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Point Pattern Analysis for Clusters Influenced by Linear
Features: An Application for Mosquito Larval Sites

Li Li,* Ling Bian,† Peter Rogerson,† and Guiyun Yan‡

*IBM China Research Lab, Beijing
†Department of Geography, University of Buffalo, New York
‡University of California, Irvine

Abstract
Although many statistical approaches have been developed to quantify and assess spatial point patterns,
the challenge to analyze complicated patterns has yet to be met. Statistics that describe the level of cluster-
ing usually assume that point events are isotropic. Many point events are influenced by linear features and
clusters of these point events often have an elongated shape. Existing statistical cluster detection
approaches often ignore these types of processes. This study proposes a new method, termed an
L-function analysis for clusters influenced by linear features (L-Function-l) to test anisotropic point pat-
terns with respect to the orientation of nearby linear features. To explicitly account for the influence of
the underlying linear features on the point events, a number of ellipses with varying lengths, orientations
and eccentricities are used to replace the circles that are drawn in the original L-function analysis. A case
study of testing anisotropically clustered patterns of mosquito larval sites is used to illustrate the applica-
tion of this method. The results indicate that the proposed approach provides a more flexible and compre-
hensive description of point patterns than the original L-function analysis.

1 Introduction

Traditional spatial statistical methods designed for point pattern analysis identify whether
point events have regular, random, or clustered patterns (Foxall and Baddeley 2002, Munch
et al. 2003, Scalon et al. 2003, Fleischer et al. 2006, Mattfeldt et al. 2006. Si et al. 2008). A
clustered pattern often leads to the formation of hypotheses, such as the existence of a non-
random process that influences these point events (Sterner et al. 1986). The various statistics
that have been used to describe the level of clustering are usually based on an assumption that
point events are isotropic. That is, the characteristics of point events are homogeneous in all
directions. Subsequently formed hypotheses, when built on such an assumption, may not be
well suited for investigating environmental processes that are anisotropic, such as those in a
linear form.

Many point events are influenced by nearby linear features. For example, the point obser-
vations of wildlife, plant species, and water-borne diseases can be influenced by the spatial
alignment of nearby streams (Real and Biek 2007, Maheu-Giroux et al. 2007). Clusters of
these point events often have an elongated shape (Conley et al. 2005, Duczmal et al. 2008,
Curzon and Keeton 2010, Yiannakoulias et al. 2010). The shape of point clusters often has a
strong influence on certain spatial measures for point clusters. For example, commonly used
home-range estimators have a poor performance on linear point patterns (Blundell et al. 2001,
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Downs and Horner 2008). Gatrell et al. (1996) expressed their concerns regarding the separa-
tion between cluster detection and process specification. The information of underlying pro-
cesses should not be ignored, and the incorporation of such contextual information in the
analysis can yield more informative results.

The existing approaches that create measures on the level of clustering for point patterns
lack the mechanism to take into account the possible underlying processes. Many methods
(e.g. t-statistics and regression) test the strength of the association between point locations and
possible underlying processes. These methods, however, treat individual points as independent
events without considering the spatial interactions between them in the context of a cluster. At
the time of writing, few approaches have been proposed to evaluate clustered patterns with
regard to their possible underlying processes (Veen and Schoenberg 2006).

This study proposes a new method based on a modified L-function analysis to analyze the
anisotropically clustered patterns of point events with respect to the orientation of possible
underlying linear features. The proposed method, named the L-function analysis for clusters
influenced by linear features (L-Function-l), is inspired by the L-function (Ripley 1976) and
the elliptic spatial scan statistic that detects anisotropic clusters at a local level (Kulldorff
1997). To provide background information for the proposed approach, the next section dis-
cusses the basic principles of L-function analysis. The L-Function-l approach is discussed in
the section that follows. In the last section, a case study for detecting anisotropic clusters of
mosquito larval sites with respect to the orientation of nearby streams is presented to illustrate
the application of the approach.

