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R E S EARCH ART I C L E
CARD IOVASCULAR AG ING
Vinculin network–mediated cytoskeletal remodeling
regulates contractile function in the aging heart
Gaurav Kaushik,1* Alice Spenlehauer,1† Ayla O. Sessions,2 Adriana S. Trujillo,3

Alexander Fuhrmann,1 Zongming Fu,4 Vidya Venkatraman,5 Danielle Pohl,1‡ Jeremy Tuler,1

Mingyi Wang,6 Edward G. Lakatta,6 Karen Ocorr,7 Rolf Bodmer,7 Sanford I. Bernstein,3

Jennifer E. Van Eyk,4,5 Anthony Cammarato,4§ Adam J. Engler1,2,8§
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The human heart is capable of functioning for decades despite minimal cell turnover or regeneration, suggesting
that molecular alterations help sustain heart function with age. However, identification of compensatory remod-
eling events in the aging heart remains elusive. We present the cardiac proteomes of young and old rhesus
monkeys and rats, from which we show that certain age-associated remodeling events within the cardiomyocyte
cytoskeleton are highly conserved and beneficial rather than deleterious. Targeted transcriptomic analysis in
Drosophila confirmed conservation and implicated vinculin as a unique molecular regulator of cardiac function
during aging. Cardiac-restricted vinculin overexpression reinforced the cortical cytoskeleton and enhanced myo-
filament organization, leading to improved contractility and hemodynamic stress tolerance in healthy and myosin-
deficient fly hearts. Moreover, cardiac-specific vinculin overexpression increased median life span by more than
150% in flies. A broad array of potential therapeutic targets and regulators of age-associated modifications, spe-
cifically for vinculin, are presented. These findings suggest that the heart has molecular mechanisms to sustain
performance andpromote longevity, whichmay be assisted by therapeutic intervention to ameliorate the decline
of function in aging patient hearts.
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INTRODUCTION

The average age worldwide is projected to increase markedly in the
coming decades. Advanced age is a primary risk factor for cardiac
dysfunction and subsequent morbidity and mortality (1). Treating
age-related heart failure (HF) is complicated due to its heterogeneous
etiologies. A multitude of remodeling events associated with cardiac
aging are thought to impair myocardial performance (1, 2). Remodel-
ing fundamentally begins with molecular changes, such as altered cell
growth regulation (3) and protein expression (4). Because cardiomyo-
cyte renewal in the heart is limited (5), functional maintenance may
depend on molecular remodeling over time- or age-related compen-
satory responses to minimize damage. Identifying compensatory aging
events is difficult because of diverse aging processes within and between
organisms and an abundance of maladaptive events. However, in-
tegrated approaches that identify conserved hallmarks of cardiac aging
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and verify their positive or negative functional consequences can assist
in distinguishing therapeutic targets for treating age-related HF or
improving outcomes during aging.

The cortical cytoskeleton in cardiomyocytes couples sarcomeres to
the membrane at cell-matrix (costameric) and cell-cell junctions [inter-
calated disc (ID)], translates sarcomeric contraction into cell shortening,
and undergoes remodeling in aging patients (6, 7) and during HF (8, 9).
Aging may therefore affect mechanotransduction, the signaling in-
duced by changing physical forces, through cytoskeletal proteins.
Vinculin, for example, is force-sensitive (10), regulates cell shape (11)
and intracellular signaling (12, 13), and is overexpressed in aging pa-
tient myocardium (7). Mechanical loading of cardiomyocytes results
in reinforcement of cell junctions (11, 14, 15) and increased vinculin-
mediated cross-linking of transmembrane proteins to the cortical ac-
tin superstructure (15, 16). Conversely, mechanical unloading via left
ventricular (LV) assist devices can restore baseline vinculin and cy-
toskeletal gene expression inHF patients (8, 9), and, moreover, vinculin
mutation alone can result in HF (17). These data suggest relationships
between the cytoskeleton, ventricular contractility, and ventricular load.
Therefore, we hypothesized that vinculin may additionally influence
cardiac performance with age. However, conservation of vinculin over-
expression in aging model systems and its structural and functional
consequences have never been investigated. Therefore, we examined
these with complementary techniques in multiple aging systems of
varying complexity.

We assessed conservation of known human aging hallmarks and
identified novelmolecular alterations by analyzing the LV proteomes of
adult and aged simians (Macacca mulatta) and rats (Rattus norvegicus)
using mass spectrometry (MS). Subsequent investigations suggested
that the vinculin network has a central, conserved role in cardiac aging.
UsingDrosophila melanogaster, a rapidly aging and genetically tracta-
ble model system, we observed that cardiac vinculin overexpression
nceTranslationalMedicine.org 17 June 2015 Vol 7 Issue 292 292ra99 1
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induced extensive cytoskeletal and cellular remodeling and correlated
with enhanced cardiac contractility and life span extension. In contrast
to a perception that remodeling is predominantly maladaptive, these
data strongly suggest a beneficial role for vinculin overexpression in
the aging heart.Wedemonstrate vinculin-mediated cytoskeletal remod-
eling as a compensatory mechanism in which tensional homeostasis is
altered to preserve cardiac function during aging. Vinculin network
proteins may thus serve as potent therapeutic targets for improving
HF patient outcome.
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RESULTS

