Lawrence Berkeley National Laboratory
Recent Work

Title
MULTIPION PRODUCTION BY 2.03-GeV/c Λ"" IN HYDROGEN

Permalink
https://escholarship.org/uc/item/181324c4

Authors
Carmony, Duane D.
Grard, Fernand
Walle, Remy T. Van de et al.

Publication Date
1962-05-18
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
MULTIPION PRODUCTION BY 2.03-GeV/c π^- IN HYDROGEN

D. Duane Carmony, Fernand Grard, Remy T. Van de Walle, and Nguyen-huu Xuong

May 18, 1962
MULTIPION PRODUCTION BY 2.03-GeV/c π^- IN HYDROGEN

Duane Carmony, Fernand Grard, Remy T. Van de Walle, and Nguyen-huu Xuong

Lawrence Radiation Laboratory
University of California
Berkeley, California

May 18, 1962

An analysis of four-prong events produced by 2.03-GeV/c π^- mesons (E_π^- = 2.16 GeV) in the 72-inch hydrogen bubble chamber yielded

633 events of the type π^- + p → π^- + p + π^- + π^+,

283 events of the type π^- + p → π^- + p + π^- + π^+ + π^0,

134 events of the type π^- + p → π^- + π^+ + π^- + π^+ + n.

(1)

(2)

(3)

We used the PACKAGE computer program (combination of PANG and KICK programs) for the track-reconstruction and fitting process. An event is found to fit Reaction (1) when it has \(\chi^2 \leq 25.0 \) for this reaction. It is found to fit Reaction (2) or (3) when it has \(\chi^2 \leq 10.0 \) for this reaction. A track-ionization examination on the scanning table helped to resolve all ambiguous events.

Using a known total cross section, we get for the cross section of Reactions (1), (2), and (3) the values 1.64±.15 mb, 0.74±.08 mb, and 0.35±.04 mb respectively.

Reaction (1)

Figure 1 shows the distribution of the effective mass of proton-pion pairs (M_{π^-}) of all events of Reaction (1), (a) for π^- and (b) for π^+. The M_{π^+} distribution shows a peak corresponding to N_{3/2, 3/2}^*. We estimate that about 27±3% of Reaction (1) goes through the reaction π^- + p → N_{3/2, 3/2}^* + 3/2 + π^- + π^- with N_{3/2, 3/2}^* → p + π^+. We assume that these events with N_{3/2, 3/2}^* are produced according to Fig. 2 (a) (as suggested by Freda and George Salzman1).
We base our assumption on two observations:

(a) We have plotted in Fig. 3 the distribution of the invariant-four-momentum transfer, \(\Delta^2 \), between the initial proton and final \(p^+ \) pair for events of Reaction (1) with the effective mass \(M_{p\pi^+} \) in the region of the \(N_3^{+} \) energy (1.12 GeV \(\leq M_{p\pi^+} \leq 1.32 \) GeV) (round points). This distribution seems to agree with the curve predicted by Salzman \(^1\) (proportional to \((W-M)^2 + \Delta^2 \) \(/ (\Delta^2 + \mu^2_{\pi^-})^2 \)), where \(\mu_{\pi^-} \) is mass of the pion, \(W = M_{p\pi^+} \approx 1238 \) Mev, and \(M \) is mass of the proton, solid curve), whereas the distribution of other events of Reaction (1) (with \(M_{p\pi^+} \leq 1.12 \) GeV or \(M_{p\pi^+} > 1.32 \) GeV) does not agree at all with this curve (triangular points).

(b) In diagram (a) of Fig. 2, in which the pion vertex is of the type \(\pi^- + \pi^- \rightarrow \pi^- + \pi^- \), it is impossible to produce \(p \) mesons. This seems to be verified by our results. In Fig. 4 we have plotted the distribution of the effective mass \(M_{\pi\pi} \) of the events of Reaction (1), (a) for \(\pi^- \pi^- \), and (b) for \(\pi^+ \pi^- \). The \(M_{\pi^+\pi^-} \) distribution does not show a significant peak in the region of the mass of the \(p \) meson. On the other hand, in the \(\pi^+p \) interaction, the corresponding diagram would be 1(b). In this diagram the pion vertex is of the form \(\pi^+ + \pi^- \rightarrow \pi^+ + \pi^- \), and it is possible to produce \(p \) mesons. This seems to be verified by the Steinberger group \(^2\) which finds many \(p \) mesons in the reaction \(\pi^+ + p \rightarrow \pi^+ + p + \pi^+ + \pi^- \) (about 30% of these events are \(\pi^+ + p \rightarrow \pi^+ + p + \rho^0 \)).