2 L-function Analysis for Clusters Influenced by Linear Features

2.1 L-function Analysis

A variety of statistical methods have been developed to study point patterns (Boots and Getis
1988, Legendre and Fortin 1989, Ripley 1987). Among them, the L-function is one of the
most popular for three principal reasons (Fleischer et al. 2006, Foxall and Baddeley 2002,
Munch et al. 2003): the level of measurement, the scale of analysis, and properties of complete
spatial randomness (CSR). First, point events are often limited to binary attributes (e.g. pres-
ence and absence). The L-function analysis enables cluster analysis to be conducted on these
binary attributes. Second, all geographic processes are scale-dependent and their characteristics
may change across scales (Guisan and Thuiller 2005). The L-function incorporates the concept
of scale in the detection of the level of the event clustering. Finally, the L-function considers
both properties of CSR: (1) the intensity of events does not vary across a region; and (2) events
do not interact with each other within the region (Diggle 1983). CSR is one of the most fre-
quently used spatial reference patterns and the L-function tests if an observed pattern is con-
sistent with CSR. The L-function has been applied in a variety of disciplines, such as
criminology, ecology, epidemiology, geography, and geology (Anselin 2004).

The L-function is derived from the K-function. To test if a point pattern is consistent
with CSR, the K-function (K(r)) compares the observed number of points within a distance r
of a chosen point to the expected number. To calculate the K-function at scale r, hypothetical
circles (with radius r, often called a lag distance) are placed around each point location,
and the average number of points within those circles is calculated. If the point pattern is con-
sistent with CSR, the number of points within these hypothetical circles should be propor-
tional to the areas of the circles. The following function is a K-function corrected by an edge
effect.
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( ) = ( )∑∑2
(1)

where A is the area of a study region, N is the number of points in the study region, and i
and j denote a pair of points in the region. Id(ij) = 1 if the distance between point i and point
j is less than r; otherwise Id(ij) = 0. The weight wij is used to account for edge effects (when a
point is close to the edge of the region, the hypothetical circle centered on i may occupy an
area outside of the study region). A widely accepted algorithm for determining wij is to equate
it with the fraction of the circumference of the circle that falls within the study region. This
edge-corrected estimate of the K-function provides an unbiased estimator of the K-function.

This procedure is repeated for a range of values for r. The K-function uses the information
on all inter-point distances and provides more information on the spatial scale of the pattern
than statistics that only use nearest neighbor distances (Diggle 1983). Furthermore, the
K-function is a global statistic; at one particular scale, there is one measurement to quantify
the level of clustering for the entire region. A CSR process has an expected K(r) value equal to
πr2; a clustered pattern has a K(r) > πr2; and a pattern with points repelling each other has a
K(r) < πr2. Although the K-function can be used to identify clustering, its results are usually
transformed using the L-function, which normalizes the K-function (Besag and Diggle 1977).

L r
K r

r( ) =
( )

−
π

(2)

This transformed version of the K-function simplifies interpretation. The value range of
L-function is [−∞, +∞]. An L-function value of zero indicates a random pattern. If an
L-function value is greater than zero at a certain scale, it indicates the possible existence of a
clustered pattern at that scale. If an L-function value is less than zero at a scale, it indicates the
possible existence of spatial repulsion. In addition to hypothesis testing, the L-function has
also been used to compare the differences between point patterns. A Monte Carlo method is
used to test statistical significance by generating an arbitrary number of simulations of a null
model. The L-function analysis is applied to the results of these simulations to derive a wide
range of L-function values, from which confidence intervals around the observed L-function
values can be obtained.

The L-function analysis does not consider any other information about a point event
besides its location. Contextual information, such as possible influences of linear features,
cannot be easily incorporated within L-function analysis. The proposed L-Function-l detects
anisotropically clustered patterns with respect to the orientation of nearby linear features.

2.2 L-Function-l

The proposed L-Function-l is derived from the original L-function. For L-Function-l, the null
hypothesis assumes that there is no clustered pattern with respect to the orientation of nearby
linear features.

If point events are clustered along linear features, they tend to locate within a certain dis-
tance of these linear features. These clusters may have an elongated shape whose alignment is
likely influenced by the linear features. Elongated clusters have been considered previously in
cluster analysis (Ho and Chen 1995, Kulldorff et al. 2006). For example, the elliptic spatial
scan statistic uses an elliptical scan window, instead of the circular scan window used in the
original spatial scan statistic (Kulldorff 1997), to search for elongated clusters. The major
advantage of using the elliptic window is that it is more flexible than the circular window in
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identifying clusters with a broader range of orientations and shapes. Although ellipses have
been used to detect the locations of clusters, they have not been applied in the context of K- or
L-statistics. This study incorporates ellipses to identify anisotropically clustered patterns with
respect to the orientation of nearby linear features. To take the orientation of linear features
into account, it is necessary to incorporate this attribute into the proposed test.

