Lawrence Berkeley National Laboratory

Recent Work

Title
Quasiparticle Excitations in Superdeformed \(^{192}\text{Hg}\)

Permalink
https://escholarship.org/uc/item/14r1f9t1

Journal
Physical Review C, 51(4)

Authors
Fallon, P.
Lauritzen, T.
Ahmad, I.
et al.

Publication Date
1995-05-01
Submitted to Physical Review C

Quasiparticle Excitations in Superdeformed 192Hg

May 1995

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Quasiparticle Excitations in Superdeformed 192Hg

1 Nuclear Science Division, Lawrence Berkeley Laboratory University of California, Berkeley, CA 94720, USA
2 Argonne National Laboratory, Argonne IL 60439, USA
3 C.S.N.S.M., IN2P3-CNRS bat 104-108, F-91405 Orsay Cedex, France
4 I.P.N., IN2P3-CNRS bat 104, F-91406 Orsay Cedex, France

May 1995

This work was supported by the Director, Office of Energy Research Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098
Abstract

For the first time, two excited superdeformed bands have been observed in the double closed shell superdeformed nucleus ^{192}Hg. One of the SD bands exhibits a pronounced peak in the dynamic moment of inertia which is interpreted as a crossing between two excited SD configurations involving the $N=7$ intruder and the $[512]^5\frac{5}{2}$ orbitals. This is only the second occurrence of such a crossing in a SD nucleus around $A=190$. The second excited SD band has near identical transition energies to an excited SD band in ^{191}Hg.

21.10.Re, 23.20.Lv, 27.80.+w
Superdeformation in the mass 190 region was first observed in ^{191}Hg [1]. Soon after, a superdeformed (SD) band was observed in ^{192}Hg [2,3], and since then approximately 40 SD bands have been reported in this mass region (i.e., in Au, Hg, Tl and Pb nuclei). The $A=190$ SD bands exhibit a number of striking features. In particular many SD bands show the same smooth rise in the dynamic moment of inertia ($\mathcal{S}^{(2)}$) as a function of rotational frequency ($\hbar \omega$), which is associated [3,4] with the successive alignment of neutrons and protons in the presence of pair correlations. In addition to the similar moments of inertia, the transition energies of many SD bands are also 'identical' [5]. Since pair correlations play an important role in $A=190$ SD nuclei (required to explain the rise in $\mathcal{S}^{(2)}$), the observation of so many bands in even and odd mass nuclei with similar moments of inertia is surprising. Unpaired nucleons close to the Fermi surface are expected to reduce (block) the pairing strength, and hence increase the moment of inertia. Thus, in addition to similar $\mathcal{S}^{(2)}$'s, the occurrence of identical SD bands with near identical transition energies appears even more surprising.

Besides these more general features of SD bands near $A=190$, the observation in ^{193}Hg [6] of a band-crossing involving $N=7$ and $N=5$ quasiparticle orbitals has raised several questions regarding (i) the spectrum of quasiparticle states in the vicinity of the Fermi surface and (ii) the role of collective excitations (octupole vibrations) in SD nuclei. To date such a band-crossing has only been observed in ^{193}Hg, although similar crossings are expected to occur in neighboring nuclei as well.

In this letter we present new data which provide important experimental information on the above mentioned properties of $A=190$ SD bands. Two excited SD bands in the doubly closed shell nucleus ^{192}Hg are reported for the first time. At low frequencies one of the new bands is identical to a SD band in ^{194}Hg [4,7], while at higher frequencies one observes a

\footnote{In general, identical bands are those which have either integer or half-integer alignments relative to each other. The alignment is the difference in the total angular momenta at a given rotational frequency.}
clear band-crossing, similar to that observed in 193Hg. It is shown that the properties of this band may be used to place constraints on (i) the relative position of neutron orbitals around the $N=112$ SD shell gap, and (ii) the influence of pair correlations on the valence quasiparticle routhians. The second new SD band displays a sharp increase in $\mathcal{S}^{(2)}$ at the highest frequencies and, in addition, is identical to a SD band in 191Hg [8] over a large frequency range.