Simian and murine ventricles exhibit age-related
cytoskeletal remodeling
Proteomic quantification of LV free wall myocardial samples from
adult and aged rhesus monkeys (11 and 22 years, respectively) and
rats (6 and 24months, respectively) was performed usingMS (Fig. 1A).
Tryptic peptides (tables S1 and S2) and a total of 1206 (simian) and
1086 (rat) nonredundant proteins (tables S3 and S4) were quantified;
of these proteins, 602 were common between species. On the basis of
STRAP (Software Tool for Rapid Annotation of Proteins) analysis (18)
of the cellular compartments in both proteomes, cytoskeletal proteins
were among the most plentiful groups in monkeys and rats, regardless
of gender and age ratios (fig. S1 and table S5). The most abundant
biological functions in both species involved molecules with a role in
subcellular organization, or formation andmaintenance of intracellular
and/or organelle structure (fig. S1 and table S6). On the basis of label-
free quantification via normalized spectral counts, proteins involved in
the cytoskeleton and cell organization increased in quantity with age,
especially in monkeys (Fig. 1B). These proteins were associated with
cardiac biological functions, including cardiovascular disease (table
S7), and numerous cardiac toxicological functions, such as arrhythmia,
hypertrophy, and failure (table S8).

Given increased expression of peptides with cytoskeletal ontolo-
gies, Ingenuity PathwayAnalysis (IPA)was used to determine interac-
tion networks. We observed age-associated up-regulation of vinculin
as well as components within the vinculin interaction network in
rhesus monkeys (Fig. 1C) and in rats (Fig. 2A). Figure 1D additionally
depicts a vinculin-centric network of cardiac aging biomarkers whose
deletion or mutation is also associated with cardiomyopathy in
humans and thus may serve as therapeutic targets; to this end, table
S9 annotates up-regulated cytoskeletal proteins in monkeys using
comparative analysis with IPA and OMIM (Online Mendelian Inher-
itance in Man) (19), a human genetic phenotype database. Interven-
tional or therapeutic regulators of all age–up-regulated proteins from
Fig. 1B were identified by IPA and are presented in table S10; those
that regulate vinculin, specifically, are in fig. S2.

Vinculin localization changes in aged rat ventricles
Relative to young (6 months) rats, aged (24 months) rats exhibited
increased body weight, heart weight, and total cardiac output. However,
heartweight and cardiac output normalized to bodyweight did not differ
significantly (fig. S3), suggesting that theywere undergoing physiological
aging and nonpathological hypertrophy at this age. Echocardiograms re-
vealed significant changes in diastolic and systolic LV internal dimension
which resulted in a modest decrease in fractional shortening with ad-
vanced age (Fig. 2, B and C), as observed previously (20).
www.Scie
Age-related differences in vinculin localization were characterized
by histology. Vinculin accumulated at IDs [connexin 43 (Cnx43)+ pix-
els] and lateral borders (Cnx43− pixels) in aged rat myocardium, with
an apparent preference at IDs (Fig. 2, D and E, and fig. S4, A to D),
similar to observations in elderly human hearts (7). Vinculin binds to
transmembrane proteins with its head domain and bundles or cross-
links cortical F-actin with its tail domain, and is conserved across
monkey, rat, and fly (fig. S5) (16, 21). Increased vinculin expression
may reinforce the cortical actin superstructure, leading to measurable
changes in cortical stiffness. Therefore, we performed atomic forcemi-
croscopy (AFM)–based nanoindentation on isolated rat cardiomyocytes
to probe cortical stiffness (fig. S6, A and B), which reflects cytoskeletal
integrity or actin superstructure abundance and the degree of cross-
linking by actin-binding proteins. There were no significant differences
in stiffness between age groups (fig. S6C). However, isolated cells at
these ages were poorly spread and minimally adherent, suggesting that
isolation compromised cytoskeletal integrity.

Mechanical assessments reflecting in vivo physiology would benefit
from use of an in situ model system that is characterized by preserved
cytoskeletal structure and protein homology. It has been shown that the
D. melanogaster heart meets these criteria (22–24). Thus, the rapidly
aging fly allows for examination of cardiac remodeling over time with-
out disruption of cytoskeletal integrity (Fig. 3).

Drosophila heart remodeling is genotype-dependent
The Drosophila heart consists of a bilateral row of cardiomyocytes that
form a contractile tubular structure with a prominent anterior region
called the conical chamber (Fig. 3A). To investigate age-associated car-
diac remodeling, we first quantified changes in heart diameter in two
common fly genotypes, yellow-white (yw) and white (w1118) (Fig. 3B).
Altered diameters are characteristic of cardiac remodeling. Diastolic di-
ameter was significantly diminished at 5 weeks of age (aged) as com-
pared to 1 week (adult) for both yw and w1118 (Fig. 3C), consistent
with published results, which have suggested that diastolic restriction
is a hallmark of cardiac aging in Drosophila (23, 24).

