Title
POSSIBLE LIGHT SCATTERING EXPERIMENT TO DETECT THE THREE DIMENSIONAL WIGNER LATTICE

Permalink
https://escholarship.org/uc/item/14z602w7

Author
Dalven, Richard.

Publication Date
1975-08-01
POSSIBLE LIGHT SCATTERING EXPERIMENT TO DETECT THE THREE DIMENSIONAL WIGNER LATTICE

Richard Dalven

August 1975

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
POSSIBLE LIGHT SCATTERING EXPERIMENT TO DETECT THE THREE DIMENSIONAL WIGNER LATTICE

Richard Dalven

August 1975
Abstract

Possible Light Scattering Experiment to Detect the Three Dimensional Wigner Lattice

Richard Dalven
Department of Physics
University of California
Berkeley, California 94720

ABSTRACT

It is proposed that a possible experiment to detect the three dimensional Wigner electron lattice is the study of Brillouin scattering of photons by the LA and TA modes of vibration of the lattice.
The Wigner lattice is a body-centered cubic lattice of electrons whose formation in a solid is predicted to occur at a sufficiently low value of the electron density. Considering semiconductors with variable extrinsic electron densities as potential hosts for the electron lattice, the possibility of experimental detection of the three-dimensional Wigner lattice arises. The aim of this Letter is the discussion of a possible experiment for this purpose. To the author's knowledge, this is the first paper discussing such an experiment.

Considering electrons in the presence of a uniform background of fixed positive charge, Wigner argued that, as their potential energy \(V \) of interaction became large compared to their kinetic energy \(T \), the electrons would become localized in space and form a lattice. If \(n \) is the electron density in a solid of dielectric constant \(\varepsilon \), then the ratio

\[
\frac{V}{T} = \frac{C(4\pi/3)^{1/3} n^{-1/3} (m^*e^2/e^2)}{C(r_o/a^*)} = \frac{Cr_s}{},
\]

where \(m^* \) is the electron effective mass, \((4\pi r_o^3/3) = (1/n) \), \(a^* = (h^2/c/m^*e^2) \) is a generalized Bohr radius, and \(C \) is a constant of order unity. Eq. (1) shows that \((V/T) \) increases as \(r_s \) increases, leading to crystallization of the electron gas at sufficiently large values of \(r_s \) larger than a critical value \(r_c \).

The ground state energy of the electron gas and lattice has been the subject of a number of calculations. The values of \(r_s \) obtained are between 14 and 20, suggesting that the Wigner lattice will be stable at electron densities corresponding to values of \(r_s \) greater than about 15. The requisite low values of the electron density can (in principle) be achieved in extrinsic germanium.

If the Wigner lattice does form, how might it be detected experimentally? Using \(n = 10^{14} \text{ cm}^{-3} \), corresponding to \(r_s = 19 \) in germanium, the lattice constant \(a \) of the bcc electron lattice is given by \(n = (2/a^3) \), or \(a = 2.7 \times 10^{-5} \text{ cm} \). The electron gas in a semiconductor of simple band structure has a plasma oscillation mode of frequency \(\omega_p \), where \(\omega_p^2 = (4\pi n^2/m^*\varepsilon) \). Plasmons in the electron
gas in semiconductors have been detected by Brillouin scattering experiments, in which an incident photon of frequency ω_o is inelastically scattered with the creation of a plasmon of frequency ω_p and a scattered photon of frequency ω_s. If the electron gas in a semiconductor does crystallize, it is expected that transverse acoustic vibrations would be possible in addition to the longitudinal acoustic branch. This expectation is borne out in the calculation of Clark of the vibrational spectrum of an electron lattice in the presence of a uniform background of positive charge. The electron lattice is thus expected to have vibrational modes whose phonon aspects may be thought of approximately as longitudinal (LA) and transverse (TA) "plasmons". The former are the analog of longitudinal plasma oscillations in the electron gas, but the latter should be something new.

Clark's result is that the frequencies ω_L and ω_T of the LA and TA modes are given by

$$\omega_L = (1/\sqrt{2\pi})\Lambda_L \omega_p; \quad \omega_T = (1/\sqrt{2\pi})\Lambda_T \omega_p,$$

where ω_p is the plasma frequency of the electron gas of density n, etc. The quantities Λ_L and Λ_T are reduced frequencies whose values were calculated at various special points (Γ, H, P) of the Brillouin Zone. It was found that the frequency of the zone center LA mode of the lattice is the same as the plasma frequency ω_p of the electron gas of the same density but the zone edge (points H and P) LA and TA modes of the electron lattice have frequencies of about $0.6\omega_p$.

One may contrast the expected features of the Brillouin scattering spectrum of the electron lattice with those observed for scattering by plasmons in the electron gas. In the latter case, the central feature of the spectrum is a peak at $\Delta\omega = (\omega_o - \omega_p) = \omega_p$ due to scattering by plasmons. For the electron crystal, one would also expect to observe Brillouin scattering at $\Delta\omega = \omega_p$ due to the
zone-center LA vibrational mode of ω_p. However, it is expected that the additional vibrational modes due to the formation of the electron lattice would result in new and additional features in the Brillouin scattering spectrum, and that these features would not be present in the spectrum for the electron gas. Of special interest are the transverse vibrations of the electron lattice; these would be expected to couple strongly to incident photons. It is of particular interest and importance that, for the electron lattice, one would expect Brillouin scattering by LA and TA modes whose wave vectors are significantly different from zero. The reason is that the lattice constant of the electron crystal is very large compared to those found in usual crystals, resulting in a much smaller Brillouin Zone than those generally encountered. Thus, for the electron lattice, the zone-edge values of the phonon wave vector are roughly equal to the wave vectors of visible and near infrared photons, so LA and TA vibrational modes with wave vectors equal to the zone-edge values would take part in the Brillouin scattering process.

It is concluded that the Brillouin scattering spectrum (i.e., intensity as a function of photon frequency shift $\Delta \omega$ for a given scattering direction) of the electron lattice should show new features in addition to scattering by the LA ($k = 0$) mode at $\Delta \omega = \omega_p$ found for the electron gas. Since both the LA and TA vibrations with wave vectors covering the whole Brillouin Zone would be expected to take part, spectral structure at values of $\Delta \omega$ smaller than ω_p is to be anticipated.

In summary, it is reasonable to expect significant qualitative differences between the Brillouin scattering spectrum due to plasmons in the electron gas and the features anticipated for the spectrum of the electron lattice. It is therefore proposed that a possible experiment to detect the three dimensional Wigner electron lattice is the study of Brillouin scattering of photons by the LA and TA modes of vibration of the electron lattice.
ACKNOWLEDGEMENTS

The assistance of U.S.E.R.D.A. is gratefully acknowledged. The author would like to thank N. Amer, A. F. Kip, A. M. Karo, and A. M. Portis for valuable discussions.

REFERENCES

1. R. Dalven, (to be published).
3. See Reference 1 for full references to these calculations.
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.