Title
REACTIONS OF U238 WITH CYCLOTRON PRODUCED NITROGEN IONS

Permalink
https://escholarship.org/uc/item/14j498jc

Authors
Ghiorso, Albert
Rossi, G.
Harvey, Bernard G.
et al.

Publication Date
1953-11-08
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
REACTIONS OF U^{238} WITH CYCLOTRON PRODUCED
NITROGEN IONS

By

Albert Ghiorso, G. Bernard Rossi, Bernard G. Harvey,
and Stanley G. Thompson
Radiation Laboratory and Department of Chemistry
University of California, Berkeley, California

November 18, 1953

The acceleration of N^{14} ions with the Berkeley Crocker Laboratory 60-inch cyclotron has made it possible to study nuclear reactions of these ions with U^{238}.

The following transmutation products have been observed:
O^{16}, F^{19}, Cl^{24}, Ar^{36}, K^{47}, Rb^{85}, Sr^{90}, Y^{90}, Zr^{91}, and other berkelium isotopes not yet identified. The identification of the elements was definitely established by their carrying on lanthanum fluoride precipitates and by their order of elution from a Dowex-50 ion exchange column.

The observed nuclear properties of these nuclides are summarized in Table 1.
Table I

Nuclides Produced by U238 Plus N14 Ions

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Half-life</th>
<th>Radiation</th>
<th>Alpha energy (Mev)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>99Cf</td>
<td>~2.7 hr</td>
<td>EC, a, EC(?)</td>
<td>7.15</td>
<td></td>
</tr>
<tr>
<td>99Cf</td>
<td>35.7 hr</td>
<td>a</td>
<td>6.75</td>
<td></td>
</tr>
<tr>
<td>99U</td>
<td>~2.7 hr</td>
<td>EC</td>
<td>7.35</td>
<td>Observed only through growth of its 1.5-day Cf246 daughter</td>
</tr>
<tr>
<td>100Bk</td>
<td>225 day</td>
<td>a</td>
<td>6.26</td>
<td></td>
</tr>
<tr>
<td>100Bk</td>
<td>4.6 hr</td>
<td>EC, a</td>
<td>6.72 (30%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.55 (53%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.20 (17%)</td>
<td></td>
</tr>
</tbody>
</table>

The nuclides Cf244, Cf246, Cf248, Bk243, and Bk245 have previously been observed in this laboratory. 2, 9

The yields of the transcurium nuclides were low even though bombardment currents of 0.1 microampere of N14 ions of energy greater than 100 Mev were available. In three separate experiments a total of 40 alpha-emitting atoms of the 7.3-minute isotope of element 99 were observed to decay in the ion exchange column fraction immediately preceding californium, namely the eka-holmium position. Thus, the element identification is certain though the mass number can only be inferred on the basis of nuclear systematics. By observation of the
abundant fission product activity it was found that almost all of the
nuclear reactions of nitrogen ions with ^{238}U resulted in fission much
as in the case of carbon ion bombardment of the same nucleus.

It is a pleasure to acknowledge the continued help and encourage-
ment of Professor Joseph G. Hamilton, Director of the Crocker Laboratory.
Our grateful thanks are extended to William B. Jones and the members
of the 60-inch cyclotron operating crew for their cooperation in
making the many bombardments necessary for this work. Special
thanks are due to Dr. Gregory Choppin for his valuable assistance
with some of the chemical separations. It is a privilege to acknowledge
that this work was accomplished with the always helpful guidance of
Professor Glenn T. Seaborg. The continued interest and encourage-
ment of Professor Ernest O. Lawrence is gratefully acknowledged.

This work was performed under the auspices of the U.S. Atomic
Energy Commission.

Laboratory Unclassified Report UCRL-2283 (July 1953).