Linear features are often represented by a set of lines and their associated vertices. If they
have a simple structure, such as a straight line, the definition of orientation is straightforward.
However, linear features, such as streams, often have a complicated structure with various
parts aligned in different orientations. To quantify the orientation of these lines, the most effec-
tive way is to break them into ‘basic sections’, for which an orientation can be easily identified.
There are several possible approaches to identifying the basic sections (Li and Openshaw
1992). The three that are discussed in this article are the most straightforward to apply. One is
used in the case study presented in a later section.

Suppose a linear feature is considered as consisting of a series of line segments, each of
which lies between two consecutive vertices. Each line segment has an orientation, ranging
from 0 to 180 degrees clockwise (without differentiating which of the two vertices is the start-
ing point of a line segment), with due North given as 0 degrees. The first approach treats each
line segment as a basic section. In the second approach, a number of consecutive line segments
are considered to constitute one basic section if they fall between two (not necessarily consecu-
tive) vertices that are a certain distance apart. Using the third approach, a number of consecu-
tive line segments are considered as one basic section if the differences in the orientation of
these pairs of consecutive line segments are less than a pre-determined threshold. After a basic
section is determined, its orientation can be determined in several ways. In this article, the
third approach of identifying a basic section is used, and the locations of the starting and
ending vertices of a basic section are used to calculate its orientation. This orientation is sub-
sequently used as the reference orientation to evaluate anisotropic clusters. The choice of an
appropriate approach to identify a basic section depends on the goal of the study, the scale of
analysis, and the characteristics of the linear features.

The L-Function-l approach begins by drawing hypothetical ellipses around points in a
point pattern. Only those points that are within a specified distance of linear features are con-
sidered, since linear features may not have influence on points that are far away. This distance
is determined based on the empirical relationship between the point events and the linear fea-
tures. While a hypothetical circle used in the original K-function is defined by a single param-
eter, i.e. the radius, an ellipse is defined by three parameters: the length of its semi major axis
(a), the orientation of its major axis (θ), and its eccentricity (ε) (i.e. the ratio of c to a, with c
being the distance between a foci point and the center of the ellipse). These three parameters
represent two additional characteristics to those possessed by a circle, orientation (θ) and
eccentricity (ε). Similar to the original K-function, the size of ellipse varies within a predefined
range by varying a to determine the scale of the clusters. The orientation and eccentricity of
ellipses also change by varying θ and ε, respectively. To consider the influence of linear fea-
tures, the orientation (θ) of ellipses is defined based on the orientation of the nearby linear fea-
tures. Similar to the original K-function analysis, the number of points within the ellipses is
counted at each selected scale, orientation, and eccentricity and the level of clustering is calcu-
lated using a modified K-function, termed the K-Function-l (t, θ, ε) that is corrected for edge
effects:

K l t A N I wd ij ij

ji

− − ( ) = ( )∑∑Function , ,θ ε 2
(3)
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where Id(ij) = 1 if the sum of distances from point j to the two focal points of an ellipse with
center i is shorter than t (t = 2a), otherwise Id(ij) = 0. Id(ij) = 0 if i = j. The weight wij is used to
account for edge effects when an ellipse partially occupies an area outside of the study region.
For the original K-function, there are several methods to calculate this weight and the differ-
ences between several important methods have been compared (Yamada and Rogerson 2003).
Among these methods, Ripley’s (1976) correction is the most widely used and it can be easily
adapted to the calculation of the K-Function-l. In Ripley’s correction, wij is equal to the ratio
between the area of the circle (ellipse) that is inside of the study region and that of the entire
circle (ellipse).

K-Function-l (t, θ, ε) is the expected number of points in an ellipse with a major axis of t,
orientation of θ, and eccentricity of ε, centered at a point in a point pattern, divided by the
intensity of the pattern. A random process has an expected value of K-Function-l (t, θ, ε) =
πab; K-Function-l (t, θ, ε) > πab implies clustering, and K-Function-l (t, θ, ε) < πab indicates a
pattern where points are more dispersed than random. The L-Function-l (t, θ, ε) is scale, orien-
tation, and eccentricity dependent. Similar to the original L-function, K-Function-l (t, θ, ε) is
then normalized and transformed into an L-Function-l as follows:

L Function l t
K Function l t

t− − ( ) = − − ( )
−( ) −, ,

, ,θ ε θ ε
π ε1 2 (4)

The value range of the L-Function-l is [−∞, +∞]. An L-Function-l value of zero indicates a
random pattern. If a value is greater than zero, it indicates the possible existence of clustering
at that given scale, orientation, and shape, while a value less than zero indicates the possible
existence of spatial repulsion.

