Title
SOME OBSERVATIONS ON RADIATION DAMAGE IN LITHIUM-DRIFTED SILICON DETECTORS IN NUCLEAR REACTION EXPERIMENTS

Permalink
https://escholarship.org/uc/item/14r8d7fv

Authors
Goulding, F.S.
Lothrop, R.P.

Publication Date
1967-05-01
SOME OBSERVATIONS OF RADIATION DAMAGE
IN LITHIUM-DRIFTED SILICON DETECTORS
IN NUCLEAR REACTION EXPERIMENTS

F. S. Goulding and R. P. Lothrop
May 1967
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SOME OBSERVATIONS OF RADIATION DAMAGE IN LITHIUM-DRIFTED SILICON DETECTORS IN NUCLEAR REACTION EXPERIMENTS

F. S. Goulding and R. P. Lothrop

May 1967
FOREWARD

This is one of a series of papers presented at the Gatlinburg Conference on Semi-Conductor Detectors and Associated Circuits (May, 1967). Taken together, the papers represent a general summary of some of the recent advances in this area at LRL, Berkeley.
SOME OBSERVATIONS OF RADIATION DAMAGE IN LITHIUM-DRIFTED SILICON DETECTORS IN
NUCLEAR REACTION EXPERIMENTS *

By: F. S. Goulding and R. P. Lothrop

During several years of using large quantities of lithium-drifted silicon
detectors we have observed many examples of radiation damage. As our observations
seem to supplement, and to some extent differ from those reported elsewhere
(e.g. Ref. 1), this brief note seems worthy of presentation at this meeting.

Our observations can be summarized as follows:

1) In nearly all cases the damage is distributed over the entire area of
the detector. Except where a detector has been accidentally moved through the
direct particle beam, no image of the collimator is seen. These results point
very clearly to fast neutrons as the major source of damage.

2) The effect of the irradiation is delayed. In general no damage effects
are observed during the course of an experiment (i.e. 1 to 3 days), but the effects
appear over a period of several days to weeks depending on the degree of damage
sustained.

3) The result of the damage is to convert the intrinsic (or nearly intrinsic)
material toward its original p-type. Experimentally one observes this as an increase
in the voltage required to deplete the whole sensitive region. This voltage increases
over a period of weeks following the irradiation and may eventually exceed the voltage
limit set by surface breakdown. If the detector is operated at a voltage below the
punch-through value, the thick dead layer within the gold entry window causes severe
degradation in resolution.

4) If the detector output is used for timing purposes, the onset of damage
may appear as a change in timing (due to reduced electric field in the back region
of the detector) long before the appearance of a window.

*This work was carried out as part of the program of the Nuclear Chemistry Instru-
mentation Group of the Lawrence Radiation Laboratory supported by AEC Contract
5) These consequences of damage appear before any other apparent effects—such as severe leakage current or surface noise.

6) We have had no success with re-drifting lithium in these detectors. This result may well depend upon the degree of damage.

It is tempting to suggest that our results are explainable in terms of lithium precipitation at damage sites. However, no effort has been made by us to study this process in any detail. (Perhaps some graduate student might think this a worthy subject for a Ph.D. thesis).

We hope that these observations impress experimenters with the importance of reducing the fast neutron dose at any detector used in a nuclear reaction experiment. The use of a beam collimator near the target is to be avoided where possible—the final collimator should be well back in the beam pipe. It is also desirable to move the Faraday cup well back from the scattering chamber. While this may require an extra quadrupole magnet between scattering chamber and Faraday cup, the cost may well be less than that of detectors. As a further precaution, care must be taken to reduce unnecessary neutron production such as can arise from beam spill onto the target frame. Finally, where their thickness is adequate, diffused rather than lithium-drift detectors should be used. Diffused detectors continue to operate after receiving total doses about 10^3 times bigger than the amount required to kill lithium-drifted silicon detectors.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.