Title
Incidence and Characterization of Mild and Severe Isolates of Citrus Tristeza Virus from Colombia

Permalink
https://escholarship.org/uc/item/17h362n7

Journal
International Organization of Citrus Virologists Conference Proceedings (1957-2010), 13(13)

ISSN
2313-5123

Authors
Peiiaranda, J.
Acosta, M.
Alegria, A.
et al.

Publication Date
1996

Peer reviewed
Incidence and Characterization of Mild and Severe Isolates of Citrus Tristeza Virus From Colombia

ABSTRACT. Surveys of the major citrus-producing regions, nurseries and germplasm collections in Colombia indicated widespread presence of severe isolates of citrus tristeza virus (CTV). Nearly 90% of the samples tested were infected with CTV, and over 60% reacted positively with the MCA13 monoclonal antibody, which reacts to most severe strains of CTV. The capsid protein (CP) sequences of MCA13 reactive isolates were similar to known stem pitting strains, and the isolates did cause stem pitting on grapefruit and lime in biocharacterization tests. Thus, these isolates pose a threat to citrus production in Colombia and this region. However, the isolates from Mompox did not react with MCA13, their CP sequences were similar to known mild isolates, and they caused no symptoms on grapefruit or lime. Further research on Mompox CTV isolates may provide information useful for controlling CTV in Colombia and other countries by cross-protection.

Index words. Citrus tristeza virus, sequencing, multiple sequence analysis, Latin America.

Citrus tristeza closterovirus (CTV) is a serious pathogen of citrus throughout the world (1, 22), including Colombia (9, 16). It exists as many strains (22), and is expected to become more important in the Caribbean countries and Central and North America with the recent northward movement and establishment in this region of its most efficient vector, Toxoptera citricida (Kirkaldy), the brown citrus aphid (BrCA) (23). The development of a standardized host range (7), monoclonal antibodies capable of detecting severe isolates of CTV (20) and characterization of their reactive epitopes (18), and sequencing of many capsid protein genes (CPGs) (19) as well as the entire CTV genome (11) now enable more rapid detection and characterization of CTV and its many isolates (17).

There are approximately 32,000 ha of citrus planted in Colombia: 83% are oranges and 10% are limes which are susceptible to CTV; and 7% are mandarins which are CTV-tolerant. The purposes of this research were to determine the biological and molecular diversity among Colombian isolates of CTV. This information provides a more complete understanding of the CTV situation in Colombia, as well as a knowledge of the characteristics of those CTV isolates present in that region which might be carried northward by the BrCA.

MATERIALS AND METHODS

Disease surveys and sample collection. Twenty-two locations encompassing approximately 50% of the citrus producing area of Colombia were surveyed. These included the regions near Bogotá, and the eastern Llanos (Fig. 1), the Cauca River Valley from Cali to Medellín, and Mompox, which is a large island-like land mass of several hundred square miles in the lowland tropics and isolated from the rest of the country by the Cauca and Magdalena Rivers (Fig. 1). Samples were collected mainly from commercial citrus groves, but three nurseries and two germplasm collections also were sampled. Leaves generally were taken from random field
and the majority also were tested with the monoclonal antibody MCA13, which reacts predominantly with severe strains of CTV (20). Reactions were considered as positive when the OD values were greater than three times the mean of the healthy controls. Desiccated samples of Florida strains T30 (mild) and T36 (severe) served as positive controls. Western blot analyses were performed with midrib or lamina samples according to Benscher et al. (2), except that the disruption buffer of Laemmli (12) was used. Double stranded RNA (dsRNA) extractions were performed according to Dodds et al. (5). Samples were analyzed by electrophoresis using 6% polyacrylamide gels and visualized by staining with ethidium bromide or silver nitrate.

Molecular Characterization. The CTV CPGs were reverse transcribed, amplified by polymerase chain reaction (PCR), cloned and sequenced essentially as described by Cevik et al. (3) and Pappu et al. (19), using either fresh or desiccated samples. Sequence analyses were performed by computer, using the Seqaid II (21), Clustal V (10), and GCG Pileup (4) sequence analysis programs.