The L-Function-l is designed to identify clustered patterns with respect to the orientation
of nearby linear features. It can be used to summarize a point pattern, test hypotheses and esti-
mate parameters, and fit models. When the L-Function-l is used for hypothesis testing, a sig-
nificance test is needed. Since the context of the L-Function-l is different from the original
L-function, an alternative significance test must be devised. The following section introduces a
significance test that takes into account the orientation of linear features for the point pattern
analysis.

2.3 Significance test for L-Function-l values

The null model commonly used for testing the original L-function is CSR. The drawback of
this null model for the intended study is that it does not consider any contextual information.
Since L-Function-l is intended to test clustered patterns with respect to the orientation of
nearby linear features, a more informative null model is needed. Various models representing
clustering point processes have been developed for this purpose. A Matern cluster point
pattern is created through a two-step process (Baddeley et al. 1996). In the first step, a homo-
geneous Poisson point pattern with intensity λ1 is created. In this step, the generated points are
referred to as mother points. In the second step, each mother point is replaced by a random
cluster of points with a predefined sphere, which is often referred to as a cluster of child
points. These random clusters of points also have a Poisson distribution. Because the child
points created in the second step are based on the locations of mother points, the Matern
cluster point pattern is not completely random. Instead, it incorporates the contextual infor-
mation in the point pattern, i.e. the locations of mother points that influence the locations of
child points, making it advantageous for use in the proposed L-Function-l.

Point Pattern Analysis for Clusters Influenced by Linear Features 5
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Another point process that also incorporates contextual information is the Segment Cox
process (Pandey 2010). In this process, line segments are first randomly located in space; then
each is populated with random points on them.

In principle, both the Matern cluster point process and the Segment Cox process meet the
purpose of L-Function-l better than the null models based on CSR. Specifically, the two-step
Matern process allows for a mother pattern to influence a child pattern, but the process does
not involve linear features. The Segment Cox process incorporates linear features in the
mother pattern but requires child points to be located on linear features. Therefore, modifica-
tions to the Matern cluster point process and the Segment Cox process are necessary here.

To fulfill the needs of this study, we combine elements of the Matern cluster point process
and the Segment Cox process. This consists of two steps. In the first step, a buffer with a
certain width is created around the linear features. This width can be determined based on the
empirical relationship between the point events and the linear features. In the second step, this
buffer is then populated with randomly distributed points. The number of randomly distrib-
uted points is equal to the number of points within the buffer in the observed point pattern.

To obtain a reliable estimate of the confidence interval in order to test the statistical sig-
nificance of observed L-Function-l values, a large number of simulations are required for this
combined Matern-Cox process. The simulated L-Function-l values for a given scale, orienta-
tion, and eccentricity are used to construct 90% confidence intervals and to indicate the sig-
nificance level of observed values. Unlike the original L-function that considers only one
parameter (scale), L-Function-l involves three parameters and each may take various values.
This unavoidably involves testing multiple parameters simultaneously and inflates the number
of tests. This multiple-testing problem can be corrected by using, for example, a Bonferroni
adjustment that adjusts the level of significance for the tests by the number of parameter com-
binations that are tested.

To determine whether a point pattern is clustered, its L-Function-l values are compared
with the confidence interval (with the multi-testing problem corrected by the Bonferroni
adjustment). If the L-Function-l values are within the confidence interval, the points are con-
sidered to be randomly distributed for that particular combination of parameters. If
L-Function-l values are above the confidence interval, this indicates the existence of more
points than expected for that particular type of clustered pattern, and if the observed value is
below the confidence interval, there are fewer points than expected for the given scale, orienta-
tion, and eccentricity.

