Title
MAGNETIC RESONANCE STUDIES ON MEMBRANE AND MODEL MEMBRANE SYSTEMS: I. PROTON MAGNETIC RELAXATION RATES IN SONICATED LECITHIN DISPERSIONS

Permalink
https://escholarship.org/uc/item/18c8862x

Author
Horwitz, Alan F.

Publication Date
1971-10-01
MAGNETIC RESONANCE STUDIES ON MEMBRANE
AND MODEL MEMBRANE SYSTEMS:
I. PROTON MAGNETIC RELAXATION RATES IN
SONICATED LECITHIN DISPERSIONS

Alan F. Horwitz, William J. Horsley, and Melvin P. Klein

October 1971

AEC Contract No. W-7405-eng-48

For Reference

Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
MAGNETIC RESONANCE STUDIES ON MEMBRANE AND MODEL MEMBRANE SYSTEMS:
I. PROTON MAGNETIC RELAXATION RATES IN SONICATED LECITHIN DISPERSIONS

by

Alan F. Horwitz,* William J. Horsley, and Melvin P. Klein

Laboratory of Chemical Biodynamics
Lawrence Berkeley Laboratory
University of California
Berkeley, Calif. 94720

*Postdoctoral Fellow of the National Heart and Lung Institute of the National Institutes of Health
Evidence is accumulating that many biological membranes contain, to a greater or lesser extent, regions of lipid bilayers.1-3 Since many conclusions drawn from models4-8 of these systems may indeed be applicable to natural membranes, the structural and functional properties of lipid bilayers is an active area of research. Nuclear magnetic resonance (NMR) provides a powerful method for investigating some structural and dynamic properties of such systems. In particular, the longitudinal, T_1, and transverse, T_2, nuclear relaxation times are explicitly and implicitly related to molecular motions.9 Recent advances in Fourier transform NMR spectroscopy provide the means for measuring these relaxation times in complex spectra.10-12 Since sonication of aqueous dispersions of lecithin produces relatively reproducible and homogeneous vesicles which give rise to high resolution NMR spectra,6-8,13 we have chosen this system for our initial measurements of the nuclear relaxation times in aqueous dispersions of phospholipid bilayers.

MATERIALS AND METHODS

Proton magnetic resonance measurements were performed on a Varian HR-220 spectrometer, extensively modified for Fourier transform operation. ^{31}P magnetic resonance measurements were performed at 24.3 MHz on an instrument of our own design. Both spectrometers are interfaced with a computer system designed in this laboratory. The T_1 measurements used the method of Vold et al.,10 while the T_2 values were determined by a variation of the Carr-Purcell method.14,15 A Carr-Purcell sequence is established and terminated after the 1,2,3,...nth pulse in n experiments. In each experiment the echo following the final pulse is Fourier transformed to yield the partially (transversally) relaxed spectrum. The
decay of each individual line then establishes its value of T_2. The
details of this method will be published elsewhere. Non-spinning
capillaries were used for the T_2 measurements. The resonance assign-
ments followed those of Chapman and Morrison.

Lecithin was prepared from hen egg yolks by the method of Singleton
et al., and was further purified by chromatography on silicic acid. Unsonicated lecithin dispersions were prepared using 30-60 umoles
lipid/ml D_2O by the method described by Demel et al. The lipids
were then sonicated for 15 min on ice using a Branson 185E sonicator
and centrifuged at 17,300 x g for 30 min at 4°C. All samples were pre-
pared and stored under argon in 0.15 M KCl and 10^{-4} M EDTA. The lipid
concentration was determined by phosphate analysis, and the purity was
checked by thin-layer chromatography on silica gel developed with
chloroform:methanol:water (65:25:4) and by the measurement of the oxida-
tion index.

In sonicated lecithin at 220 MHz, the choline N-methyl and the
fatty acid methylene, allyl, vinyl, methyl, and α-carbonyl protons
are among the resolved resonances. Their T_1 values are given in
Table I. Figure 1 shows the temperature dependencies of the values of
the spin-lattice relaxation times for three of these resonances. In
the temperature region investigated, this plot reveals two important
points: (a) T_1 increases with temperature for each of these classes of
protons, and (b) the T_1 of the terminal methyl protons is clearly longer
than that of the choline or methylene protons, which in turn appear to
differ from each other. The fatty acid methylene protons appear to be
characterized by a single value of T_1, but a distribution of values
cannot be excluded. The data presented in Table I indicate that the
T_1 values for the vinyl and α-carbonyl protons are similar to but dif-
ferent from those of the methylene protons. We may treat the data of
Figure 1, as well as the data for the other resonances which have a
similar dependence on temperature, as Arrhenius plots and derive the
activation energies for the thermal relaxation processes. The values
so derived are given in Table I, and agree favorably with literature
values for potential barriers to internal rotation in alkanes. Since
our observations extended over a small temperature range, we may be
unable to detect a distribution of activation energies for the methylene
protons if such were to exist.

