Title
Change in plasma cytokine levels during risperidone treatment in children with autism

Permalink
https://escholarship.org/uc/item/15k9x4ss

Journal
Journal of Child and Adolescent Psychopharmacology, 24(10)

ISSN
1044-5463

Authors
Choi, JE
Widjaja, F
Careaga, M
et al.

Publication Date
2014

DOI
10.1089/cap.2013.0108

Peer reviewed
Change in Plasma Cytokine Levels During Risperidone Treatment in Children with Autism

Author Information

1Jae Eun Choi, BA; 2Felicia Widjaja, MPH; 3Milo Careaga, BS; 4Stephen Bent, MD; 3Paul Ashwood, PhD; 2Robert L. Hendren, DO

1School of Medicine, University of California, San Diego; 2Department of Psychiatry, University of California, San Francisco; 3MIND Institute, University of California, Davis; 4Department of Internal Medicine, University of California, San Francisco

Funding: This study was supported by R21MH080026 (RLH) from NIMH.

Address correspondence to:
Robert L. Hendren, DO
University of California, San Francisco
401 Parnassus Ave
San Francisco, CA 94143-0984
Robert.Hendren@ucsf.edu

Abstract

Background: Atypical antipsychotics decrease irritability in autism. They also affect the cytokine network. Psychological stress, depression and possibly ASD are shown to stimulate the production of pro-inflammatory cytokines. We sought to determine if risperidone treatment led to changes in cytokine levels.

Methods: 45 subjects from an open-label study of risperidone treatment of children with ASD ages 4-18 years had analysis of 27 different cytokines at baseline and after 8-weeks of treatment using multiplex assays (Millipore) and read on the Luminex 100™ platform. We examined changes in each of the cytokine levels in the entire group, and also compared changes in cytokines in responders vs. non-responders.

Results: After 8 weeks of risperidone treatment, two of the 27 cytokines showed statistically significant decreases in median levels: Eotaxin (p=.0003) and MCP1 (p=.0024). Six of the 48 children met two criteria for responders to risperidone, and one cytokine level (IL-5) had a statistically significantly greater change (increase) in the responder compared to the non-responder group.

Conclusion: Two cytokines, Eotaxin and MCP1, which have previously been identified as abnormally elevated in children with autism, decreased during treatment with risperidone. This suggests a possible mechanism of action of risperidone treatment and a balancing of the immune system in affected children.
Introduction

Atypical antipsychotics, such as risperidone and aripiprazole, are shown to decrease behavioral disturbances, such as irritability, aggression and anxiety among children with autism (Myers et al. 2007; McCracken et al. 2002). There are a growing number of studies reporting that psychological stress, psychosis or depression can directly stimulate the production of pro-inflammatory cytokines and that treatment with antipsychotic drugs affects the cytokine network (Na et al. 2012; Himmerich et al. 2011).

To date, reports regarding the effects of antipsychotics on cytokine levels are inconsistent and no antipsychotic has been shown to have consistent anti-inflammatory action (Drzyzga et al. 2006). Multiple studies of schizophrenia support the anti-inflammatory profile of risperidone through an increase in T\textsubscript{H}2-type cytokines and a shift towards T\textsubscript{H}2 responses (Chen, 2011; Teixeira, 2007). There are a limited number of studies finding an association between treatment and immune response in ASD (Ashwood et al. 2006). Previous studies investigating inflammatory abnormalities related to ASD have yielded conflicting and inconclusive results (Onore et al. 2012). However, studies do support a pro-inflammatory and T\textsubscript{H}1 skewed profile in autistic subjects in CD4+ cells and an association of these changes with more severe behavioral symptoms (Ashwood, 2011a).

Recently, a study reported that clinical improvement in children with ASD following 8 weeks of treatment with risperidone was not associated with changes in plasma levels of cytokines (Tobiasova et al. 2011). In the study we report here, our hypotheses were that risperidone will (1) demonstrate anti-inflammatory properties as shown through a decrease in pro-inflammatory and T\textsubscript{H}1 cytokines and an increase in T\textsubscript{H}2 cytokines, and that (2) these changes will be associated with a favorable treatment response.

