Title
DETERMINATION OF EXACT ORIENTATION RELATIONSHIPS BETWEEN MARTENSITE AND AUSTENITE IN STEELS BY MICRODIFFRACTION

Permalink
https://escholarship.org/uc/item/17q1656k

Author
Sarikaya, M.

Publication Date
2014-04-21
DETERMINATION OF EXACT ORIENTATION RELATIONSHIPS
BETWEEN MARTENSITE AND AUSTENITE IN STEELS BY
MICRODIFFRACTION

M. Sarikaya

March 1981
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
DETERMINATION OF EXACT ORIENTATION RELATIONSHIPS
BETWEEN MARTENSITE AND AUSTENITE IN STEELS BY MICRODIFFRACTION

M. Sarikaya
Materials and Molecular Research Division
Lawrence Berkeley Laboratory
and
Department of Materials Science and Mineral Engineering
University of California
Berkeley, CA 94720

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Division of Materials Sciences of the U.S. Department of Energy under Contract No. W-7405-ENG-48 and from TUBITAK-BAYG.
A significant number of investigations have been performed on the determination of orientation relationships (OR) in high carbon, plate-martensitic steels. However, very little is known on the exact nature of ORs in technologically important lath martensitic steels. In the present study, in a series of low alloy steels with carbon contents between 0.1-0.4wt%, the existence of retained austenite as thin films (~200Å thick) around the martensite lath boundaries, makes it possible to do direct crystallographic analysis between martensite and austenite by microdiffraction.

The most commonly observed orientations for lath martensite-retained γ are <111>α//<110>γ/<100>α. Fig. 1 shows an example of a highly symmetric SAD pattern which was interpreted as follows: Considering only one martensite lath at a time, the <111>α, and <110>γ combination corresponds to Kurdjumov-Sachs (K-S) OR, and <110>α, and <100>γ corresponds to Nishiyama-Wassermann (N-W) OR. The coexistence of these two relationships may be taken as evidence that as many variants as necessary occur to provide maximum flexibility for martensite nucleation. This is also shown in Fig. 2 where the SAD pattern exhibits at least four superimposed diffraction patterns belonging to different zone axes. Careful indexing (Fig. 2b) indicates the following crystallography and ORs: (i) [T2T]γ//[2TT]α, (ii) [T2T]γ//[3TT]α, (K-S), (iii) [T2T]γ//[011]α, (N-W).

The interrelation between these commonly observed ORs are as follows: (111)γ within about 1° of (101)α, and [01T]γ at some angle θ from [111]α where θ varies from 0° to 5°. The value of θ for K-S, N-W, and for another OR, i.e., Greninger-Troiano (G-T), is 0°, 5.26°, and 2.5°, respectively. During the examination of conventional SAD
patterns, at 100kV, the crystallographic information can be obtained from an area of \(\approx 2\mu m \) size but with an ambiguity of \(\approx 5^\circ \). As a result it is very difficult to determine which OR is being obeyed. Therefore, it becomes essential to use converging beam electron diffraction methods with small probe sizes, e.g., 400\(\AA \), which enables precise, \(\leq 0.5^\circ \), orientation determination.

The stereographic projection analysis of such an experiment, shown in Fig. 3, is as follows: The left hand side: Lath \(\alpha \); Beam direction, \(\mathbf{B} \), parallel to \([101]_\alpha \), or \(6.8^\circ \) from \([1\overline{1}1]_\alpha \), and \((1\overline{1}1)_\alpha \perp (101)_\alpha \), so \([01\overline{1}]_{\gamma \alpha} \), is \(3.5^\circ, \theta_1 \), from \([1\overline{1}1]_\alpha \). Lath \(\beta \); \(\mathbf{B} = [0\overline{1}1]_{\gamma \alpha} \), or \(2.9^\circ \) from \([0\overline{1}\overline{0}]_{\alpha \beta} \), and \((11\overline{1})_\alpha \perp (101)_\alpha \), hence \([0\overline{1}\overline{1}]_{\gamma \alpha} \), is \(2.0^\circ, \theta_2 \), from \([1\overline{1}1]_\alpha \). The right side: Lath \(\beta \); \(\mathbf{B} = [0\overline{1}\overline{1}]_{\gamma \beta} \), or \(2.4^\circ \) of \([0\overline{1}\overline{0}]_{\alpha \beta} \), and \((11\overline{1})_\gamma \perp (101)_\alpha \), \(\gamma \alpha \), and hence \([0\overline{1}\overline{1}]_{\gamma \alpha} \), is \(3.0^\circ, \theta_3 \), from \([1\overline{1}1]_\alpha \). Finally, for lath \(C \); \(\mathbf{B} = [0\overline{1}\overline{1}]_{\gamma \beta} \), or \(3.4^\circ \) of \([\overline{1}\overline{1}\overline{1}]_\alpha \), and \((11\overline{1})_\gamma \perp (101)_\alpha \), and hence \([0\overline{1}\overline{1}]_{\gamma \beta} \), is \(6.0^\circ, \theta_4 \), from \([\overline{1}\overline{1}\overline{1}]_\alpha \). Therefore, it is clear from the \(\theta \) values that the ORs shown are not exactly K-S or N-W, but rather that they lie between them, and actually cluster around G-T OR. An hypothesis can be advanced here that the OR between the adjacent laths and retained-\(\gamma \), instead of being fixed values, may be those with angles \(\theta \) of the exact OR, i.e., a continuous range of OR's may develop between the individual laths in a group and retained-\(\gamma \) in a single packet.

Valuable discussions with Professors P. M. Kelly and G. Thomas and with Drs. J. Steeds and B. V. Narasimha Rao are gratefully acknowledged. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Division of Materials Science of the U. S. Department of Energy under Contract No. W-7405-ENG-48 and from TUBITAK-BAYG.
REFERENCES

FIGURE LEGENDS

Fig. 1. (a) BF, (b) DF (Ret-γ), (c) SAD pattern, and (d) stereographic analyses on 0.1Cwt% alloy.

Fig. 2. (a) SAD and (b) indexed patterns taken from the region shown in the inset (0.3C steel).

Fig. 3. Analysis of ORs in 0.1C alloy. (a) BF and (1) through (6) CBED patterns from the corresponding regions in (a).