Intact Drosophila heart tubes can be prepared for AFM-based in-
dentation tomeasure cortical stiffness without damaging tissue (fig. S7).
A correlation between decreased diastolic diameters and increased
cortical stiffness has been previously demonstrated in aging Drosophila
and cardiomyopathy models (22, 24). Thus, we examined whether
genotype-dependent changes in diastolic diameters with age correlated
with stiffening. The conical chambers (Fig. 4A) of relaxed hearts were
indented in situ at the ventral midline, proximal to IDs (Fig. 4B, 0 mm),
and at distal positions, upon the costameres (Fig. 4B, 15 and 30 mm).
Cardiomyocytes from 1-week flies had relatively homogeneous stiffness
independent of genotype (Fig. 4C). However, yw exhibited cardiac
stiffening, with preference to the ventral midline (Fig. 4C, green overlay),
suggesting that excessive chamber remodeling correlates with increased
cortical stiffness. This correlation between severe diastolic restriction
and cortical stiffening was observed in a third Drosophila genotype,
white-Canton S (wCS) (fig. S8), which demonstrated a cardiac aging
phenotype similar to yw.

To examine the underlying contributors to cardiac stiffness in our
system,Drosophila hearts were incubated in either blebbistatin, which
inhibits actomyosin cross-bridge cycling, or cytochalasinD,which im-
pairs cardiac contractility and depolymerizes cortical actin (25). Five-
week yw exhibited a significant reduction in stiffness at the midline
after blebbistatin treatment, but reduction was more pronounced in
nceTranslationalMedicine.org 17 June 2015 Vol 7 Issue 292 292ra99 2
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Fig. 1. Comparison of cardiac proteomes of ventricles from adult and
aged simians and rats to identify cardiac aging biomarkers. (A) Experi-

pression determined by spectral counting for rats is denoted by filled sym-
bols, while simian protein expression is an outlined symbol. Color coding of
mental design to analyze LV free wall (dashed white box) from intact hearts
from aged and adult simians and rats. (B) Scatter plot of the ratio of aged to
adult spectral counts. Each point represents the ratio for a single protein, and
colors indicate cell component category (left) or biological function (right)
into which each protein falls, as determined by STRAP analysis. (C) IPA for
sarcomeric and cytoskeletal proteins yieldednetwork interactions. Protein ex-
www.Scie
expression is shownbelowwith a legend for shapes and interactions. Vinculin
(VCL) and vinculin-specific interactions are highlighted by bold, blue lines
within the network. (D) Network of cardiomyopathy-associated proteins that
are up-regulated with age in monkeys. Annotations obtained using IPA and
OMIM are available in table S9. Note that uncolored nodes represent protein
groups or complexes, not individual or redundant molecules.
nceTranslationalMedicine.org 17 June 2015 Vol 7 Issue 292 292ra99 3
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cytochalasin D–treated hearts (Fig. 4D and fig. S6D). These data sug-
gest that increased resting tone in the relaxed heart does not exclusive-
ly account for the measured stiffness increase and that the state of the
actin cytoskeleton may be a major component of age-related stiffening.

Expression differences in candidate actin-binding molecules were
investigated from excised fly hearts using quantitative polymerase chain
reaction (qPCR) to determine the molecular underpinnings of the age-
associated changes. Most cytoskeletal gene transcripts were up-regulated
with age in yw, including Innexin-3 (152%),Vinculin (103%),aCatenin-
related (99%), andaCatenin (58%).However, inw1118,most of these gene
www.ScienceTranslationalMedicine.org 1
transcripts did not change significantly
(Fig. 4E and table S11). Furthermore,
vinculin preference at the IDwas dimin-
ished in 5-week w1118 flies, which is in
contrast to ID preference at all ages in
yw flies and rats (Figs. 2E and 4F). These
data, in conjunction with an observed
lack of cortical stiffening, indicate that
minimal cytoskeletal reinforcement oc-
curs in w1118 with age as compared to
yw or wCS (fig. S8).

Mechanical function is preserved
in aging Drosophila hearts that
undergo cytoskeletal remodeling
To determine whether increased passive
stiffness is accompanied by altered active
mechanics, we assessed the contractile
dynamics of hearts beating against acute
hemodynamic loads in situ. Precisemea-
surements of shortening and lengthening
intervals were made from high-speed
videos (Fig. 5A), and the effect of load
on heart wall velocities was assessed
(Fig. 5B) (26). Shortening velocity is an
index of relative force production. One-
week w1118 flies had indistinguishable
myocardial shortening velocities relative
to age-matched yw flies (P = 0.923 for
genotype, repeated-measures two-way
ANOVA). However,w1118 velocities de-
clined with age at all loads (Fig. 5C),
whereas yw had preserved baseline
shortening and lengthening velocities
with age (P = 0.96, one-way ANOVA)
(Fig. 5D). Relative cardiac power output
during shortening, as calculated from
Hill’s equation (27) fit over the loads
tested, was diminished to a greater de-
gree with age in w1118 compared with
yw Drosophila (fig. S9 and table S12).

These data indicate that mechanical
performance is impaired in aged w1118

but is only evident under significant
load for yw. Therefore, exaggerated dia-
stolic restriction and cortical stiffening
were not accompanied by contractile
dysfunction; rather, restriction and stiffen-
ing correlated with preservation of baseline shortening and lengthening
velocities. Correlation between vinculin expression and preserved con-
tractility was also observed in wCS flies (fig. S8).

