Title
High Fidelity In Situ Shoulder Dystocia Simulation

Permalink
https://escholarship.org/uc/item/17t6k4dn

Journal
Journal of Education and Teaching in Emergency Medicine, 3(2)

ISSN
2474-1949

Authors
Pelikan, Andrew
Koboldt, Timothy

Publication Date
2018

License
CC BY 4.0

Peer reviewed
ABSTRACT:

Audience: Resident physicians, emergency department (ED) staff

Introduction: Precipitous deliveries are high acuity, low occurrence in most emergency departments. Shoulder dystocia is a rare but potentially fatal complication of labor that can be relieved by specific maneuvers that must be implemented in a timely manner. This simulation is designed to educate resident learners on the critical management steps in a shoulder dystocia presenting to the emergency department. A special aspect of this simulation is the unique utilization of the “Noelle” model with an instructing physician at bedside maneuvering the fetus through the stations of labor and providing subtle adjustments to fetal positioning not possible though a mechanized model. A literature search of “shoulder dystocia simulation” consists primarily of obstetrics and mid-wife journals, many of which utilize various mannequin models. None of the reviewed articles utilized a bedside provider maneuvering the fetus with the Noelle model, making this method unique. While the Noelle model is equipped with a remote-controlled motor that automatically rotates and delivers the baby either to the head or to the shoulders and can produce a turtle sign and which will prevent delivery of the baby until signaled to do so by the instructor, using the bedside instructor method allows this simulation to be reproduced with less mechanistically advanced and lower cost models.1-5

Objectives: At the end of this simulation, learners will:

1. Recognize impending delivery and mobilize appropriate resources (ie, both obstetrics [OB] and NICU/pediatrics)
2. Identify risk factors for shoulder dystocia based on history and physical
3. Recognize shoulder dystocia during delivery
4. Demonstrate maneuvers to relieve shoulder dystocia
5. Communicate with team members and nursing staff during resuscitation of a critically ill patient

Method: High-fidelity simulation.

Topics: High fidelity, in situ, Noelle model, precipitous delivery, shoulder dystocia.
Linked objectives, methods and results:
Precipitous deliveries in the emergency department are low frequency and potentially high-acuity scenarios that require appropriate resource mobilization and specific skill sets not often practiced on a day to day basis. With prompt recognition of shoulder dystocia and appropriate maneuvers, infant morbidity and mortality are greatly reduced.6,7 If done in situ in the physical emergency department, this will serve to educate and prepare ancillary staff as well. This simulation enables learners to fortify vital though seldom used skills in a safe and structured environment with subsequent feedback and debriefing, further engraining the lessons learned.

Results and tips for successful implementation:
This simulation has been run twice with a total of approximately 20 learners (in groups of 2-3 at a time). It has been well received by all participants. As we ran the simulation during shift change to improve the “buy in” and realism, there was initially some discontent from night shift residents, but after the simulation they reported it felt more real than other simulations. Increased “buy in” and realism can help encourage intended learning points to stick.
We recommend doing this simulation in ED with the help of ED staff (i.e., nursing and technicians) as this increases case fidelity and helps with “buy in.”

- In order to make this as close to reality as possible, we performed this at shift change in order to maximize participants. We ran the case twice, once for the night shift and the other for the day shift.
- We discussed the case with the charge nurse ahead of time so she could make sure we had a room available and could assist as a confederate in providing an EMS prehospital call.
- We had the charge nurse serve as a confederate with the EMS report of impending precipitous delivery with 5 min ETA.
- In setting the case this way, learners were forced to evaluate what resources we had available, what tools were needed, who should be called, and where necessary equipment (such as the infant radiant warmer) could be found.

References/suggestions for further reading:

Case Title: High Fidelity In Situ Shoulder Dystocia Simulation

Case Description & Diagnosis (short synopsis): This case is a precipitous delivery in the emergency department complicated by shoulder dystocia, requiring the participants to perform maneuvers to deliver the fetus. There may need to be two operators, as one will be needed to “drive” the infant in the Noelle model, holding the infant inside the model mimicking the cardinal movements of labor and “turtling” after the head is delivered.