SD states of 192Hg were studied using the Gammasphere spectrometer [9] and the reaction 160Gd(36S,4n)192Hg at a beam energy of 159 MeV. In this phase of operation Gammasphere consisted of 30 escape-suppressed, large volume (75%) Ge detectors. The beam of 2 – 3pnA was supplied by the Lawrence Berkeley Laboratory 88" cyclotron and the target consisted of two 500μg/cm$^{-2}$ self-supporting foils. A total of approximately 5×10^8 events were collected in which three or more suppressed Ge detectors registered an event.

Three SD bands were observed in this data set, one of which (band 1) has been reported [2,3] previously and is associated with the 192Hg yrast SD configuration. The new SD bands (bands 2 and 3 – shown in Fig. 1) are in coincidence with low-lying transitions in 192Hg and are therefore also assigned to 192Hg. The SD rotational nature of the bands was inferred from the regular transition energy spacing (~ 40 keV). The intensities for bands 2 and 3 are approximately 10% and 5% relative to band 1 which has $\sim 2\%$ of the 192Hg channel intensity. Therefore we associate these new bands with excited SD configurations. The low intensities for bands 2 and 3, relative to band 1, are consistent with the expected large SD shell gaps at $N=112$ and $Z=80$. The energies for bands 1-3, together with their relative in-band intensities are given in table 1. Band 2 was also observed independently in an experiment performed with the Eurogam spectrometer [10] at Daresbury using a gold-backed target [11].

The dynamic moment of inertia ($\mathcal{S}^{(2)}$) for each of the SD bands in 192Hg is shown (Fig. 2) as a function of rotational frequency ($\hbar \omega$). Except at high frequencies the three SD bands exhibit the same gradual increase in $\mathcal{S}^{(2)}$ as one observes for almost all SD bands in this region. This smooth increase is attributed [3,4] mainly to the successive alignment of both $N=7$ neutrons and $N=6$ protons in the presence of pairing, and as a consequence, one
expects the $\mathcal{S}^{(2)}$ to decrease after the alignment process is complete. This decrease in $\mathcal{S}^{(2)}$ (at $\hbar \omega \approx 0.4$ MeV) was recently observed for the first time in 194Hg [12]. Both previous work [13] and the present data (Fig. 2) show that the $\mathcal{S}^{(2)}$ for 192Hg band 1 flattens at $\hbar \omega \approx 0.4$ MeV, further supporting this interpretation.

In 192Hg band 2 there occurs a clear irregularity or ‘peak’ in the $\mathcal{S}^{(2)}$ which suggests the band is undergoing a change in configuration (band-crossing). Since the contribution to $\mathcal{S}^{(2)}$ from the single- or quasiparticle alignment (i) is $\frac{d}{d(\hbar \omega)}$, then a peak in $\mathcal{S}^{(2)}$ (relative to a smooth reference) implies a gain in alignment with increasing frequency. In 193Hg, Cullen et al. [6] observed a peak and a dip in the $\mathcal{S}^{(2)}$ of bands 1 and 4 respectively. It was proposed [6] that at low frequencies bands 1 and 4 in 193Hg correspond to structures where the odd quasineutron occupies the $[512]\frac{5}{2}$ and the N=7 intruder orbital respectively. At $\hbar \omega \approx 0.25$ MeV these bands interact, exchange character (quantum numbers) and at high frequencies the structure of 193Hg band 1 can be associated with the N=7 intruder while that of 193Hg band 4 is associated with the $[512]\frac{5}{2}$ orbital. We suggest that the interaction in 192Hg band 2 also involves a crossing between the N=7 intruder and the $[512]\frac{5}{2}$ orbital. The crossing frequencies ($\hbar \omega$) and alignment gains (i) associated with this interaction are $\hbar \omega \approx 0.3$ MeV, $i \approx 2.6\hbar$ for 192Hg band 2, and $\hbar \omega \approx 0.25$ MeV, $i \approx 1.0\hbar$ for 193Hg band 1. Why the properties of the band-crossing are different in 192Hg and 193Hg is indeed a puzzle, it may reflect differences in the Fermi levels, however, one would have expected that the crossing frequency in 193Hg is pushed to higher values since the separation between the $[512]\frac{5}{2}$ orbital and the $N=7\frac{3}{2}$ orbital is larger in 193Hg compared with 192Hg. To date, 192Hg and 193Hg are the only SD nuclei which exhibit such a crossing. Why similar SD bands are not observed in neighboring nuclei, with similar neutron Fermi levels (e.g., 194Hg, 194Tl, 194,195Pb), remains an important unanswered question.