Vinculin overexpression recapitulates the age-related
cortical stiffening phenotype
Our data suggest that cardiac vinculin overexpression is a conserved
aging event, although its relationship to cardiac performance and orga-
nismal longevity remainsunclear.Therefore,we first examined its functional
consequences in Drosophila. Transgenes were strategically expressed
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intensity [vinculin/GAPDH (glyceraldehyde-3-phosphate dehydrogenase)] for each age cohort. Shown are
three technical replicates of six pooled samples at the indicated ages. P value determined by unpaired,
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in w1118 hearts, which did not stiffen with age, via the cardiac-specific
tinHE-Gal4 driver (tinman heart enhancer) in conjunction withUAS-
inducible Vinculin [vinculin heart-enhanced (VincHE)] or UAS–
interferingRNA (RNAi) againstVinculin [vinculin knockdown (VincKD)]
(Fig. 6A). Because decreased myosin and increased vinculin expression
were both observed in our proteomic screen of rats and monkeys (Fig.
1C) and in HF patients (4), we also established a line in which hearts
coexpress UAS-RNAi againstMyosin heavy chain (MhcKD) and UAS-
inducible Vinculin, dubbedMhcKD + VincHE (fig. S10), to determine
whether vinculin overexpression could rescue dysfunction resulting
from impaired myosin motor expression.MhcKD + VincHE flies were
compared to both control and a line expressing onlyUAS-RNAi against
www.Scie
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Myosin heavy chain (MhcKD). Cardiac-specific qPCR verified knock-
down and/or overexpression for each respective gene (fig. S11).

Structural and functional cardiac metrics were assessed in 1-week
flies (Fig. 6A). Vinculin preferentially localized to IDs in all lines except
VincKD (Fig. 6B). VincHE resulted in increased cardiac stiffness com-
pared to controls, with preference at IDs, similar to 5-week yw (Fig. 6C).
MhcKD exhibited reduced cardiac stiffness across the heart, consistent
with results obtained using other transgene drivers (24). However,
MhcKD + VincHE was indistinguishable from control, suggesting that
vinculin overexpression could restore basal cardiac stiffness in hearts
with myosin deficiency. Cytochalasin D treatment reversed the stiffen-
ing phenotype in VincHE (Fig. 6D) in a pattern matching 5-week yw
(fig. S12), suggesting remodeling of the cardiac actin superstructure
by increased vinculin. Increased vinculin expression, cortical stiffening,
and similar response to drug treatments occurred in both w1118 hearts
overexpressing vinculin (VincHE) and 5-week yw. These data indicate a
causative role for vinculin in inducing age-related changes in yw hearts
and correlate with age-associated cytoskeletal changes observed in ro-
dents, monkeys, and humans.

Elevated vinculin expression improves heart function,
myofilament organization, and life span
Heart dimensions and contractility were evaluated to examine the
effects of vinculin overexpression on cell structure and function.
VincHE had restricted cardiac diameters, although fractional shorten-
ing did not differ significantly from control (Fig. 6E). MhcKD hearts
were significantly dilated and had impaired fractional shortening re-
lative to control. Compensation for myosin knockdown with vinculin
overexpression in MhcKD + VincHE flies partially restored heart di-
mensions and fractional shortening relative to control genotype’s level.
With regard to relative force production, VincHEmyocardial shorten-
ing velocity was significantly higher at all loads and displayed a less
severe load-dependent decline in fractional shortening versus all other
genotypes (Fig. 6F).MhcKD heart wall velocities were diminished at all
loads and resembled 5-weekw1118 (P = 0.19, two-way ANOVA). How-
ever, MhcKD + VincHE hearts demonstrated substantially increased
shortening velocity and increased relative cardiac power output com-
pared toMhcKD and resembled controls (fig. S9 and table S12). Heart
rate and period did not differ between VincHE and control and were
depressed inMhcKD, but restored to control levels inMhcKD +VincHE
(fig. S13). Moreover, cardiac-specific vinculin overexpression substan-
tially prolonged median organismal life span by as much as 150% (Fig.
6G). These data suggest that VincHE hearts produce greater contractile
forces, that vinculin overexpression can rescue diminished force pro-
duction, and that cardiac-specific vinculin overexpression can increase
longevity.

Computational studies have suggested a role for vinculin in regulat-
ing sarcomere lattice spacing and contractility (28). Therefore, electron
micrographs of cross sections through VincHE and control cardiac
myofibrils were examined to investigate alterations in ultrastructure
(Fig. 7A and fig. S14). Thick-thick interfilament lattice spacing was sim-
ilar in control and VincHE (average spacing of 45.74 and 45.79 nm, re-
spectively) (Fig. 7B); however, a significant reduction in lattice spacing
variance was observed for VincHE flies (3.11 nm for control versus
0.89 nm forVincHE; P < 10−48, F test). A similar reduction in variance
was observed for thick-to-thin interfilament spacing. These data sug-
gest that improvedmyofilament lattice order contributes to the enhanced
cardiac contractility observed in VincHE flies.
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the conical chamber (CC). Image modified from (30). Filled arrowheads in-
dicate the cell-cell junctions or IDs along the middle axis of the heart. Illus-
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DISCUSSION

