishes identically.

Equation (73) coincides with the expression given by Witten\textsuperscript{4} by analogy with the electromagnetic anomalous current. The addition of the $U(1)$ generator $\lambda_0$ to the generators of $SU(3)$ increases the number of mesons to nine, the new one being a pseudoscalar (singlet). From the fact that $\Pi_3 \left( SU(2) \right) = \mathbb{Z}$ it is clear that all meson fields but the pion triplet can be set equal to zero, an one still gets an anomalous baryon number contribution $B_{\text{ANOM}}$.

$$B_0 = \frac{1}{24\pi^2} \int \text{tr} \left( U^{-1}dU \right)^3$$

(74)
Acknowledgments

I would like to thank Professor Zumino for suggesting the topic of this paper and for many helpful conversations during the course of this work. This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

Appendix A

We present here explicit expressions for some of the objects defined in Section II. These expressions are taken from [1] and [2] and adapted to the conventions used in this paper.

For $\omega_{2n-2}^1 (A, \nu)$ we have:

$$\omega_{2n-2}^1 (A, \nu) = \frac{1}{n!} \sum_{(i_1, \ldots, i_n)} \text{sgn}(i_1, \ldots, i_n) \text{Str}(\Lambda_{i_1} \Lambda_{i_2} \ldots \Lambda_{i_n})$$

(A.2)

where the sum is over all permutations $(i_1, \ldots, i_n)$ of $(1, 2, \ldots, n)$ and $\text{sgn}(i_1, \ldots, i_n)$ is the sign arising from the commutative properties of $\Lambda_i$ as forms.

For $\omega_{2n-2}$ we have:

$$\omega_{2n-2} (A, \nu, \gamma) = \frac{1}{n!} \sum_{(i_1, \ldots, i_n)} \text{sgn}(i_1, \ldots, i_n) \text{Str}(\Lambda_{i_1} \Lambda_{i_2} \ldots \Lambda_{i_n})$$

(A.3)

where $\text{Str}(\Lambda_{i_1} \Lambda_{i_2} \ldots \Lambda_{i_n})$ is a "symmetrized trace".

The symmetrized trace of a product of Lie algebra valued forms $\Lambda_i$ is defined:

$$\text{Str}(\Lambda_{i_1} \Lambda_{i_2} \ldots \Lambda_{i_n}) = \frac{1}{n!} \sum_{(i_1, \ldots, i_n)} \text{sgn}(i_1, \ldots, i_n) \text{Tr}(\Lambda_{i_1} \Lambda_{i_2} \ldots \Lambda_{i_n})$$

(A.2)

where the sum is over all permutations $(i_1, \ldots, i_n)$ of $(1, 2, \ldots, n)$ and $\text{sgn}(i_1, \ldots, i_n)$ is the sign arising from the commutative properties of $\Lambda_i$ as forms.

The integral is over a triangle in the parameter space $(A, \nu)$:

$$\int \int = \int_0^1 \int_0^{1-t} \delta \mu$$

(A.4)

In the evaluation of (A.3) all the integrals are of the type:

$$\int \int \frac{h! \ k!}{(h+k+2)!}$$

(A.5)
For \( n = 3 \) (A.1) gives:

\[
\omega_3 (R, \nu) = \text{Tr} \left\{ \nu \, d \left( A \, dA + \frac{1}{2} A^2 \right) \right\}
\]

and we can express the variation of the functional \( W(R, L, U) \) as follows:

\[
\delta \nu \, W(R, L, U) = K_3 \int_{S^3} \delta \nu \, \omega_3 (R, L) = K_3 \int_{S^3} (\omega_3 (R, \nu) - \omega_3 (L, \nu)) =
\]

\[
\frac{-i}{2 \nu R_3} \int_{S^3} \nu R_3 \, d \left( R \, dR + \frac{1}{2} R^2 \right) - (R^2 - L^2)
\]

(A.7)

in agreement with Witten's results\(^4\) and computations at the quark level.\(^6\)

### Appendix B

Here we complete the proof of Equations (57) and (59) which give \( \omega_{2n-1}^0 \) and \( S_{2n-2} \). To show the invariance of (57) under a vector gauge transformation we have to notice that, for \( g_R = g_L = g = e^\beta \), \( V_+ \) and \( V_- \) transform in the same way:

\[
V_2 \rightarrow g^{-1} V_2 \, g + g^{-1} \, dg
\]

(B.1)

which can be written to first order in \( \beta \):

\[
\delta \beta \, V_\pm = [V_\pm, \beta] + d \beta
\]

(B.2)

Also, under a global (space-time independent) vector gauge transformation the integrand is obviously invariant, and we have only to consider the part of the variation proportional to \( d\beta \), which we indicate by writing ~ instead of =:

\[
\delta \beta \, V_+ \sim \delta \beta \, V_- \sim d \beta
\]

(B.3)

Since \( \delta \beta F_\pm = [F_\pm, \beta] \), we have:

\[
\delta \beta F_+ \sim \delta \beta F_- \sim 0
\]

(B.4)