In Table I are also listed preliminary values of the transverse
relaxation times for some selected resonances in sonicated egg lecithin.
The N-methyl, methyl, and phosphorus nuclei each appeared to relax
according to a single exponential. For each of these groups the value
of the transverse relaxation time that one estimates from the conven-
tional linewidth, T_2^*, is less than or equal to our experimental T_2. The methylene protons exhibited a heterogeneity of T_2 values. About
20% showed a single value of T_2 of about 0.056 sec; the remaining 80%
were much shorter and non-exponential, implicating a distribution of
of T_2 values. Aside from the methyl and N-methyl protons, the remaining
proton resonances exhibited relatively short values of T_2. Similar
results have been obtained with dimyristoyl L-α-lecithin (at tempera-
tures above the transition point).

Because of the implicit complexity of relaxation processes in
general, and in these systems in particular, a quantitative discussion
lies outside the scope of this note. Thus, the following comments on our relaxation results should be considered as suggestive. Let us assume, however, that the dominant relaxation results from modulation of the dipolar coupling to the nearest protons, e.g., the companion proton for the methylene group and the two companion protons on a methyl group.

For all proton resonances, T_1 increases with increasing temperature, indicating that at 220 MHz we are in the short correlation time regime. The data in Table I reveal the close agreement between the activation energies for thermal relaxation and for internal rotation; they provide strong evidence that the dominant source of thermal relaxation derives from modulation of the intramolecular dipolar interactions by the internal rotations. In the short correlation time regime, theories based on isotropic motion predict that $T_1 = T_2$ which is at variance with our results that $T_1 > T_2$. Thus, we are obliged to conclude that the motions are in fact anisotropic. Two classes of motion may be suggested which account for the observations: (1) relatively small displacements due to rotations of individual methylene carbon atoms which occur at high frequencies, and (2) relatively larger angular displacements of protons further down the chain which are a consequence of the high frequency rotations. The former motions, which are roughly constant along the fatty acid chains, would result in the longer roughly constant values of T_1, in agreement with our observations. Manipulation of CPK space-filling models indicates that motions of the latter class may involve large segments of the fatty acid chains. That is, starting from the minimum energy, all trans conformation, rotation about a single
C-C bond would result, for example, in a gauche + conformation. That segment of the molecule between the origin of the rotation and the methyl end would execute a large displacement; a simultaneous gauche - rotation about the bond β (toward the methyl end) from the first bond, would virtually restore the original linear shape. Rotations about C-C bonds closer to the methyl end would lead to displacements requiring less volume, and would be less likely to lead to collisional encounters with neighboring fatty acid chains, and thus would be more probable and result in longer relaxation times. This is, of course, only one of many possible conformational transitions which could account for our observations. Such dynamics simultaneously maintain minimal displacements of large segments of the molecules, account for the observed activation energy for and nearly constant value of T_1 for the methylene protons, and finally provide a mechanism for the abrupt increase in transverse relaxation times for the methyl protons and those methylene protons which are probably near the methyl terminus.

Simplistic estimates of the correlation times corresponding to the measured values of T_2 lead to values in the range of $10^{-11} < \tau_C < 10^{-8}$ sec. Since we have measurements at only 220 MHz, we do not assign a correlation time for the T_1 processes, but may safely state that it is certainly less than 10^{-9} sec. Since the minimum diameter for sonicated lecithin vesicles is about 250 Å, for which the Debye correlation time at 20°C is $\approx 10^{-6}$ sec, we may confidently rule out the tumbling of the vesicles as a significant source of motion contributing to nuclear relaxation.

*For comparison, at 20°C, for water $\tau_C \approx 10^{-12}$ sec, and for hemoglobin $\tau_C \approx 10^{-7}$ sec.
A recent paper reports values of T_1 for the 13C NMR of sonicated lecithin bilayers which show that the 13C nuclei exhibit a distribution of thermal relaxation times. The shortest T_1 values apply to the carbons at the polar end of the molecules, while the values for carbon atoms 3-13 are longer and nearly equal. The three remaining carbons, 14-16, show increasingly longer times with the terminal methyl the longest. Although the relaxation processes or mechanisms for protons differ in detail from those for 13C, the relaxation times share a similar functional dependence on the correlation times. These 13C data imply a relatively long correlation time at the polar end, a shorter and nearly constant value for carbon atoms 3-13, and still shorter values of correlation times as the terminal methyl is approached. Although not stated by the authors, a reasonable interpretation of these data is that a large segment of the molecule executes relatively uniform motion at a high frequency which is significantly slower than that executed at the terminal methyl end of the molecule. This interpretation is in accord with that offered above to account for the proton T_1 and T_2 data.