Methods

Study Design: The primary goal of this project was to determine whether cytokine levels change during risperidone treatment in children with autism. The UC Davis Institutional Review Board approved all study procedures prior to initiating the study. Informed consent was obtained from parents and assent was obtained from the child, when developmentally appropriate, before any study procedures were performed. This study is registered on clinicaltrials.gov (NCT00584701).
Subjects: Children ages 4-18 years were required to have a diagnosis of ASD as confirmed by consensus on the DSM IV diagnostic interview and the Autism Diagnostics Observation Schedule (ADOS), have an IQ > 55, and an Aberrant Behavior Checklist Irritability (ABC-I) subscale rating of ≥ 18. Subjects were excluded if they were on antipsychotics within 8 weeks of entry into the study. Subjects were allowed to continue on other medications or treatments begun two months prior to study enrollment. Subjects agreed to keep their current medications and treatments constant during the duration of the study and to abstain from beginning any new treatments. This study also excluded children with a diagnosis of bipolar disorder, schizophrenia, ASD of known genetic cause, seizures, metabolic disturbance or severe illness in the past year, as previously described (Lit et al. 2012).

Dosing Schedule
Subjects began with an initial dosage of 0.5 mg at bedtime for 4 days and were uptitrated to 1 mg at the same time for 4 additional days if the previous dose had been tolerated. If the behavioral disturbances continued, 0.5 mg was added to the daily dose in the morning as tolerated to a maximum daily total of 1.5 mg of risperidone over the duration of the study (Lit et al. 2012).

Statistical analysis
Using the same parameters as McCracken et al. (2002), subjects were defined as overall responders to treatment if they had a decrease in Aberrant Behavior Checklist-Irritability subscale (ABC-I) ≥ 25% and a Clinical Global Impression-Improvement (CGI-I) rating of “very much improved” or “much improved.” Cytokine analysis was performed using multiplex assays (Millipore) according to manufacturer's recommendation and read on the Luminex 100™ platform. The significance of the change in cytokine levels between the responder and non-responder groups were determined using nonparametric Mann-Whitney tests. Correlations were determined using Spearman’s rank correlation coefficient. We did not adjust p-values for multiple testing since this is an exploratory analysis (Thompson, 1998).
Results

Data was collected on the plasma levels of 27 different cytokines of 45 subjects (mean age of 114.3 months, SD=52.6). The data included 35 males and 10 females with a mean IQ of 59.9 (SD=25.0) and mean ADOS communication and social interaction total of 16.6 (SD=6.6). Of the 45 subjects, 35 (78%) demonstrated at least a 25% decrease in ABC-I subscale score alone and 11 (24%) received a rating of “very much improved” or “much improved” on the CGI-I. A total of 6 subjects (13%) met both criteria and were identified as responders.

Overall: The mean ABC-I decreased from 24.8 (SD=6.7) to 11.9 (SD=6.1) after the treatment period (95% CI of change: -15.3, -10.4) (p<.00001). Two of the plasma cytokines showed statistically significant changes (decreases) after risperidone treatment: Eotaxin (p=.0003) and monocyte chemoattractant protein-1 (MCP1) (p=.002). These decreases were not significantly associated with change in %ABC-I scores. These data are shown in Table 1 and Figure 1 below.

Responder vs. Nonresponders: There were no significant difference in baseline characteristics, including age (p=.92), IQ (p=.31), ADOS score (p=.32), and gender (p=0.12) between the responder and non responder groups. One cytokine showed a greater change in the 6 responders on two measures compared to the non-responder group. The change in the median values of IL-5 (p=.005) was significantly higher in the overall responder group compared to non-responders. The mean value of the change in IL-5 increased in the responder group (mean=0.442, SD=.49) whereas it decreased in the non-responder group (mean= -0.888, SD=4.5).