On the line \( \lambda + \mu = 1 \), \( \delta A_{\lambda \mu} \) is:

\[
\delta A_{\lambda \mu} = \delta \lambda \, (V_+ - V_-)
\]

(B.5)

and

\[
\delta \beta (\delta A_{\lambda \mu}) \sim \delta \lambda (d \beta - d \beta) = 0
\]

(B.6)

\( F_{\lambda \mu} \) can be written:

\[
F_{\lambda \mu} = \lambda \left[ F_+ (\lambda^{-1}) V_+ V_+ \right] + \mu \left[ F_- (\mu^{-1}) V_- V_- \right] + \lambda \mu (V_+ V_- + V_- V_+)
\]

(B.7)
From (B.3), (B.4), and (B.7) it follows immediately that, on the line $\lambda + \nu = 1$, $\delta_\mu F_{3\mu} = 0$.

This completes the proof of Equation (57). Let's consider now the expression (58) for $dS_{2n-2}$:

$$dS_{2n-2} = \frac{n}{D} \int \text{Str} \left( Y_5 \delta R_{\alpha\beta} F_{\alpha\beta}^{n-1} \right)$$

This expression is transformed by using Stokes theorem into an integral over the triangle of Fig. 2:

$$dS_{2n-2} = \frac{n}{D} \int \int \text{Str} \left( V_\nu \frac{\partial}{\partial \nu} - V_\lambda \frac{\partial}{\partial \lambda} \right) F_{\lambda\mu}^{n-1}$$

(B.9)

Notice that in (B.8) we are using the symmetrized trace, which in this case coincides with the ordinary one, but is more convenient in what follows.

Using:

$$\frac{\partial F_{\lambda\mu}}{\partial \lambda} = dV_\nu + \{ R_{\alpha\beta}, V_\lambda \} \quad \text{and} \quad \frac{\partial F_{\lambda\mu}}{\partial \mu} = dV_\nu + \{ R_{\alpha\beta}, V_\lambda \}$$

(B.10)

we can rewrite (B.9) as:

$$dS_{2n-2} = \frac{n(n-1)}{D} \int \int \text{Str} \left( Y_5 \left( (V_\nu dV_\nu - V_\lambda dV_\lambda) F_{\lambda\mu}^{n-1} + V_\nu \{ R_{\alpha\beta}, V_\lambda \} F_{\alpha\beta}^{n-1} - V_\nu \{ R_{\alpha\beta}, V_\lambda \} F_{\alpha\beta}^{n-1} \right) \right)$$

(B.11)

Since the symmetrized trace is invariant under permutations (up to a sign due to the commutation properties of the forms involved) the last two terms can be combined:

$$\text{Str} \left( \{ R_{\alpha\beta}, V_\lambda \} V_\nu F_{\alpha\beta}^{n-1} - V_\nu \{ R_{\alpha\beta}, V_\lambda \} F_{\alpha\beta}^{n-1} \right)$$

(B.12)

$$= - \text{Str} \left( Y_5 V_\nu [ R_{\alpha\beta}, F_{\alpha\beta}^{n-1} ] \right) = \text{Str} \left( Y_5 V_\nu dF_{3\mu}^{n-1} \right)$$

In the last step the Bianchi identity for $F_{3\mu}$ has been used. This allows (B.11) to be written as a total differential:

$$dS_{2n-2} = \frac{n(n-1)}{D} \int \int \text{Str} \left( Y_5 V_\nu V_\mu F_{\lambda\mu}^{n-1} \right)$$

(B.13)

and

$$S_{2n-2} = \frac{n(n-1)}{D} \int \int \text{Str} \left( Y_5 V_\nu V_\mu F_{\lambda\mu}^{n-1} \right)$$

(B.14)

The transformations leading from (B.8) to (B.14) are identical to the ones used by Zumino to prove Equation (A.3) for $\alpha_{2n-2}$.

Notice the similarity of Equations (A.3) and (B.24), which up to a factor differ only by the introduction of a $Y_5$ and the substitution $V_\nu \leftrightarrow - V$. Nevertheless, in the process of evaluating $\alpha_{2n-2}$ from (A.3) the equality $dV = V^2$ is used. This equality does not hold for $V_\nu$, and as a consequence the final expression for $S_{2n-2}$ cannot be obtained simply from that for $\alpha_{2n-2}$, but has to be evaluated independently, from (B.14).
Added Note

After completion of this work, we have received the paper by Ö. Kaymakcalan et al., COO-3533-278 SU-4222-278 preprint, in which the construction of the gauged Wess-Zumino action by the "trial and error" method is reconsidered, and we find complete agreement between their expression, Eq. (15), and ours, Eq. (69) (with the identifications $A_L = iL, R$ and $\alpha, \beta = U_{L, R}$). In their paper they also give some applications of the W-Z action to the study of "unnatural parity" hadronic reactions.

References


**Figure Captions**

(1). The \((\lambda, \mu)\) parameter space and paths associated with different solutions to Eq. (36).

(2). Domain of integration for \(S_{2n-2}\).
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.