Age-related HF results from chronic stressors that induce a heteroge-
neous array of physiological changes associated with overall negative
outcome. However, individual events may be compensatory and re-
quired formaintaining functionwith age. Such events could be further
promoted to treat failure or delay age-associated negative outcomes by
therapeutic intervention in aging patients. An interrelationship be-
tween cytoskeletal composition and cell contractility has been presented
recently (13), and postmortem analysis of age-associated HF corrobo-
www.ScienceTranslationalMedicine.org
rated altered expression of cytoskeletal
proteins (7, 8). Although it is known that
cytoskeletal molecules are crucial for car-
diac function, a link between cytoskeletal
remodeling and mechanical function has
only been inferred (29) and not thoroughly
vetted in aging cardiac systems. Our goal
was to examine the contribution of cyto-
skeletal remodeling to function in aged
organisms with varying myocardial com-
plexity. Therefore, we integrated expansive
proteomic analyses of mammals (rats and
monkeys)with in-depthmechanistic analy-
ses in a permissive invertebrate system
(Drosophila). These data establish vinculin-
mediated cytoskeletal remodeling as a regulator of myocardial structure
and contractility during aging. Furthermore, therapeutic targets for
age-related HF are proposed on the basis of their expression changes
and known importance to cardiac function. In sum, these findings help
clarify the role of the cortical cytoskeleton in cardiac aging and indicate
vinculin and other mechanosensitive molecules as biomarkers of healthy
or beneficial aging and as potential targets for therapeutic intervention
in aging patients.

A primary aim was to assess conservation of age-related cytoskeletal
remodeling and its impact on myocardial performance across species
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Fig. 4. Age-associated heart stiffening
correlates with cortical actin cytoskeletal

remodeling in flies. (A) AFM cantilever po-
sitioned above the Drosophila heart. Insets
are illustrations of a cantilever over the heart
(top) and spherical indenter (bottom). (B)
bPS1 localizes within hearts at IDs (filled ar-
rowheads) and lateral junctions (open ar-
rowheads) along the length of the fly heart.
AFM indentation locations are indicated
by red dots and their distance from ventral
midline (0, 15, or 30 mm). (C) Cardiac stiffness
as a function of distance from ventral mid-
line in yw and w1118 flies (average ± SEM,
n > 20). *P < 0.05, **P < 0.01 for 5-week ver-
sus 1-week at respective distance, usingnon-
parametric t tests. Green overlay indicates
ventral midline data. (D) Change in cardiac
stiffness for 5-week yw after indicated phar-
macological treatment. Data are individ-
ual flies with mean change in stiffness from
EGTA ± SD (n = 10 per treatment). *P < 0.05,
**P < 0.01, versus mean stiffness in EGTA
using a repeated-measures one-way analy-
sis of variance (ANOVA). (E) Ratio of aged
(5-week) to adult (1-week) gene expression
in the heart (n = 3 biological replicates of
10 pooled hearts per age and genotype).
(F) Immunohistochemistry of hearts from
1- and 5-week flies showing vinculin or
b1 integrin expression. Plots indicate fluores-
cence intensity from a line drawn within the
box in each image for vinculin (green) or
b1 integrin (red). Filled arrowheads indicate
ID; open arrowheads, costameres.
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(simian, rat, and fly) during normal aging (as opposed to pathological
conditions). The unique but complementary use of each chosen model
allows for cooperative approaches to study aging networks or cellular
functions of interest. Monkeys have a relatively long life span and car-
diac physiology similar to humans, and rats are widely used as a human
cardiac pathophysiology model. However, neither is optimally suited for
mechanistic dissection of candidate proteins. In contrast,D.melanogaster
is a rapidly aging organism, has extensive proteomic and cellular ho-
mology to murine models (30), and allows for tissue-specific genetic
manipulation and experiments in which myocytes can be interrogated
in situ with tools that directly visualize heart structure (24, 31, 32) or
probe mechanics (22–24) without incurring damage to the heart (fig.
S7). Cultured neonatal or stem cell–derived myocytes are often used
to correlate mechanical and functional metrics (33, 34). However, such
systems can lack adult morphology or mature cell junctions owing to
remodeling of their intracellular structure (35) and altered contractility
(36) in response to ex vivo extracellular cues, such as super-physiological
substrate stiffness. Conversely, the Drosophila heart model allows us to
examine the intersection of tensional and physiological homeostasis as a
function of age and genetic manipulation with intact structures. Notably,
genotype-dependent differences exist withinDrosophila, similar to what
has been observed between mouse strains (37), and thus, we selected
two genotypes with diverse age-associated metrics (yw and w1118) for
comparison. Conservation of vinculin-mediated cytoskeletal remodel-
www.ScienceTranslationalMedicine.org
ing and its correlation with preserved
mechanical function with age were also
observed in wCS.

Vinculin was a promising candidate
for investigation because it formed a cen-
tral hub within the network of changes
identified by proteomics as well as its
known overexpression in aging human
myocardium (6, 7). Additionally, vinculin
has been implicated in integrin- (10) and
cadherin-mediated (15) mechanotrans-
duction and actin cytoskeletal interactions
(21). Cardiac-specific vinculin deletion dis-
rupts junctions and results in suddendeath
or cardiomyopathy in mice (38). Thus,
vinculin is an appropriate first candidate
to induce cytoskeletal remodeling, exam-
ine its effects onmyocardial performance,
and investigate a functional role in aging.
Increased cardiac vinculin expression in
flies correlated with greater localization
at the cortical cytoskeleton, subsequent
cytoskeletal reinforcement, and increased
contractility. Partial rescue of impaired
contractility and fractional shortening in
MhcKD + VincHE also support a role for
vinculin-mediated compensation for myo-
filament dysfunction, as proposed previ-
ously (6). Although it has been suggested
that cardiac cytoskeletal remodelingwould
result in stiffening and subsequent dys-
function (29), these data suggest that
vinculin-mediated cytoskeletal reinforce-
ment positively influences contractility
and life span, as evidenced by elevated myocardial shortening velocities
and the >150% increase inmedian life span inVincHEover control flies.