RESULTS AND DISCUSSION

Leaves were taken from a total of 626 trees. They were kept either as separate samples or combined into composites, for a total of 434 samples. Polyclonal antibodies indicated that 387 of 434 (89.2%) of the samples tested from Colombia were infected with CTV (Table 1). MCA13 reacted with 247 of 385 samples (64.2%) (Table 1), suggesting that many of the Colombian samples were infected with severe isolates of CTV. The epitope determinant for MCA13 is located in a phenylalanine residue at amino acid position 124 of the CP (19), rather than tyrosine, as in most mild isolates. However, it is important to indicate that nucleotide
TABLE 1
SEREOLOGICAL DETECTION OF CTV IN CITRUS SAMPLES FROM COLOMBIA USING POLYCLONAL ANTIBODIES (PCA) OR MONOCLONAL ANTIBODY 13 (MCA13)

<table>
<thead>
<tr>
<th>Antibody</th>
<th>PCA</th>
<th>%</th>
<th>MCA13</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Colombian samples</td>
<td>387/434*</td>
<td>89.2</td>
<td>247/385*</td>
<td>64.2</td>
</tr>
<tr>
<td>Mompos samples alone</td>
<td>79/120*</td>
<td>66.0</td>
<td>0/120*</td>
<td>0</td>
</tr>
<tr>
<td>Without Mompos samples</td>
<td>308/314*</td>
<td>98.1</td>
<td>247/265*</td>
<td>93.2</td>
</tr>
</tbody>
</table>

*Percent of samples testing positive by ELISA
Numerator is the number of samples testing positive and denominator is the total number of samples tested.

and predicted amino acid sequences of the CP and CPG (15) show that some mild CTV isolates react to MCA13. Although there are exceptions, MCA13 is still a good indicator of CTV severity. Interestingly, the data from Mompos alone showed that 66% of the 120 samples reacted with the polyclonal antibody, but none reacted with MCA13 (Table 1), suggesting that none of the samples from Mompos were infected with severe CTV isolates. When the Mompos samples are not included, then 247 of 265 (93.2%) samples from the other regions of Colombia reacted with MCA13 (Table 1), suggesting an extremely high incidence of severe isolates of CTV in all other regions of Colombia. However, it must be noted that our surveys were not totally random, hence, the incidence may be somewhat overestimated.

Western blots, performed on 30 selected samples with both the polyclonal antibody and MCA13, confirmed the presence of the CTV CP and its two degradation products (8). No reactions were observed with uninfected control samples. Analysis of dsRNA from 132 infected trees revealed at least 35 different dsRNA profiles similar to those described by Moreno et al. (14) (data not shown). Samples reacting with MCA13 consistently yielded 4 to 5 times more dsRNA than MCA13 negative samples. A 0.5 x 10^6 MW subgenomic dsRNA, previously found to be associated with severe isolates (5), also was absent in all the samples from Mompos.

Of the isolates established at the ECPC, 14 of 16 reacted with MCA13. Eight selected isolates were bioassayed on the standard indicator hosts (7). Six of them (B125, B128, B129, B131, B228 and B229) caused all or most of the following symptoms: obvious vein clearing on Mexican lime; a decline of sweet orange grafted on sour orange rootstock; stem pitting on grapefruit or sweet orange; and a seedling yellows reaction on grapefruit or sour orange. All six reacted with MCA13. Isolates B272 and B274 caused no visible reactions on any of the indicator plants and did not react with MCA13. Their presence in host plants was confirmed by polyclonal antibodies and PCR amplification of their CPGs.

For molecular analyses, we selected four of the biocharacterized isolates, B128, B129, B272 and B274. Isolate B128 was obtained from a severely stem pitted grapefruit tree near Cali, and its severe nature was confirmed in the biocharacterization. Isolate B129 was obtained from a fast growing, symptomless branch of the B128-infected tree and was expected to be mild. However, it also reacted with MCA13 and induced similar symptoms as B128 in the biocharacterization. Isolates B272 and B274, both from Mompos, were selected as mild isolates because they caused no
<table>
<thead>
<tr>
<th></th>
<th>T36</th>
<th>T30</th>
<th>B272</th>
<th>B274</th>
<th>B128</th>
<th>B185</th>
<th>B165</th>
<th>B249</th>
<th>B129</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MDDETK</td>
<td>-E-</td>
<td>-N-</td>
<td>-N-</td>
<td>A-</td>
<td>G-</td>
<td>G-</td>
<td>G-</td>
<td>G-</td>
</tr>
<tr>
<td></td>
<td>DDV</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
</tr>
<tr>
<td></td>
<td>VAA</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>ESS</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>FSV</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>VN</td>
<td>NLHID</td>
<td>PTLI</td>
<td>TMNDV</td>
<td>RQ</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
</tr>
</tbody>
</table>