Since 192Hg has an even number of neutrons, band 2 is most likely associated with a 2-quasiparticle configuration. For an interaction of the type suggested above one quasineutron should occupy the favored signature of the N=7 intruder at high rotational frequency which
then crosses (interacts with) the \([512]\frac{3}{2}\) orbital as the frequency decreases. Fig. 3 shows a quasineutron diagram for \(^{192}\text{Hg}\) taken from the Hartree-Fock (HF) cranking calculations of Gall et al. [14] illustrating the crossing between the \(N=7\) and the \([512]\frac{3}{2}\) orbitals at \(\hbar \omega \approx 200\) keV. The second quasineutron most likely occupies either the \([642]\frac{9}{2}\) or \([624]\frac{1}{2}\) orbital (for the sake of simplicity and since we are not able to distinguish between the two candidates, we will only refer to the \(N=6\) orbital in the following discussion). In \(^{192}\text{Hg}\) we do not observe a SD band which exhibits a dip in \(\mathcal{S}^{(2)}\) (cf. \(^{193}\text{Hg}\) band 4 [6]). However, in the frequency range \((\hbar \omega \geq 0.3)\) where SD bands are mainly populated, the \([512]\frac{5}{2}\) orbital (Fig. 3), which is occupied in that band is expected to lie higher in excitation energy than the favored signature of the \(N=7\) orbital. Therefore a SD band (e.g. similar to \(^{193}\text{Hg}\) band 4) based on a configuration in which the \([512]\frac{5}{2}\) is occupied at high frequency may be too weak to observe in these data.

It is important to note that while HF calculations predict a crossing between the \(N=7\) and the \([512]\frac{5}{2}\) orbitals, cranked shell model (CSM) calculations using a Woods-Saxon potential do not predict this band-crossing in the \(^{192}\text{Hg}\) excited SD structures. This is due to the fact that the two models predict different energies for the \(N=7\) intruder orbitals relative to the Fermi level, and hence these data on \(^{193}\text{Hg}\) place constraints on the position of the \(N=7\) quasineutron intruder orbitals relative to the \([512]\frac{5}{2}\) orbital and the Fermi level.

Below the band-crossing, \(^{192}\text{Hg}\) band 2 has transition energies which are very close to those of \(^{194}\text{Hg}\) band 2 [4,7] (see Fig. 4a). In \(^{194}\text{Hg}\), Riley et al. proposed that band 2 is based on a \([512]\frac{5}{2} \otimes [624]\frac{9}{2}\) configuration, and in addition they observe another SD band (band 3) which has transitions energies at the half-way points to \(^{194}\text{Hg}\) band 2. As a result, \(^{194}\text{Hg}\) bands 2 and 3 are considered to be signature partners based on a strongly coupled configuration. Although the orbitals involved in the \(^{194}\text{Hg}\) excited SD bands are similar to those proposed for \(^{192}\text{Hg}\), it was not possible to identify a band in \(^{192}\text{Hg}\) which would correspond to a strongly coupled signature partner to band 2. However, the transition energies for band 2 occur close to the half-way points relative to band 1, and therefore if such a signature partner to band 2 exists, it would most likely be masked by the much
stronger band 1.

The band-crossing in 192Hg band 2 provides evidence for the importance of pair correlations in $A=190$ SD bands. Calculations which do not include pairing are not able to predict any band-crossing (except at very high rotational frequencies, $\hbar \omega \geq 0.8$ MeV). By including pair correlations, the $N=7$ intruder becomes a mixture of the $K = \frac{3}{2}$ and $K = \frac{5}{2}$ components, causing this orbital to align (i.e., become lower in energy with increasing frequency) and interact with the $[512]\frac{3}{2}$ orbital [14]. It is also important to recognize that the presence of pair correlations also affects the alignments of other orbitals (see Fig. 3). In fact, those valence quasineutron routhians which one would like to assign as 'spectators' exhibit too much alignment. Thus these data provide a crucial test for current calculations, since they must first reproduce the band-crossing in 192Hg, while at the same time yield at least one 'spectator' orbital with near zero alignment. Moreover, since there are now two examples of SD bands in the $A=190$ region which undergo a quasineutron crossing, it is necessary for theory to also explain why the properties of the band-crossing are different in 192Hg and 193Hg. As a final comment on the properties of band 2 we note that below $\hbar \omega = 0.2$ MeV, this band has $\Omega^{(2)}$ values which are higher than those of 192Hg band 1. This difference in $\Omega^{(2)}$ at low frequencies between 0-quasiparticle and neighboring excited (or odd) quasiparticle configurations is seen consistently throughout the $A=190$ SD region and may be due to either pair blocking [15] in the excited (or odd quasiparticle) SD bands and/or the alignment of valence particles.