Vinculin overexpression may therefore be a conserved, beneficial
hallmark of cardiac aging. Although the intrinsic molecular causes of
vinculin overexpression in the aging heart remain unclear, upstream
regulators and activating reagents have been identified that could be
used for therapeutic vinculin overexpression. For example, growth dif-
ferentiation factor 11 (GDF-11), a transforming growth factor–b family
protein, positively regulates vinculin expression in the brain (39), and
its overexpression can reverse pathophysiological hypertrophy in aged
mice (3).However,GDF-11declineswith age inmice, andhumans have
lower concentrations of GDF-11 thanmice at all ages (3), implying that
reduced GDF-11 is not the underlying cause of vinculin overexpres-
sion in aging patients. AntagonismofmiR-34, a negative transcriptional
regulator of vinculin, led to improved outcome in mice experiencing
pressure overload ormyocardial infarction and correlated with vinculin
overexpression (40), although vinculinwas not specifically implicated as
an active component of protection. Posttranslational modification of
vinculin may also play a role in the aging process; vinculin localization
is regulated by phosphorylation by the kinase Abelson (41), whose
chronic inhibition by imatinib is associated with contractile dys-
function (42).

Vinculin is localized to costameres and IDs and plays separate but
complementary roles for cell-matrix and cell-cell adhesion. Our data
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indicate that vinculin overexpression leads to cytoskeletal reinforce-
ment, indicated by elevated cortical stiffness and increased myofila-
ment lattice order (Fig. 7C). Because costameres directly couple Z
discs to themembrane, increased vinculin could improve their integrity
and ability to anchor myofilaments sufficiently and in correct orienta-
tion. These data are consistent with in vitro assessment of vinculin-null
mouse myocytes, which had reduced cortical stiffness and increased in-
terfilament spacing (28). Improved interfilament order may enhance
the probability of actin-myosin cross-bridge formation, and thus the
number of actively cycling motors (43). Because the number of myosin
heads engaged with thin filaments determines muscle performance
(44), increased order predicts elevated probability of strongly boundmy-
osin cross-bridges and resultant force production. Vinculin’s role at cell-
cell junctions, where it was preferentially localized in rats and flies, and
www.Scie
where stiffness increased most significantly with age, is less clear. We
hypothesize that ID-vinculin may help anchor myofibrils and facilitate
longitudinal force transmission between myocytes, although additional
studies are necessary to confirm this. Finally, crosstalk between the cor-
tex and the Z disc, which is itself mechanosensitive (45), may also occur
during remodeling and impact force production.

This study is limited to examination of vinculin-mediated cyto-
skeletal remodeling in Drosophila myocardium, where aging could be
observed in a relatively short time. However, to more directly inform
clinical outcomes, the contribution of vinculin overexpression to cardiac
function should be further examined in larger mammalian models with
physiology and life spans more similar to humans. In such models, a re-
lationship between cardiac vinculin expression and clinically relevant
functional metrics (pressure-volume relationship, ejection fraction, or
C
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and fractional shortening. Data are individual flies with mean indicated. In
(C) to (E), *P < 0.05, **P < 0.01, compared to control by one-way ANOVA. (F)
tration of crosses used to generate control and transgenic lines. (B) Immu-
nohistochemistry of bPS1 and vinculin in 1-week-old genotypes. Plots
indicate fluorescence intensity from line drawn within box in each image
for vinculin (green) or bPS1 (red). Filled arrowheads indicate ID; open arrow-
heads, costameres. (C) Cardiac stiffness as a function of distance from the
ventral midline. Data are averages ± SEM (n > 20). (D) Change in cardiac
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Heart wall velocities and fractional shortening assessed under viscous load
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electrocardiogram) and organismal life spanmay be demonstrated. Addi-
tionally, these studies can directly elucidate how vinculin affects diastolic
and systolic performance in patient hearts. With regard to clinical ap-
plication, our data suggest that vinculin overexpression alone may be
sufficient to improve cardiac outcome during aging, indicating that in-
tervention with vinculin mRNAmay be a viable therapy. Application of
vinculin-based gene therapies in preclinical models should be explored
for their potential to prevent or delay age-related dysfunction. Future
studies may also examine the efficacy of clinical treatment with previ-
ously identified vinculin regulators (enzymes, kinases, microRNAs,
and small molecules) with emphasis on improving contractility while
www.ScienceTranslationalMedicine.org
minimizing off-target effects tomaximize
cardiac protection. Such studieswould set
the stage for clinical trials. Currently, no
trials exist to directly up-regulate vinculin
in patient hearts. In studies concerning
age-related HF without direct focus on
vinculin, relative changes in its expression
may serve as a biomarker or predictor of
outcome. Finally, although vinculin was
the primary focus of this study, our pro-
teomic analysis reveals a wide array of
biomarkers that warrant further investi-
gation of their possible role in indicating
outcome in HF patients or as therapeutic
targets.