Proton relaxation rates in lecithin have been measured and discussed by other authors. Their measurements, made by other methods, suggest that the protons of lecithin are characterized by a single value of T_1. Arguing in analogy with results from studies on solid n-alkanes, a spin-diffusion mechanism has been proposed. The spin-diffusion mechanism for these molecules proposes that spin-spin flip-flops between pairwise adjacent protons propagate along the aliphatic chain toward the terminal methyl. Because of its relative freedom to reorient, the methyl has a shorter T_1 than do the methylene protons, and thus serves as a heat
sink at these low temperatures. The entire molecule is then characterized by a single T_1. If a spin-diffusion mechanism were operative in lecithin, as has been suggested, then the value of T_1 would only provide information about the motion of the heat sink. In a recent paper, Chapman has tentatively proposed the choline headgroup as the heat sink.27

The results from Table I show that there is not a single spin-lattice relaxation time characterizing the protons of sonicated egg lecithin at 220 MHz. Further, the apparent existence of different relaxation times for protons along the methylene chain clearly excludes efficient coupling among all the methylene protons. If spin-diffusion contributes significantly to thermal relaxation in these molecules, it is likely restricted to short segments of the methylene chain. If so, one must inquire into the nature and location of the heat sinks.

The data in Table I suggests that the choline protons do not serve as a possible heat sink for the proposed spin-diffusion. Further evidence that the polar headgroups are magnetically isolated from the apolar regions derives from our observations on the effects of Mn++ ions added to the external aqueous phase of the dispersions. 10^{-4} M Mn++ ions produced a marked effect on the width of the N-methyl protons, notably reduced their value of T_1, but had little effect on the parameters of the methylene or methyl protons. We conclude then that spin-diffusion toward the polar headgroup is not responsible for thermal relaxation of the apolar region of lecithin in sonicated bilayers.

ACKNOWLEDGMENTS

We would like to thank Dr. Alfred Redfield for helpful discussions. This research was sponsored, in part, by the U. S. Atomic Energy Commission.
REFERENCES

TABLE I
Spin-lattice, T_1, and transverse, T_2, relaxation times and activation energies for some resonances of sonicated egg lecithin

<table>
<thead>
<tr>
<th></th>
<th>$^{+\text{N(C}_3\text{H}_3)}$</th>
<th>$^{\text{O}}_{\text{C}-\text{H}}$</th>
<th>$^{\text{H}}_{\text{C}-\text{H}}$</th>
<th>$^{\text{H}}_{\text{C}-\text{C}}$</th>
<th>$^{\text{C}-\text{H}}$</th>
<th>$^{\text{C}-\text{H}}$</th>
<th>$^{31 \text{P}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1 (seconds)</td>
<td>0.41 ± 0.02</td>
<td>0.34 ± 0.02</td>
<td>0.47 ± 0.03</td>
<td>0.41 ± 0.04</td>
<td>0.54 ± 0.03</td>
<td>0.76 ± 0.06</td>
<td>$1.4 \pm 0.1 \text{(a)}$</td>
</tr>
<tr>
<td>T_2 (seconds)</td>
<td>0.075</td>
<td>0.008</td>
<td>$0.056 (20%)$</td>
<td>$<0.02 (80%)$</td>
<td>0.015</td>
<td>0.020</td>
<td>0.036</td>
</tr>
<tr>
<td>E_a (Kcal/mole)</td>
<td>4.3 ± 0.3</td>
<td>2.8 ± 0.4</td>
<td>3.0 ± 0.2</td>
<td>2.7 ± 0.2</td>
<td>3.2 ± 0.3</td>
<td>4.2 ± 0.3</td>
<td>---</td>
</tr>
</tbody>
</table>
FIGURE 1

Arrhenius plots of the spin-lattice relaxation time versus temperature for some selected resonances in sonicated egg yolk lecithin. The data presented were obtained from two different samples run on two different days.

TABLE 1

The T_1 values were determined at 40°C; for a given experiment the estimated error was within 10%, as indicated, however for experiments performed on different days with different samples the error sometimes exceeded this limit. The estimates of T_2 were made at 20°C; the text contains an explanation of the two relaxation times for the methylene protons. The phosphorus nuclear relaxation times were measured at 34°C and are included here for completeness and will be discussed in subsequent publications.\(^9\) (a) refers to dimyristoyl L-\(\alpha\)-lecithin and (b) refers to egg yolk lecithin.
\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Temperature vs. inverse of temperature multiplied by 1000 (°K) for different functional groups.}
\end{figure}
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.