The second new SD band (band 3) is also likely to be associated with a 2-quasiparticle structure and exhibits a number of interesting features which enable us to draw the following conclusions.

(i) The $\Omega^{(2)}$ moment of inertia for band 3 (Fig. 2) is similar to that of band 1 (except at the very highest frequencies), and therefore band 3 is assigned the same intruder configuration as band 1.

(ii) The transition energies for band 3 are within 1-2 keV of those in 191Hg band 2 (Fig. 4b), and although 191Hg band 2 is known to have a signature partner (i.e., 191Hg band 3 [8]) we
do not observe a similar signature partner for 192Hg band 3. The absence of a signature partner implies that neither of the two quasiparticles are in deformation aligned high-K orbitals.

(iii) The transition energies for 192Hg band 3 occur close to the 3/4 points relative to those in 192Hg band 1 (Fig. 4c) and since transitions connect states with spins $I \rightarrow (I - 2)$, 192Hg band 3 has near half-integer alignment with respect to 192Hg band 1. This is not expected for a 2-quasiparticle band and the observed half-integer alignment may be accidental.

(iv) Band 3 exhibits a sharp increase in $\mathcal{G}^{(2)}$ (Fig. 3) at high frequency ($\hbar \omega \approx 0.33$ MeV) which suggests it is undergoing a band-crossing or a level interaction.

Given the above observations, and assuming that our assignments to 192Hg band 2 are correct, we are left with a number of problems with the interpretation of band 3. If bands 2 and 3 are undergoing the same level interaction (i.e., the crossing of the favored $N=7$ intruder orbital with the $N=5$ orbital), it is very difficult to understand why the two crossing frequencies are different. On the other hand, if the increase in $\mathcal{G}^{(2)}$ (band 3) involves the unfavored $N=7$ intruder orbital, one may expect that bands 2 and 3 would behave like strongly coupled signature partners at low frequency, which is clearly not the case. Although many quasiparticle orbitals are predicted to occur close to the Fermi level (Fig. 3), it was not possible to assign a quasiparticle configuration to band 3 which was consistent with all above observations.

To summarize, we have observed two excited SD bands in 192Hg, which are associated with 2-quasiparticle excitations. Band 2 shows evidence for a band-crossing, and corresponds to the occupation of a $N=7$ intruder at high frequency and the $[512]_2^3$ orbital at low frequency. This is only the second example of such a crossing and provides important experimental information on the quasiparticle spectra around the $N=112$ SD shell gap and on the role of pairing in SD nuclei. It is a puzzle why similar crossings are not seen in neighboring SD nuclei. Band 3 is seen to exhibit a number of intriguing features, such as near 'identical' transition energies compared with 191Hg band 2 and an abrupt increase in $\mathcal{G}^{(2)}$ at high frequency.
The authors would like to acknowledge discussions with W. Nazarewicz, M.A.Riley and R.Wyss. This work is supported in part by the Department of Energy, Nuclear Physics Division, under contract no. DE-AC03-76SF00098 and W-31-109-ENG-38.
REFERENCES

Table 1. Transition energies (keV) and in-band relative intensities for the three SD bands in 192Hg. 'a' denotes transitions for which intensities could not be obtained due to the presence of close lying known yrast transitions in 192Hg.