Here, we have outlined a cytoskeleton-
based compensatory mechanism in the
aging heart that is conserved across spe-
cies. In presenting aging cardiac proteomes
andproviding a proof-of-concept study of
vinculin in cardiac aging, we aimed to es-
tablish a resource that will facilitate a
broader examination of cardiac aging so
that additional therapeutic targets and
regulators of aging heart function can
be identified and validated. Our findings
highlight the interplay of the molecular,
cellular, and ultrastructural state of the
cytoskeleton in maintenance of function
in the aging heart and that studies of me-
chanotransduction can directly inform
clinical outcomes. Furthermore, they can
assist in developing integrated therapies to
promote beneficial aging processes while
preventing or suppressing maladaptive
events to improve cardiac function in
elderly patients.
MATERIALS AND METHODS

Study design
The aim of this study was to investigate
the contribution of cytoskeletal remod-
eling to maintenance of function in aging
myocardium and the broader hypothesis
that aging is accompanied by conserved,
compensatory events. Heart function is dependent on hierarchical or-
ganization ofmolecular and cellular components acrossmultiple length
scales. Therefore, we chose to perform an analysis that integrated com-
plementary information across these scales. Recognizing a need for a
comprehensive library of myocardial proteins with altered expression
with age, we performed broad-spectrum proteomic analyses of the LV
free wall in monkeys and in rats. Monkeys were chosen because of
their physiological similarity to humans, and rats were selected be-
cause of their demonstrated use as a model of human cardiac aging. We
used MS methods that enriched specifically for cellular/cytoskeletal
constituents and not extracellular matrix components, given that
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age- (6, 7) and mutation-associated (17) cytoskeletal alterations have
been associated with HF. Validation of MS data was performed in flies,
a model organism that ages rapidly and in which genetic tools allow
for examination of the contribution of specific network hits to cardiac
function. Because this work used the fly heart as a model to study the
mechanobiology of cardiac aging, we assessed the extent to which the
model recapitulates mammalian cytoskeletal changes of interest by
examining changes in cytoskeletal gene expression associated with
age in humans. Subsequent data illustrate changes in form and
function after vinculin-mediated cytoskeletal remodeling.

For all animals, ages were chosen on the basis of conventions for
what constitutes post-development or adult and aged. One-week-old
transgenic flies (Figs. 6 and 7) were examined to study the effects of
cytoskeletal perturbations independent of aging. Flies of the appropriate
age were selected randomly from larger populations for all experiments.
Post hoc power analyses for the appropriate tests determined statistical
power of at least 0.70 inmammals (Figs. 1 and 2) and at least 0.90 in flies
(Figs. 3 to 7) given a of 0.05. Data were not blinded. No data were ex-
cluded from this study.

Vertebrate animals
Six adult (6 months) and six aged (24 months) female F344xBN F1
rats were obtained from the National Institute on Aging (NIA). Col-
ony maintenance and experiments were performed in accordance with
University of California, San Diego, Institutional Animal Care and Use
Committee (IACUC) protocol S11032. Four adult (average, 11.63 years
old; range, 8.75 to 14.12) and five aged (average, 22.4 years old; range,
18.81 to 25.48) male rhesus monkeys were maintained at the NIA in
accordance with NIA IACUC protocol AG000238-07 (Effects of Aging
on Experimental Atherosclerosis in Nonhuman Primates). Freshly
isolated sections of LV rat myocardium were embedded in OCT and
then flash-frozen in liquid nitrogen for subsequent histological analysis.
Alternatively, rat and rhesusmonkey samples where flash-frozen for sub-
sequent proteomic analysis. Further details regarding echocardiography,
cardiomyocyte isolation, and other mammalian experimental protocols
are available in the Supplementary Materials.

Proteomic analysis of ventricular tissue
Heart tissues were prepared and analyzed by reversed-phase liquid chro-
matography tandemMSonlinewith anOrbitrap Elitemass spectrometer
(Thermo Scientific) coupled to an Easy-nLC 1000 system (Thermo Sci-
entific), as described in Supplementary Materials and Methods. The
analysis was operated in a data-dependent mode with full-scanMS spec-
tra acquired at a resolution of 60,000 in the Orbitrap analyzer, followed
by tandemmass spectra of the 20most abundant peaks in the linear ion
trap after peptide fragmentation by collision-induced dissociation.
Database searching and processing are described in Supplementary
Materials and Methods.

D. melanogaster lines, husbandry, and culture conditions
Fly lines were obtained from the Bloomington Drosophila Stock
Center at Indiana University or the Vienna Drosophila RNAi Center.
Flies were raised on standard agar-containing food at 25°C. Cardiac-
specific perturbation of gene expression was achieved via the Gal4-UAS
system as described previously (46). The UAS-Vinculin/UAS-MHC-
RNAi line (MhcKD+VincHE) was generated through a series of crosses
between the individual UAS lines and the balancer lineCdc42/FM6;Sco/
CyO (fig. S10). Female progeny of tinHE-Gal4 and w1118 served as con-
www.Scien
trol. Proper transcription of both constructs was validated using heart-
specific gene expression analysis (fig. S11 and table S11).Details regarding
Drosophila stock information and cardiac analyses can be found in the
Supplementary Materials. Fly microsurgery, as detailed in Supplemen-
tary Materials and Methods, did not influence passive or active mea-
sures of heart function (fig. S7).