Equipment or Props Needed: Noelle Simulation model, or any simulation model that allows an operator to guide the delivery and mimic shoulder dystocia. Because this simulation is meant to be done in situ (in the ED), all other necessary supplies should be readily accessible. For planning purposes and in cases where this simulation is performed outside the ED, the following materials will be needed:
- Gown and gloves
- Clamps for the umbilical cord
- Scalpel/scissors for cutting umbilical cord
- Blankets
- Bulb suction
- Neonatal airway supplies
- Infant warmer
- Intravenous (IV) line equipment
- Oxygen tubing
- Monitor
- Tocomonitor

Confederates needed:
We recommend using ED nursing staff; however, if they are not available a confederate to act as the nurse will be needed.

Background and brief information: Patient is brought in via EMS in active labor.

Initial presentation: A G2P1 female presents to ED at 40 weeks in active labor; she reports her water broke and she is having contractions every 4-5 minutes. The patient is saying “the baby is coming,” and there is concern for a precipitous delivery in ED.
How the scenario unfolds: Case will progress like a normal uncomplicated birth until head is delivered and “turtles.” Participants will then have to recognize and relieve shoulder dystocia. The instructor will need to hold infant inside as learners explain what they are doing (i.e. specific maneuvers) and may release/deliver infant after posterior arm is released with concurrent explanation of maneuver.

Critical Actions:
1. Prepare for imminent delivery by paging OB and NICU/pediatric team (institution dependent)
2. Recognize symptoms of shoulder dystocia
3. Perform maneuvers to relieve dystocia (relieved after posterior arm is delivered)
4. Keep mother updated on progress
5. Divide team into two teams to resuscitate neonate and mother
Case Title: High Fidelity In Situ Shoulder Dystocia Simulation

Chief Complaint: “I think the baby is coming”

Vitals: Heart Rate (HR) 105 Blood Pressure (BP) 100/80 Respiratory Rate (RR) 20
Temperature (T) 37.0 Oxygen Saturation (O₂Sat) 100% on room air

General Appearance: Anxious

Primary Survey:
- Airway: speaking in full sentences
- Breathing: bilateral breath sounds
- Circulation: strong peripheral pulses, tachycardic

History:
- History of present illness: G2P1 female presents to ED at 40 weeks in active labor. Water broke five hours ago; she is having contractions every 4-5 minutes. She was in town visiting a relative and reports uncomplicated pregnancy followed with OB in other city.
- Past medical history: type 1 diabetes, previous shoulder dystocia with first child (must ask)
- Past surgical history: none
- Patients medications: insulin
- Allergies: none
- Social history: lives with husband, one child at home (2 years old)
- Family history: hypertension

Secondary Survey/Physical Examination:
- General appearance: gravid female, mild distress
- Head, ears, eyes, nose and throat (HEENT): within normal limits
- Neck: within normal limits
- Heart: tachycardic, otherwise normal
- Lungs: within normal limits
- Abdominal/GI: gravid
- Genitourinary: 8cm dilated, 100% effaced, 1+ station
INSTRUCTOR MATERIALS

- **Extremities**: within normal limits
- **Back**: within normal limits
- **Neuro**: within normal limits
- **Skin**: within normal limits
- **Lymph**: within normal limits
- **Psych**: within normal limits
SIMULATION EVENTS TABLE:

