Lawrence Berkeley National Laboratory
Recent Work

Title
Gas and Electron Effects on Intense, Space Charge Dominated Ion Beams in Magnetic Quadrupoles; Comparison of Experiments and Simulations

Permalink
https://escholarship.org/uc/item/1586p8j8

Authors
Seidl, P.A.
Baca, D.
Bieniosek, F.M.
et al.

Publication Date
2005-07-21
Abstract Submitted
for the DPP05 Meeting of
The American Physical Society

Sorting Category: 2.1.1 (E)

Gas and Electron Effects on Intense, Space Charge Dominated Ion Beams in Magnetic Quadrupoles: Comparison Of Experiments and Simulations

P.A. SEIDL, LBNL, D. BACA, LBNL, F.M. BIENIOSEK, LBNL, J-L VAY, LBNL, R. COHEN, LLNL, A. FRIEDMAN, LLNL, D. GROTE, LLNL, M. KIREEFF COVO, LLNL, S.M. LUND, LLNL, A.W. MOLVIK, LLNL, B.E. ROSENBERG, UCB, HIF-VNL COLLABORATION — Accelerators for inertial fusion energy, high-energy density physics and other high intensity applications have an economic incentive to minimize the clearance between the beam edge and the aperture wall. This increases the risk from electron clouds and gas desorbed from walls. Using the High Current Experiment at LBNL, we have measured the beam (0.18 A, 1 MeV K\(^+\)) distribution upstream and downstream of a short lattice of magnetic quadrupoles where the 2rms beam size is \(\geq 50\%\) of the quadrupole aperture, and the generalized permeance is \(\approx 10^{-3}\). Between magnets, the transverse beam distribution is also imaged. The beam potential is 1-2 kV, large enough to trap electrons produced by, for example, K\(^+\) - gas collisions. The measurements are compared to WARP PIC simulations that include the self-consistent tracking of electrons and ions.

\(^1\)This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48, and by Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231

Peter Seidl
PASeidl@lbl.gov
LBNL

[] Prefer Oral Session
[] Prefer Poster Session

Special instructions: Please place this poster with posters of A. Molvik et al., J-L Vay et al., F. Bieniosek et al.

Date submitted: 22 Jul 2005

Electronic form version 1.4