Analysis of heart D. melanogaster parameters and
performance under hemodynamic load
Ventrally exposed hearts were prepared as described in Supplementary
Materials andMethods, arranged on a 35-mmpetri dish, and imaged at
10×with aHamamatsu electronmultiplier charge-coupled device digital
camera (100 to 150 fps) mounted on a Leica DM LFSA microscope. At
least five contraction events were recorded per heart. Hearts were then
submerged in 10% (w/v) Ficoll in oxygenated hemolymph, allowed to
equilibrate for 1 min, and then imaged again. Hearts were then
submerged in 20% (w/v) Ficoll in oxygenated hemolymph, equilibrated
for 1 min, and then imaged once more. All hearts remained beating after
completion of imaging. Generation of m-mode kymographs and subse-
quent calculation of systolic and diastolic lengths, fractional shortening,
and shortening and lengthening velocitieswere performedwith previous-
ly described software that has been modified to permit measurement of
contraction and relaxation phases of individual systolic intervals (26).
Shortening (contraction) and lengthening (relaxation) velocities were
calculated by dividing the contraction distance by the contraction and
relaxation intervals, that is, the time between the start of contraction
and the start of isovolumic systole and the time between the end of
isovolumic systole and the start of isovolumic diastole, respectively. A
least squares fit was performed on the average shortening velocity
for each genotype as a function of relative viscosity (MATLAB) based
on Hill’s equation (27). Fits are displayed over the viscosity ranges
tested. Coefficients of the Hill equation are provided in table S12.

Statistical analyses
Data comparison was subjected to either a nonparametric Student’s t
test with unequal variance assumption, a Wilcoxon rank sum test, a
repeated-measures one-way ANOVA, a one-way ANOVA with post hoc
Tukey correction, or a two-wayANOVAwith post hoc Tukey correc-
tion, as indicated in respective captions. Significance was assigned for
P < 0.05. Scatter plots reflect the average measurement of individual
animals with black bars indicating the mean. Pooled data are repre-
sented as means ± SEM unless otherwise indicated. All Drosophila
experiments were performed with biological replicates of 15 to 38 flies
unless otherwise indicated. All other experiments were performed
with biological replicates of indicated sample size.
SUPPLEMENTARY MATERIALS

www.sciencetranslationalmedicine.org/cgi/content/full/7/292/292ra99/DC1
Materials and Methods
Fig. S1. STRAP analysis of gene ontology and biological function for simian and murine proteomes.
Fig. S2. Partial interaction map of upstream vinculin regulators.
Fig. S3. Biometric comparison of adult and aged rats.
Fig. S4. Analysis of vinculin localization in rat and fly myocytes.
Fig. S5. Vinculin structure and homology across monkey, rat, and fly.
Fig. S6. Indentation of isolated adult and aged rat cardiomyocytes and intact fly hearts.
Fig. S7. Effects of heart tube preparation on its function.
Fig. S8. Characterization of diastolic diameter, cardiac stiffness, and vinculin expression in the
wCS Drosophila genotype.
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Fig. S9. Fitting shortening velocities with Hill’s muscle model.
Fig. S10. Generation of the UAS-Mhc RNAi;UAS-Vinc line.
Fig. S11. Quantification of genetic perturbations in Drosophila hearts.
Fig. S12. Change in VincHE stiffness with cytoskeletal perturbation.
Fig. S13. Transgenic fly heart rate, period, and rate variance.
Fig. S14. Analysis of interfilament spacing in TEM images from the Drosophila heart.
Table S1. Peptides detected by mass spectroscopy for adult and aged rhesus monkey left
ventricles.
Table S2. Peptides detected by mass spectroscopy for adult and aged rat left ventricles.
Table S3. Proteomic analysis for adult and aged rhesus monkey left ventricles.
Table S4. Proteomic analysis for adult and aged rat left ventricles.
Table S5. STRAP annotation of the cellular compartments of proteins detected in both rat and
monkey proteomes.
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mediated cytoskeletal remodeling regulates contractile−Vinculin network

 
Editor's Summary

 
 
 
and for selecting therapeutic targets to prevent heart failure and also keep the heart young and beating as we age.
and other cytoskeletal proteins, the authors have put forth a valuable resource for better understanding cardiac aging 

vinculinrather than being maladaptive. By using several models and producing a large proteomic network centered on 
, supporting the notion that particular aspects of heart remodeling are beneficial and prolong life span,Drosophila

cytoskeletal stiffening and heart cell contractility. This mechanism was confirmed in rats and in different strains of 
. hypothesized that vinculin accumulates with age to regulateet almembrane to its actin cytoskeleton. Thus, Kaushik 

conserved across species, being present at cell-matrix and cell-cell adhesions and also anchoring the cardiomyocyte
analysis in old and young monkeys and rats, and identified one protein at the heart of it all: vinculin. Vinculin is 

. therefore performed a proteomicet altherapies to treat heart failure, a leading killer in the developed world. Kaushik 
human lifetime. The mechanisms of remodeling in mammals remain unclear but, if known, could help develop new 

even though the heart experiences relatively little regeneration in the−−or young−−remodeling to keep it functioning
 A common charge for graceful aging is to stay ''young at heart.'' With age, the heart undergoes necessary
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