Reaction (2)

Figure 5 shows the \(M_{3\pi} \) distribution of all events of Reaction (2), (a) for \(\pi^+\pi^-\pi^- \), and (b) for \(\pi^+\pi^-\pi^0 \). The \(M_{\pi^+\pi^-\pi^0} \) distribution shows a peak in the region of 550 Mev corresponding to the \(\eta \) meson, and another peak at about 785 Mev corresponding to the \(\omega \) meson. We estimate that 12\pm4 events (31\pm10 \(\mu \)b) of Reaction (2) proceed through \(\pi^- + p \rightarrow \pi^- + p + \eta \) and 55 \pm 12 events (142.\pm31. \(\mu \)b) through \(\pi^- + p \rightarrow \pi^- + p + \omega \) with \(\eta \) (or \(\omega \)) \(\rightarrow \pi^+ + \pi^- + \pi^0 \).
To verify if the \(\omega \) mesons are produced by the process illustrated by the diagram 2(c) (as suggested by Sakurai\(^3\)), we have plotted in Fig. 6 the distribution of the invariant-four-momentum transfer, \(\Delta^2 \), between the initial and final proton for events of Reaction (2) with \(M_{\pi^+\pi^-\pi^0} \in \) the mass region of the \(\omega \) (760 to 820 Mev) (triangular points). This distribution does not agree with the curve predicted by the one-pion-exchange model (proportional to \(\Delta^2 / (\Delta^2 + \mu_{\pi^0}^2) \) -- solid curve), whereas the \(\Delta^2 \) distribution of all events of Reaction (2) (round points) agrees with this curve. The \(\omega \) mesons do not, then, seem to be produced by the process illustrated by Fig. 2(c). We offer the hypothesis that the \(\omega \) mesons are produced by the process illustrated by Fig. 2(d). Our hypothesis is supported by two observations:

(a) The distribution of the effective mass of the \(p-\pi^+ \) pairs, which are produced with a \(\pi^+\pi^-\pi^0 \) triplet having an effective mass in the \(\omega \) mass region (Fig. 7), seems to show a peak corresponding to the \(N_{3/2, 3/2}^{*-1/2} \) over the phase-space estimate (solid curve normalized over the background). This could mean that the mesons are produced via the reaction \(\pi^- + p \rightarrow \omega + N_{3/2, 3/2}^{*-1/2} \), with \(N_{3/2, 3/2}^{*-1/2} \rightarrow \pi^- + p \). (This evidence is rather weak, because it is difficult to know how to normalize the phase-space curve).

(b) The reaction \(\pi + p \rightarrow \omega + N_{3/2, 3/2}^{*-1/2} \) proceeding through a pure \(I = 3/2 \) channel, must be much stronger for \(\pi^+ + p \) (Fig. 2c) than for \(\pi^- + p \). This assumption seems to be verified by the Steinberger group,\(^2\) which finds that the events of the type \(\pi^+ + p \rightarrow \pi^+ + p + \pi^+ + \pi^- + \pi^0 \) are dominated by \(\omega \) production (about 80\% of these events are \(\pi^+ + p \rightarrow \pi^+ + p + \omega \)).

Figure 8 shows the Dalitz plot of 17 events with \(540 \text{ MeV} \leq M_{\pi^+\pi^-\pi^0} \leq 550 \text{ MeV} \), of which only 12±4 can be attributed to the \(\eta \) mesons. The points tend to be in the region of small \(T_{\pi^0} \) as observed by Bastien et al.\(^4\).
Figure 9 shows the $M_{\pi\pi}$ distribution of events of Reaction (2), (a) for $\pi^-\pi^-$ pairs, (b) for $\pi^+\pi^+$ pairs, and (c) for $\pi^0\pi^0$ pairs. The $M_{\pi^+\pi^-}$ distribution shows the peak at $N_{3/2, 3/2}$ energy. Figure 10 shows the $M_{4\pi}$ distribution of all events of Reaction (2) ($\pi^+\pi^-\pi^-\pi^0$). This distribution agrees with the phase-space calculation (solid curve).

Reaction 3

Figure 11 shows the distribution of the effective mass of neutron-pion pairs of Reaction (3) events, (a) for $n\pi^+$, (b) for $n\pi^-$. The $N_{3/2, 3/2}$ seem to be there, but it is difficult to determine them quantitatively.

Figure 12 shows the $M_{3\pi}(\pi^+\pi^-\pi^0)$ and the $M_{4\pi}(\pi^+\pi^-\pi^+\pi^-)$ distributions of Reaction (3) events. Both distributions agree with the phase-space calculation (solid curves).