3 An Application of L-Function-l to Analysis of Mosquito Larvae Sites

An analysis of the point distribution of mosquito larval sites is used to illustrate the proposed
L-Function-l approach. Malaria is a vector-borne disease and mosquitoes are the vector that
transmits the disease to human populations. For the last two decades, malaria control has been
the mission of many health organizations worldwide because malaria affects up to a half
billion people in Africa each year (Guinovart et al. 2006). The spatial distribution of larvae is
an important determinant of the distribution of adult mosquitoes, which in turn determines
the areas where the malarial risks are the greatest. Understanding the spatial distribution of
mosquito larvae sites is a prerequisite for the design of effective mosquito control strategies. It
has been observed that the survival of larval is dependent on aquatic environments, such as
areas along streams (Bian et al. 2006, Mushinzimana et al. 2006, Li et al. 2008, 2009). The
proposed L-Function-l is used to detect clustered patterns of mosquito larvae sites with respect
to the orientation of nearby streams.
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3.1 Study area and Data

The study area is a 4 × 4 km2 area in the Kakamega district of western Kenya where malaria
epidemics are prevalent. The primary mosquito species in this region is An. gambiae (Munga
et al. 2009). The region has a lengthy rainy season extending from April through June and
most malaria cases occur during this season.

Data on the locations of An. gambiae larvae in the study area were collected by a group of
biologists in May 2003 (a detailed description of the data can be found in Mushinzimana et al.
2006). The dataset contains 721 sites where larvae were observed with each site represented as
a point. In addition to the larval sites, GIS data on streams in the study region were also
obtained. The larval sites are mainly distributed along streams. The distance between the sites
and the streams ranges from 0–510 m, with an average of 63 m. Of the 721 sites, 680 loca-
tions are lying within 480 m of a stream and encompass 95% of the total larval sites.

3.2 L-Function-l Analysis

The 680 points that are within 480 m of a stream are used in the L-Function-l analysis. A
buffer width of 480 m is selected accordingly. Each point is used as the center for an ellipse.
The closest basic section of a nearby stream is identified using the third approach discussed
previously (see Section 2.2). Consecutive line segments with an angular difference of less than
10 degrees form a basic section. In this study, the length of the shortest basic segment is 50 m,
while the length of the longest basic section is 710 m. Because changes in the orientation of
streams in the study area are minor, this approach is considered the most appropriate. If the
length of a basic section is shorter than the length of an ellipse, more than one basic section
may have an influence on the clusters. In this case, the basic section is extended by merging it
with an adjacent basic section. If multiple adjacent sections are present, the one that is closer
to the center of the ellipse is chosen first (as shown in Figure 1) and the process continues with
other adjacent basic sections until the total length of the located basic sections is equal to or
larger than the length of the ellipse. The major axis of the smallest rectangle that encloses the
merged basic sections is used to determine their orientation. This axis is used as the reference
axis to evaluate the orientation of ellipses (see Figure 1).

Step 1 Step  2

Step  3 Step  4

Figure 1 An illustration of how to identify basic sections
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The L-Function-l values (Equation 4) are calculated with varying scales (t), orientations
(θ), and eccentricities (ε). The t value ranges from 50–750 m using 50 m increments to detect
clusters at the resultant 15 different scales. The use of 50 m increments ensures that a majority
of the ellipses touch their nearest basic section. The purpose of selecting 750 m as the
maximum t value is because the length of the longest basic segment is 710 m. The chosen
maximum value of t is also much smaller than the length of the study area, since if t is too
large, edge effects would start to affect the results. In this case, the 750 m scale is 18.75% of
the length of the study area. For each given t, the orientation (θ) of the ellipse is varied to
detect the clustered pattern with respect to the orientation of nearby streams. Four orienta-
tions are evaluated, 0, 45, 90, and 135 degrees from the reference orientation determined by
basic sections of nearby streams.

The eccentricity ε of the ellipse is also varied to help detect elongated clusters. The ε value
ranges from 0.3 to 0.9, using 0.3 increments, resulting in three eccentricities. A preliminary
analysis suggested that using nine eccentricities (0.1 to 0.9 incremented by 0.1) is redundant.
Of the three eccentricities, the ellipse with an ε of 0.3 is closer to a circle than the other two
values. Using a value 0.9 results in the most elongated ellipse given that an ε equal to 1 is a
one-dimension line segment. Figure 2 shows ellipses with an ε of 0.6 centered at larval habitat
sitesalong streams. While the 15 scales (i.e. the t values) account for the scale effect that is also
considered in the original L-function, the four orientations (θ) and the three eccentricities (ε)
explicitly account for the anisotropic characteristics of clusters. This combination produces 15
× 4 × 3 = 180 L-Function-l values in total.