<table>
<thead>
<tr>
<th>192Hg SD band 1</th>
<th>192Hg SD band 2</th>
<th>192Hg SD band 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{γ}</td>
<td>Intensity</td>
<td>E_{γ}</td>
</tr>
<tr>
<td>214.4 (0.3)</td>
<td>8 (2)</td>
<td>257.8 (0.1)</td>
</tr>
<tr>
<td>300.1 (0.1)</td>
<td>101 (5)</td>
<td>322.1 (0.2)</td>
</tr>
<tr>
<td>341.4 (0.1)</td>
<td>107 (6)</td>
<td>361.3 (0.2)</td>
</tr>
<tr>
<td>381.6 (0.1)</td>
<td>104 (5)</td>
<td>400.2 (0.2)</td>
</tr>
<tr>
<td>421.1 (0.2)</td>
<td>'a'</td>
<td>438.0 (0.2)</td>
</tr>
<tr>
<td>458.8 (0.2)</td>
<td>108 (6)</td>
<td>475.2 (0.2)</td>
</tr>
<tr>
<td>496.0 (0.2)</td>
<td>94 (6)</td>
<td>511.0 (0.2)</td>
</tr>
<tr>
<td>532.1 (0.2)</td>
<td>88 (5)</td>
<td>546.7 (0.2)</td>
</tr>
<tr>
<td>567.4 (0.2)</td>
<td>69 (4)</td>
<td>578.8 (0.2)</td>
</tr>
<tr>
<td>601.7 (0.2)</td>
<td>71 (4)</td>
<td>604.4 (0.2)</td>
</tr>
<tr>
<td>634.9 (0.2)</td>
<td>'a'</td>
<td>624.2 (0.3)</td>
</tr>
<tr>
<td>668.1 (0.2)</td>
<td>55 (5)</td>
<td>652.2 (0.3)</td>
</tr>
<tr>
<td>700.1 (0.2)</td>
<td>49 (6)</td>
<td>684.3 (0.3)</td>
</tr>
<tr>
<td>731.5 (0.2)</td>
<td>42 (6)</td>
<td>717.7 (0.3)</td>
</tr>
<tr>
<td>762.3 (0.3)</td>
<td>31 (5)</td>
<td>749.8 (0.4)</td>
</tr>
<tr>
<td>792.7 (0.4)</td>
<td>29 (4)</td>
<td>783.1 (0.5)</td>
</tr>
<tr>
<td>822.9 (0.4)</td>
<td>6 (2)</td>
<td>(819 (1))</td>
</tr>
<tr>
<td>853.1 (0.5)</td>
<td>3 (1)</td>
<td></td>
</tr>
<tr>
<td>(888.7 (0.7))</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
FIGURES

FIG. 1. Spectra of SD bands 2 and 3 in 192Hg obtained from the sums of triple and double gated spectra respectively. The energies (keV) of the transitions associated with the decay of SD states are shown; '*' corresponds to known normal deformed yrast transitions in 192Hg. In the spectrum of band 3 some of the peaks marked with '*' may also correspond to transitions in the 192Hg dipole band (Y. Le Coz et al., Z. Phys. A 348 (1994) 87), which could arise from contaminants in the gating transitions.

FIG. 2. Dynamic moments of inertia ($\mathcal{I}^{(2)} = \frac{4}{\Delta E_\gamma}$, where ΔE_γ is the difference in the in-band transition energies) as a function of rotational frequency for the three SD bands assigned to 192Hg. The dashed and dot-dashed lines correspond to 193Hg bands 1 and 4 respectively.

FIG. 3. Quasineutron Routhians for 192Hg taken from ref. [14], illustrating the crossing of the $N=7$ intruder (most likely a mixture of the $[752]\frac{5}{2}$ and $[761]\frac{3}{2}$ components) and the $[512]\frac{5}{2}$ orbital at $\hbar \omega \approx 200$ keV.

FIG. 4. Difference in transition energies for (a) 194Hg band 2 $-$ 192Hg band 2, (b) 191Hg band 2 $-$ 192Hg band 3, and (c) 192Hg band 1 (3/4 pts.) $-$ 192Hg band 3. The range is restricted to below the band interaction.
Figure 1
192Hg neutron

Figure 3
Figure 4

A. $^{194}\text{Hg} \ (b2) - ^{192}\text{Hg} \ (b2)$

B. $^{191}\text{Hg} \ (b2) - ^{192}\text{Hg} \ (b3)$

C. $^{192}\text{Hg} \ (b1) \ 3/4 \ pts - ^{192}\text{Hg} \ (b3)$

Difference in E_γ (keV) vs. E_γ (keV)