We want to thank Professor Luis W. Alvarez, Professor Donald H. Miller, and Dr. George Kalbfleisch for their encouragement and help. We are indebted to Professor Jack Steinberger for letting us know the results of his group's work before publication.
REFERENCES

* Work done under the auspices of the United States Atomic Energy Commission.
† On leave from the Institut Interuniversitaire des Sciences Nucléaires, Belgium.

1. Freda Salzman and George Salzman, Phys. Rev. 120, 599 (1960).

2. Jack Steinberger (Nevis Laboratory, Columbia University) private communication. The Steinberger group analyzed π⁺p interactions at 2.3 GeV/c (E* = 2.27 GeV). We do not believe that the difference in energy alone (0.11 GeV) could produce such a large difference in the rates of production of the ρ and ω mesons between their experiment and ours.

FIGURE LEGENDS

Fig. 1. Distributions of the effective mass of proton-pion pairs, $M_{p\pi^+}$, of events of Reaction (1): (a) for $p\pi^-$ pairs and (b) for $p\pi^+$ pairs. The solid curves are estimations, 73% from pure phase-space prediction and 27% with $p\pi^+$ in the $N_{3/2}^{*+3/2}$ resonance.

Fig. 2. Diagrams illustrating some processes of multipion production by pion-nucleon interaction (see text).

Fig. 3. Distribution of the invariant-four-momentum transfer, Δ^2, between the initial proton and final $p\pi^+$ pair for events of Reaction (1): for events with $1.12 \text{ GeV} \leq M_{p\pi^+} \leq 1.32 \text{ GeV}$; for other events ($\mu_{\pi^-}$ is mass of the charged pions). The solid curve represents the prediction of the Salzman model.

Fig. 4. Distributions of the effective mass of two pions M_2 of Reaction (1) events, (a) for $\pi^-\pi^-$, (b) for $\pi^+\pi^-$. The solid curves are phase-space estimations.

Fig. 5. Distributions of the effective mass of three pions, M_3, of Reaction (2) events, (a) for $\pi^+\pi^-\pi^-$, (b) for $\pi^+\pi^-\pi^0$. The solid curves are phase-space estimates.

Fig. 6. Distribution of the invariant-four-momentum transfer, Δ^2, between the initial and final protons of Reaction (2) events, for events with $760 \text{ MeV} \leq M_{\pi^+\pi^-\pi^0} \leq 820 \text{ MeV}$; for all events of reaction (2). The solid curve represents the one pion-exchange-model prediction.

Fig. 7. Distribution of the effective mass of the $p-\pi^-$ pairs, $M_{p\pi^-}$, of events of Reaction (2) produced with a $\pi^+\pi^-\pi^0$ triplet having $760 \text{ MeV} \leq M_{\pi^+\pi^-\pi^0} \leq 820 \text{ MeV}$.

Fig. 8. Dalitz plot of 17 events with $540 \text{ MeV} \leq M_{\pi^+\pi^-\pi^0} \leq 550 \text{ MeV}$ ($Q = M_{\pi^+\pi^-\pi^0} - 2M_{\pi^\pm} + M_0$) (only 12 ± 4 are η mesons).
Fig. 9. Distribution of the effective mass of the p-π pairs, $M_{p\pi}$, of all events of Reaction (2), (a) for $p\pi^-$, (b) for $p\pi^+$, and (c) for $p\pi^0$. The solid curves are phase-space estimates.

Fig. 10. Distribution of the effective mass of pion quadruplets $(\pi^+\pi^-\pi^0\pi^0)$, M_4, of Reaction (2) events. The solid curve is a phase-space estimate.

Fig. 11. Distributions of the effective mass of neutron-pion pairs, $M_{n\pi}$, of events of Reaction (3) (a) for $n\pi^+$, (b) for $n\pi^-$. The solid curves are phase-space estimates.

Fig. 12. Distribution of the effective masses of (a) pion triplets $(\pi^\pm\pi^\pm\pi^\mp)$, M_3, of Reaction (3) events, (b) of pion quadruplets $(\pi^+\pi^-\pi^+\pi^-)$, M_4, of Reaction (3) events. The solid curves are phase-space estimates.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
(a) $\pi^+ \pi^- \pi^-$

(b) $\pi^+ \pi^- \pi^0$

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Figure 10

The graph shows the number of pion-quadruplets per 20 MeV as a function of the effective mass M_4 (BeV). The data are represented by a histogram, with the effective mass ranging from 0.8 to 1.2 BeV, and the number of pion-quadruplets ranging from 0 to 30 per 20 MeV bin.
Fig. 11
Fig. 12

(a) \(\pi^+ \pi^+ \pi^+ \)

(b) \(\pi^+ \pi^- \pi^+ \pi^- \)