Fig. 2. Multiple alignment of deduced amino acid sequences of CTV isolates B128, B129, B272 and B274 from Colombia and previously characterized isolates (6, 13, 19) with T36 from Florida. The alignment was produced using Clustal V. The asterisks and dashes indicate identical amino acids. The shaded letters and dots indicates substitution with different amino acids.
symptoms on the trees from which they were isolated or the plants used for biocharacterization. Two to three clones of each isolate were sequenced for comparison. When compared to standard CTV strain T36, the CPG nucleic acid sequences of the four Colombian isolates ranged from 90.9 to 92.9% similar (data not shown), and the deduced amino acid sequences ranged from 93.7 to 96.0% similar (Fig. 2), which is consistent with previous results (19). Interestingly, the three clones sequenced of the CPG of B129 all contained one additional codon, resulting in the insertion of an additional amino acid at position 48 in its deduced amino acid sequence. This is unique in the many CPG clones that we have sequenced. To enable more representative results, this codon and amino acid were not included in the sequence comparisons.

In comparison of the deduced amino acid sequences of the Colombian with T36 and other known isolates of CTV (Fig. 3), isolate B128 most closely resembled B165 and B185, both stem pitting isolates from India (13) and Japan (19), respectively. The CP sequence of isolate B128 differs by five and six amino acids from isolates B185 and B165, respectively (Fig. 2). Isolate B129 most closely resembled B249, a stem pitting isolate from Venezuela (6), from which it differs by 1 amino acid (Fig. 2). Thus the CP sequences of both B128 and B129 place them in a large group of stem pitting isolates (13, 19), which is consistent with the field observations for B128 and the biocharacterization results for both B128 and B129. The presence of the MCA13 epitope determinant in the CP sequences of both B128 and B129 (Fig. 2) confirmed their reactivity with MCA13. It is interesting to note that B128 and B129, although derived from the same tree, show more differences between them (10 amino acids) than with the other stem pitting isolates mentioned above. This is a good example of the variability that occurs within populations of CTV.

Isolates B272 and B274 resemble a group of known mild isolates, T4, T26 and T30 from Florida (19), and B32 from Spain (19) (Fig. 3), consistent with both the field observations and the biocharacterization results. The CP sequences of B274 and B272 differ by only one and four amino acids, respectively, from T30 (Fig. 2). The presence of tyrosine rather than phenylalanine at amino acid position 124 of their CP sequences corroborated the MCA13 non-reactivity of B272 and B274.

Fig. 3. A dendrogram showing the relationships of the deduced amino acid sequences of CPs of various CTV isolates. The countries of origin are indicated in the text. B129x is the B129 sequence minus the additional amino acid.
Field observations and serological evidence indicated that CTV was widespread and occurred in a very high percentage of citrus trees in Colombia. The obvious vein clearing in the leaves of limes and the pitting of stems and branches of grapefruits, limes and oranges, as well as the inability to use sour orange as a rootstock in most of Colombia suggested that severe isolates of CTV were widespread. Further evidence of this is the high percentage of samples reacting with MCA13 and by the severe reactions observed in indicator plants and in molecular characterization tests.

The situation in Mompos is especially interesting because the trees are large and productive, and sour orange continues to be used as the predominant rootstock in spite of high incidence of CTV (66%). This suggests that the CTV isolates present are mild. Our results corroborate this observation. Among the many possible explanations are that severe isolates of CTV have not yet been introduced into Mompos, the mild isolates may be providing protection against severe isolates, or that, for some undetermined reason, there is low vector activity in that region. Mompos represents an interesting research opportunity. It may provide information on the dynamics of the citrus tristeza disease in the field or be a potential source of mild isolates useful for the control of CTV in Colombia and other countries.

ACKNOWLEDGMENTS

This research was supported in part by grants from COLCIENCIAS and BID-ICFES to J. Peñaranda, O. Acosta and M. Guzmán-Barney and from USDA-ARS/IFAS Cooperative Agreement 58-6617-102 and Florida Citrus Production and Advisory Council #1594 to C. L. Niblett and R. F. Lee. We thank S. M. Garnsey for performing the biocharacterizations and for the MCA13 antibody, J. Morillo and C. Gouin-Behe for expert technical assistance and B. Cevik for assistance with manuscript preparation. We are grateful to the Interdisciplinary Center for Biotechnology Research, University of Florida for providing oligonucleotide synthesis and computing facilities. This paper is Florida Agricultural Experiment Station Journal Series No. R-05320.

LITERATURE CITED

8. Guerri, J., P. Moreno, and R. F. Lee
12. Laemmli, U. K.
14. Moreno, P., J. Guerri, J. F. Ballester-Olmos, and M. E. Martinez
15. Mawassi, M., R. Gafny, and M. Bar-Joseph
16. Niblett, C. L.
20. Permar, T., S. M. Garnsey, D. J. Gumpf, and R. F. Lee