<table>
<thead>
<tr>
<th>Minute (state)</th>
<th>Participant action/ trigger</th>
<th>Patient status (simulator response) & operator prompts</th>
<th>Monitor display (vital signs)</th>
</tr>
</thead>
</table>
| 0:00 (Baseline) | • Establish IV access
• Call for OB and pediatrics/NICU
• Get supplies ready for emergent delivery
• Establish that the patient is in active labor by checking the cervix | • Mannequin: Speak in full sentences, able to provide history
• Bedside instructor: Hold fetus at 0/+1 station | T: 37
HR: 105
BP: 105/80
RR: 22
O2: 100% |
| 02:00 | • Prepare for imminent delivery
• Inform patient of progress
• Assess fetal wellbeing with monitor, variable decelerations
• Recognize shoulder dystocia | • Mannequin: Speak in full sentences, active labor
• Bedside instructor: Mimic “Turtling” of fetal head; routine traction doesn’t deliver shoulder | T: 37
HR: 105
BP: 105/80
RR: 22
O2: 100% |
| 03:00 | • Call for help
• McRoberts and suprapubic pressure | • Mannequin: Continue active labor, increasingly distressed, concerned about baby (especially if not informed on progress by simulation participants)
• Bedside instructor: Allow fetus to be manipulated if learners attempt maneuvers; maintain fetus shoulders inside mannequin. Prompt learner to explain what the diagnosis is and what maneuvers they are doing (steps and names) to deliver the baby | T: 37
HR: 115
BP: 105/80
RR: 22
O2: 100% |
OPERATOR MATERIALS

<table>
<thead>
<tr>
<th>Minute (state)</th>
<th>Participant action/ trigger</th>
<th>Patient status (simulator response) & operator prompts</th>
<th>Monitor display (vital signs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>05:00</td>
<td>- Attempt rotation maneuvers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | - Rubin II → Woods corkscrew → Reverse woods corkscrew → try to deliver the posterior arm. The infant is delivered with posterior arm | - Mannequin: Continue active labor, severely agitated, concerned about baby (especially if not informed on progress by simulation participants)
- Bedside instructor: Allow fetus to be manipulated if learners attempt maneuvers, maintain fetus shoulders inside mannequin. Prompt learner to explain what the diagnosis is and what maneuvers they are doing to deliver the baby. May release infant when learner delivers posterior arm | T: 37
HR: 105
BP: 105/80
RR: 22
O2: 100% |
| 7:00 | - Pass infant to separate waiting team
- Obtain cord gas
- Deliver placenta
- Update mother | - Mannequin: Distress improved, requests update
- Infant: May provide information for APGARs if desired:
 - 1 min: 7 (pink body blue extremities; HR 92; cry on stimulation; some flexion; strong, robust cry)
 - 5 mins: 9 (body and extremities pink; HR 120; cry on stimulation; some flexion; strong, robust cry) | T: 37
HR: 90
BP: 105/80
RR: 22
O2: 100%
(Case Ends) |

Diagnosis:
Shoulder dystocia relieved by delivering posterior arm

Disposition:
Admit mother to OB
DEBRIEFING AND EVALUATION PEARLS

Shoulder Dystocia

Pearls: Please see attached “Debrief PowerPoint.” This can be done at bedside in the ED on a laptop immediately after the simulation.
If performed in situ in the emergency department, this simulation can serve to review where critical supplies for a precipitous delivery are in each ED

Other debriefing points:
Remember to emphasize that there are two patients in this scenario. Participants should prepare resources accordingly and alert the necessary staff (i.e. OB and pediatrics).

<table>
<thead>
<tr>
<th>Category</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Blue or pale all over</td>
<td>Blue at extremities body pink</td>
<td>No cyanosis body and extremities pink</td>
</tr>
<tr>
<td>Pulse</td>
<td>Absent</td>
<td>< 100</td>
<td>> 100</td>
</tr>
<tr>
<td>Grimace</td>
<td>No response to stimulation</td>
<td>Grimace on suction or aggressive stimulation</td>
<td>Cry on stimulation</td>
</tr>
<tr>
<td>Activity</td>
<td>None</td>
<td>Some flexion</td>
<td>Flexed arms and legs that resist extension</td>
</tr>
<tr>
<td>Respiration</td>
<td>Absent</td>
<td>Weak, irregular, gasping</td>
<td>Strong, robust cry</td>
</tr>
</tbody>
</table>

https://doi.org/10.21980/J8305D

10
Assessment Timeline

This timeline is to help observers assess their learners. It allows observer to make notes on when learners performed various tasks, which can help guide debriefing discussion.