The combined Matern-Cox process is used to test the significance of the L-Function-l
values. In the first step, a buffer with a width of 480 m is created around the streams (see
Section 3.1). In the second step, the buffer is populated with 680 random points. To address
the multiple testing problem, a Bonferroni adjustment is applied and the significance level for
each individual test is 0.05/180 = .0003. The simulation is conducted 200,000 times in total.
The confidence intervals that contain (1 − .0003) × 100% = 99.97% of the simulated
L-Function-l values are obtained. The calculations are implemented in a Matlab environment
(www.mathworks.com).

3.3 Results of L-Function-l Analysis

The 180 L-Function-l values are displayed in Figure 3 and are organized based on their orien-
tations (Figures 3a–3d) with reference to the basic sections of nearby streams. For a given ori-

Streams

Habitat Sites

(a) (b)

Hypothetical 
ellipses

Figure 2 Larval sites surrounded by ellipses with an ε of 0.6 and orientation values of 0 degrees (a)
and 90 degrees (b)
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a: Orientation of 0 degrees
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b: Orientation of 45 degrees

50 100 200 300 400 500 600 700 750

-50

0

50

100

150

200

230
c: Orientation of 90 degrees
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d: Orientation of 135 degrees

0.3
0.6

0.9
upper

lower

Figure 3 LACILF and original L-function values organized by their orientation values of 0 degrees
(a), 45 degrees (b), 90 degrees (c), and 135 degrees (d) with reference to the basic sections of nearby
streams. The horizontal axis represents the 15 scales (50–750 m incremented by 50 m), and the verti-
cal axis represents the LACILF values. The two gray lines with inverse triangle and * symbols delimit
the upper and lower bound, respectively, of the 90% confidence interval. Black lines with ★, ■, •,
and ▽ symbols are the observed LACILF values calculated with the three eccentricities (0.3, 0.6, and
0.9), respectively
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entation, a set of three L-Function-l values corresponding to the three eccentricities (ε = 0.3,
0.6, 0.9) is plotted against the 15 scales. To test their statistical significance, the L-Function-l
values are compared with their upper and lower 99.97% confidence interval values that are
calculated using the simulated process associated with the ellipses.

All L-Function-l values are considerably greater than their upper confidence interval limits
as shown in all of the sub-figures. This indicates the existence of clustered patterns in larval
sites in all orientations with respect to the orientations of nearby streams. Among the four ori-
entations, the L-Function-l values corresponding to the orientation of 0 degrees (ellipses paral-
lel to nearby streams) are consistently higher than L-Function-l values in other orientations.
The L-Function-l values with an orientation of 90 degrees (ellipses perpendicular to the
streams) are the lowest among the four. These observations indicate that clustering in the
direction parallel to the streams is the most prominent, implying the underlying influence of
these streams on the orientation of clusters.

In all orientations, L-Function-l values increase rapidly with an increasing scale (t) value
until the scale reaches around 200–350 m, after which the L-Function-l values decrease
steadily with an increasing scale value. These results suggest that the clustering of larval sites
in all orientations are scale dependent, with clusters being most prominent when their sizes
(the length of the major axis) are around 200–250 m. For a given orientation and scale,
L-Function-l values corresponding to eccentricity of 0.9 are always considerably higher
than other eccentricity values. This suggests that larval sites tend to cluster in a linear shape,
further implying the influence of nearby steams on both the orientation and the eccentricity of
clusters.

Among all 12 sets of L-Function-l values (three eccentricity values in four orientations),
those based on ellipses with the 0 degree orientation and eccentricity equal to 0.9 are the
highest and those based on ellipses with the 90 degree orientation with eccentricity equal to
0.3 are the lowest. This implies that most clusters are aligned with the nearby streams, have a
linear shape, and are most prominent when they are 200–250 m in size. The influence of
nearby steams is evident on the anisotropy of the clustered patterns.