Conclusion

There was a significant decrease in Eotaxin and MCP-1 levels following 8 weeks of risperidone treatment in children with ASD. This finding is in support of Ashwood et al. in 2011b that the production of MCP-1 and Eotaxin were significantly higher in children with ASD compared with typically developing children and children with developmental delays other than ASD. Their results are consistent with data from other studies that showed an increase in protein levels of MCP-1 and Eotaxin in brain specimens from individuals with ASD (Vargas et al. 2005) or for pro-inflammatory cytokines in the blood of ASD children (Ashwood et al. 2011c). Moreover, a
2005 study by Mundo et al., suggested the role of a polymorphism of the MCP-1 gene (SCYA2) as a resistance factor during antipsychotic treatment of patients with schizophrenia, suggesting an interesting link between chemokine levels and responses to treatment.

Furthermore, the IL-5 increases could suggest that the profile is changing from a Th1 to a Th2-type cytokine and that could suggest benefit as described in previous studies demonstrating the cytokine modulating effects of antipsychotics, including risperidone, in vitro and in vivo. In CD4+ T cells a shift towards Th2 responses was associated with better cognitive scores in children with ASD (Ashwood et al. 2011c).

Clinical Significance:
Together, these data suggest that the immune system may be being balanced as a result of risperidone treatment. Inflammatory processes are thought to play a role in autism and decreases may benefit symptoms but replication with larger samples is necessary to determine if this is a direct effect.

Authors Disclosure

Jae Eun Choi, BA, Felicia Widjaja, MPH, Milo Careaga, BS, Stephen Bent, MD, Paul Ashwood, PhD have no institutional or corporate/commercial relationships to disclose.