Critical Actions

1. Prepare for imminent delivery by paging OB and NICU/pediatric team (institution dependent)
2. Recognize symptoms of shoulder dystocia
3. Perform maneuvers to relieve dystocia (relieved after posterior arm is delivered)
4. Keep mother updated on progress
5. Divide team into two teams to resuscitate neonate and mother
SIMULATION ASSESSMENT
High Fidelity In Situ Shoulder Dystocia Simulation

Learner: ________________________________

Critical Actions:
On initial presentation:
☐ Prepare for imminent delivery by paging OB and NICU/pediatric team (institution dependent)
☐ Recognize symptoms of shoulder dystocia
☐ Perform maneuvers to relieve dystocia (relieved after posterior arm is delivered)
☐ Keep mother updated on progress
☐ Divide team into two teams to resuscitate neonate and mother

Summative and formative comments:
SIMULATION ASSESSMENT
High Fidelity In Situ Shoulder Dystocia Simulation

Learner: ___

Milestones assessment:

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Did not achieve level 1</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Emergency Stabilization (PC1)</td>
<td>Did not achieve Level 1</td>
<td>Recognizes abnormal vital signs</td>
<td>Manages and prioritizes critical actions in a critically ill patient</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Performance of focused history and physical (PC2)</td>
<td>Did not achieve Level 1</td>
<td>Performs a reliable, comprehensive history and physical exam</td>
<td>Prioritizes essential components of history and physical exam given dynamic circumstances</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Diagnostic studies (PC3)</td>
<td>Did not achieve Level 1</td>
<td>Determines the necessity of diagnostic studies</td>
<td>Prioritizes essential testing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Diagnosis (PC4)</td>
<td>Did not achieve Level 1</td>
<td>Considers a list of potential diagnoses</td>
<td>Makes the appropriate diagnosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standardized assessment form for simulation cases. JETem © Developed by: Megan Osborn, MD, MHPE; Shannon Toohey, MD; Alisa Wray, MD
<table>
<thead>
<tr>
<th>Milestone</th>
<th>Did not achieve level 1</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Pharmacotherapy (PC5)</td>
<td>Did not achieve Level 1</td>
<td>Asks patient for drug allergies</td>
<td>Selects an medication for therapeutic intervention, consider potential adverse effects</td>
</tr>
<tr>
<td>6</td>
<td>Observation and reassessment (PC6)</td>
<td>Did not achieve Level 1</td>
<td>Reevaluates patient at least one time during case</td>
<td>Reevaluates patient after most therapeutic interventions</td>
</tr>
<tr>
<td>7</td>
<td>Disposition (PC7)</td>
<td>Did not achieve Level 1</td>
<td>Appropriately selects whether to admit or discharge the patient</td>
<td>Appropriately selects whether to admit or discharge</td>
</tr>
<tr>
<td>9</td>
<td>General Approach to Procedures (PC9)</td>
<td>Did not achieve Level 1</td>
<td>Identifies pertinent anatomy and physiology for a procedure</td>
<td>Obtains informed consent</td>
</tr>
</tbody>
</table>

Standardized assessment form for simulation cases. JETem © Developed by: Megan Osborn, MD, MHPE; Shannon Toohey, MD; Alisa Wray, MD
SIMULATION ASSESSMENT
High Fidelity In Situ Shoulder Dystocia Simulation

Learner: ________________________________

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Did not achieve level 1</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Professional Values (PROF1)</td>
<td>Did not achieve Level 1</td>
<td>Demonstrates caring, honest behavior</td>
<td>Exhibits compassion, respect, sensitivity and responsiveness</td>
</tr>
<tr>
<td>22</td>
<td>Patient centered communication (ICS1)</td>
<td>Did not achieve level 1</td>
<td>Establishes rapport and demonstrates empathy to patient (and family)</td>
<td>Listens effectively</td>
</tr>
<tr>
<td>23</td>
<td>Team management (ICS2)</td>
<td>Did not achieve level 1</td>
<td>Recognizes other members of the patient care team during case (nurse, techs)</td>
<td>Communicates pertinent information to other healthcare colleagues</td>
</tr>
</tbody>
</table>

Standardized assessment form for simulation cases. JETem © Developed by: Megan Osborn, MD, MHPE; Shannon Toohey, MD; Alisa Wray, MD
https://doi.org/10.21980/J8305D