4 Discussion and Conclusions

In this study, a new method, L-Function-l, is proposed to test the level of clustering with
respect to the orientation of nearby linear features. By incorporating hypothetical ellipses in
the analysis, this method offers the flexibility to test various anisotropically clustered patterns.
The sensitivity of L-Function-l analysis to the influences of linear features provides a more
realistic and comprehensive description of point patterns. A case study of testing
anisotropically clustered patterns in mosquito larval sites is used to illustrate the application of
this new method. The proposed approach takes into account the influences of nearly linear
features and thus can lead to conclusions that are not typically derived from the traditional
approaches. For example, an information-rich conclusion based on our case study is that most
clusters of larval sites are aligned with the nearby streams with a size of 200–250 m.

Examination of clustered patterns in terms of scale, orientation, and eccentricity is impor-
tant for scientific questions under investigation. For example, a clustered pattern may result
from many possible spatial processes. The proposed L-Function-l method can be used to help
determine the dominant underlying processes. In the case of malaria research, this information
is quite meaningful. For example, it has been previously suspected that water-related human
activities, such as water fetching and brick making in the study area, might have facilitated the
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creation of many larval sites (Zhou et al. 2007). Given the observation that the level of cluster-
ing is optimal at the orientation parallel to the streams and at the scale of 200–250 m (Figure
3a), it seems less likely that human activities alone are the direct cause of these clusters. This is
because human dwellings in the area are located at a higher altitude and are far more than
200–250 m away from stream valleys (Li et al. 2008). Instead, variations in soil, vegetation,
landuse, and landforms with a scale of 200–250 m along certain parts of streams might have
contributed to the formation of linearly shaped clusters aligned with streams. The reason is
that these factors often have a strong influence on the activity range of adult mosquitoes
(Zhou et al. 2007).

Local cluster detection approaches which consider the shape of clusters, such as
Kulldorff’s elliptical scan statistics and Tango and Takahashi’s flexible scan statistic, are used
in a wide range of applications (Kulldorff 1997, Tango and Takahashi 2005). Note that these
approaches are local statistics and the L-Function-l is a global statistic. While the local statis-
tics attempt to identify where the local clusters are, the global statistics aim to quantify the
overall level of clustering for a point pattern. The L-Function-l method can render critical
measures such as the level of clustering and its associated scales. It has greater statistical power
for point patterns influenced by linear features. For example, if we create a buffer around a
stream and generate some random points within this buffer, elliptical scan statistics can iden-
tify local “clusters” from these random points. In comparison, the results of the L-Function-l
will indicate a random point pattern at certain scales since the proposed approach takes into
account of the influence of linear features.

Both local and global effects can influence clustered patterns (Diggle 1983). Although the
L-Function-l method is intended to be a global statistic, the simulated null process takes under-
lying contexts into account, which reflects local effects (e.g. influences of nearby streams on the
cluster pattern of larval sites). These characteristics allow the test to consider both global and
local influences. Although the initial assumption on the relationship between linear features
and point patterns is not required, existing knowledge on such relationship would be helpful
for the implementation of the L-Function-l. For example, in this study, the buffer width of
480 m is selected to include at least 95% of larval sites. A narrower buffer width can be
selected to exclude larval sites that are influenced by other water sources (e.g. wells) if prior
knowledge or more detailed information on the relationships between larval sites and streams
are obtained.

Finally, we conclude with a few remarks on the proposed approach. The L-Function-l
extends the classic circle-based L-function into an ellipse-based function. This extension offers
greater flexibility than the circular approach in identifying elongated clustered patterns of
various orientation and shape. In addition, the test explicitly incorporates nearby linear fea-
tures into cluster detection. Using the proposed approach, the influence of possible underlying
processes that have a linear form can be hypothesized more directly.

There are some limitations of the L-Function-l. First, the possible influences of the com-
plexity of the linear features on the results of the proposed methods need to be further investi-
gated. For example, if the proposed approach is to be applied to point patterns influenced by
road networks densely located in a city, the inherent characteristics of the road networks (e.g.
grid like patterns) may have an influence on the measures and testing procedures. Note that
the proposed approach is not designed for point patterns constrained by linear features (i.e.
points constrained by linear features have to locate on linear features). For point patterns that
are constrained by linear features, K-function for Network-constrained Clusters are better
suited (Yamada and Thill 2004, 2010). Second, there is room for improvement in the testing
procedure. One possible improvement would be to find alternative null models. In this study,
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we proposed a simulated process in which we assume that the point pattern is randomly dis-
tributed within a buffer of linear features. It is also possible for a point pattern to have a dis-
tance decay relationship with linear features.
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