Robert L. Hendren, D.O. received research grants from Forest Pharmaceuticals, Inc., Curemark, BioMarin Pharmaceutical, Roche, Shire, Autism Speaks, the Vitamin D Council and NIMH and is on Advisory Boards for BioMarin, Forest, Coronado Biosciences, BioZeus, and Janssen.
<table>
<thead>
<tr>
<th></th>
<th>Pre-Treatment</th>
<th>Post-Treatment</th>
<th>p</th>
<th>rho (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGF B1 Well 1</td>
<td>13040.2 (8885.9)</td>
<td>16407.8 (1973.7)</td>
<td>.09</td>
<td>.02 (.91)</td>
</tr>
<tr>
<td>TGF B2 Well 2</td>
<td>11412.3 (8711.9)</td>
<td>12794.0 (1485.6)</td>
<td>.27</td>
<td>.07 (.65)</td>
</tr>
<tr>
<td>BDNF</td>
<td>1558.4 (292.0)</td>
<td>1256.5 (129.5)</td>
<td>.86</td>
<td>.03 (.83)</td>
</tr>
<tr>
<td>Eotaxin</td>
<td>81.9 (41.5)</td>
<td>65.8 (30.2)</td>
<td>.0003</td>
<td>-.17 (.27)</td>
</tr>
<tr>
<td>GCSF</td>
<td>43.6 (75.1)</td>
<td>43.8 (66.4)</td>
<td>.48</td>
<td>-.08 (.63)</td>
</tr>
<tr>
<td>GMCSF</td>
<td>84.7 (78.0)</td>
<td>82.4 (11.7)</td>
<td>.60</td>
<td>.02 (.88)</td>
</tr>
<tr>
<td>INFa2</td>
<td>83.1 (202.3)</td>
<td>75.1 (166.8)</td>
<td>.55</td>
<td>-.20 (.20)</td>
</tr>
<tr>
<td>INFg</td>
<td>14.1 (20.8)</td>
<td>12.5 (16.1)</td>
<td>.26</td>
<td>-.005 (.97)</td>
</tr>
<tr>
<td>IL-1a</td>
<td>286.8 (256.4)</td>
<td>292.6 (226.6)</td>
<td>.90</td>
<td>.05 (.76)</td>
</tr>
<tr>
<td>IL-1b</td>
<td>2.9 (5.7)</td>
<td>2.5 (4.3)</td>
<td>.17</td>
<td>.02 (.91)</td>
</tr>
<tr>
<td>IL-2</td>
<td>4.1 (12.5)</td>
<td>2.9 (8.8)</td>
<td>.51</td>
<td>.02 (.91)</td>
</tr>
<tr>
<td>IL-5</td>
<td>2.5 (8.1)</td>
<td>1.8 (4.3)</td>
<td>.73</td>
<td>-.001 (.95)</td>
</tr>
<tr>
<td>IL-6</td>
<td>5.9 (11.3)</td>
<td>5.9 (12.7)</td>
<td>.31</td>
<td>.25 (.11)</td>
</tr>
<tr>
<td>IL-7</td>
<td>27.1 (59.4)</td>
<td>25.8 (54.8)</td>
<td>.66</td>
<td>-.14 (.35)</td>
</tr>
<tr>
<td>IL-8</td>
<td>10.3 (17.6)</td>
<td>9.0 (14.2)</td>
<td>.36</td>
<td>-.01 (.93)</td>
</tr>
<tr>
<td>IL-10</td>
<td>5.0 (4.4)</td>
<td>5.3 (4.6)</td>
<td>.50</td>
<td>.20 (.21)</td>
</tr>
<tr>
<td>IL-12p40</td>
<td>84.4 (102.2)</td>
<td>79.4 (93.5)</td>
<td>.08</td>
<td>-.17 (.28)</td>
</tr>
<tr>
<td>IL-12p70</td>
<td>7.2 (12.0)</td>
<td>5.2 (7.9)</td>
<td>.11</td>
<td>.07 (.66)</td>
</tr>
<tr>
<td>IL-13</td>
<td>3.0 (9.8)</td>
<td>2.1 (6.7)</td>
<td>.08</td>
<td>.16 (.30)</td>
</tr>
<tr>
<td>IL-15</td>
<td>4.9 (11.6)</td>
<td>4.8 (13.0)</td>
<td>.50</td>
<td>-.12 (.46)</td>
</tr>
<tr>
<td>IL-17</td>
<td>10.4 (20.3)</td>
<td>8.5 (15.9)</td>
<td>.19</td>
<td>.10 (.53)</td>
</tr>
<tr>
<td>IP-10</td>
<td>452.7 (413.2)</td>
<td>444.8 (308.1)</td>
<td>.95</td>
<td>.06 (.72)</td>
</tr>
<tr>
<td>MCP-1</td>
<td>313.0 (143.0)</td>
<td>265.7 (80.4)</td>
<td>.002</td>
<td>.11 (.48)</td>
</tr>
<tr>
<td>MIP-1a</td>
<td>46.8 (46.5)</td>
<td>44.0 (39.4)</td>
<td>.20</td>
<td>.02 (.92)</td>
</tr>
<tr>
<td>MIP-1b</td>
<td>27.4 (27.3)</td>
<td>25.8 (21.6)</td>
<td>.64</td>
<td>.23 (.15)</td>
</tr>
<tr>
<td>TNFa</td>
<td>4.2 (1.6)</td>
<td>4.0 (1.5)</td>
<td>.09</td>
<td>.13 (.42)</td>
</tr>
<tr>
<td>TNFb</td>
<td>6.9 (17.6)</td>
<td>8.6 (25.4)</td>
<td>.39</td>
<td>-.01 (.95)</td>
</tr>
</tbody>
</table>
Table 1 Comparison of cytokine levels at pre and post-treatment: Mean cytokine values at baseline and after 8 weeks are shown. P-values were determined using non-parametric Mann-Whitney tests. Correlations were determined using Spearman’s rho coefficient.

<table>
<thead>
<tr>
<th></th>
<th>MCP-1, Pre-Treatment, 313</th>
<th>MCP-1, Post-Treatment (8 Weeks), 265.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eotaxin, Pre-Treatment</td>
<td>81.9 pg/mL</td>
<td>65.8 pg/mL</td>
</tr>
<tr>
<td>Eotaxin, Post-Treatment</td>
<td>313 pg/mL</td>
<td>265.7 pg/mL</td>
</tr>
</tbody>
</table>

Figure 1: Mean values of Eotaxin and MCP-1 pre and post treatment (with standard deviations)
References:

