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ABSTRACT 

Greenhouse gas emissions reduction has garnered special importance in recent times in the 

transportation sector, including pavement design and management. In this study, we incorporate this 

environmental objective in pavement management. We present an optimization problem to minimize 

GHG emissions under multiple budget constraints by determining joint management strategies for a 

range of heterogeneous interventions, including maintenance, rehabilitation and reconstruction. We 

propose a computationally efficient bottom-up solution algorithm, which is built on Lagrangian 

Relaxation and Dynamic Programming. Finally, we apply our findings to a real-world highway network 

in California, where the results show a potential GHG emissions reduction of 20% through an increased 

combined budget of 35% on the Pareto frontier.  

 

Keywords: Pavement Management Systems; Greenhouse Gas Emissions; Budget Constraints 
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1. Introduction 

We present a decision support tool in Pavement Management Systems (PMSs) to reduce Greenhouse 

gas (GHG) emissions under budget constraints. GHG emissions caused by societal activities are known 

to be forcing global climate changes (Foster et al., 2007), with the transportation sector being one of 

the most GHG emission contributors in the USA second to the electricity generation sector. Highway 

transportation produces over 80 percent of GHG emissions of the transportation sector, including 

passenger cars (42.3 percent), light-duty trucks (17.1 percent) and medium- and heavy- duty trucks 

(23.6 percent) (EPA, 2017), and the highway user emissions increase with pavement roughness level 

(Watanatada, 1986; Zaabar and Chatti, 2010). Therefore, reducing roughness-related pavement 

emissions may make a significant dent in the total transportation sector GHG emissions (Santero et al., 

2011).  

In PMSs, transportation agencies have multiple options of interventions with different costs 

and impacts on pavement condition. For instance, the California Department of Transportation 

(Caltrans) considers five management options targeted at different pavement condition, including: 

preventive maintenance, corrective maintenance, capital preventive maintenance, major rehabilitation, 

and reconstruction (Caltrans, 2015). Several papers in the literature have considered heterogeneous 

management treatments as decision factors in minimizing pavement life cycle costs, for the segment-

level problem (Gu et al., 2012; Rashid and Tsunokawa, 2012; Lee and Madanat, 2014 and 2015a) and 

the system-level problem (Chu and Chen, 2012; Lee and Madanat, 2015b). In this paper, we include 

three types of interventions: routine maintenance activities, rehabilitations, and reconstructions 

(MR&R). 

Numerous studies have addressed the problem of minimizing GHG emissions in PMS through 

Life Cycle Assessment (LCA). Wang et al (2012) and Lidicker et al. (2013) examined management 

strategies to minimize GHG emissions at a pavement segment level. Gosse et al. accounted for multiple 

criteria including system performance as well as emissions and costs from management activities. At 

the pavement system level, research has focused on both minimizing GHG emissions (Wang et al., 

2014) and minimizing lifecycle societal costs under a constraint of total GHG emissions (from users 

and agencies). Examples of the latter include Reger et al. (2014), who solved for the optimal 
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rehabilitation policy, and Lee et al. (2016), who solved for the optimal mix of rehabilitation and 

reconstruction strategies. One limitation of this line of work is that the objective function, minimizing 

societal costs under an emissions budget, may not be a realistic representation of a highway agency’s 

problem. 

This research builds upon the work of Reger et al. (2015), where the problem formulation is to 

find the pavement resurfacing strategy to minimize system-level GHG emissions under a financial 

budget constraint, a more realistic representation of the problem facing highway agencies. The 

difference with Reger et al. (2015) is that, in the present paper a range of interventions is considered 

rather than focusing only on resurfacing. Given the wide range of interventions considered, multiple 

budget constraints are used to account for multiple budget sources. Another, more technical difference 

is that the present research uses a more realistic history-dependent pavement deterioration model and 

considers the problem along both finite and infinite planning horizons. This paper is organized as 

follows: Section 2 presents the problem formulation. The solution methodology is proposed in Section 

3. A case study is included in Section 4 and conclusions follow in Section 5. 

 

2. Problem formulation 

In this section, we formulate an average Greenhouse gas (GHG) emission minimization problem under 

budget constraints for a system comprised of 𝑁𝑁 pavement segments along a planning horizon of length 

𝑇𝑇. Sub-sections 2.1 and 2.2. present the objective function and the budget constraints of the problem 

respectively. 

 

2.1 Objective 

The objective function is formulated in (1), where the system-level average GHG emissions for both 

users and agencies are considered. The decision factor is the pavement management policy, 𝑥𝑥, which is 

a set of segment-level policies, 𝑥𝑥𝑛𝑛, for all segments included in the system, i.e. 𝑥𝑥 = {𝑥𝑥1, … 𝑥𝑥𝑛𝑛, … , 𝑥𝑥𝑁𝑁}. 

𝑥𝑥𝑛𝑛 is a set defined as {𝑥𝑥𝑛𝑛(0), … , 𝑥𝑥𝑛𝑛(𝑡𝑡), … 𝑥𝑥𝑛𝑛(𝑇𝑇 − 1)}. The segment-level pavement state in period 𝑡𝑡, 
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𝑆𝑆𝑛𝑛(𝑡𝑡) ∈ 𝕊𝕊𝑛𝑛, is defined as a multi-dimensional vector that consists of various distresses and history-

dependent factors. In this paper, 𝐸𝐸[∙] represents expected value.  

 
𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥∈𝕩𝕩

𝑄𝑄(𝑆𝑆(0), 𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑛𝑛,∀𝑛𝑛

�𝑄𝑄𝑛𝑛(𝑆𝑆𝑛𝑛(0),𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

= 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑛𝑛(𝑡𝑡)∈𝕩𝕩𝑛𝑛

,∀𝑛𝑛,𝑡𝑡

1
𝑇𝑇
𝐸𝐸 ���𝑞𝑞𝑛𝑛�𝑆𝑆𝑛𝑛(𝑡𝑡), 𝑥𝑥𝑛𝑛(𝑡𝑡)�

𝑇𝑇−1

𝑡𝑡=0

𝑁𝑁

𝑛𝑛=1

� (1) 

, where 

𝕩𝕩: a set of all possible policies; 

𝕩𝕩𝑛𝑛: a set of all available managerial options on a segment; 

𝑄𝑄(𝑆𝑆(0), 𝑥𝑥): undiscounted average GHG emission (metric tons (MT) CO2 e/unit time period) for the 

system of pavements with an initial state 𝑆𝑆(0) ≡ {𝑆𝑆𝑛𝑛(0),∀𝑛𝑛}, under policy 𝑥𝑥; 

𝑄𝑄𝑛𝑛(𝑆𝑆𝑛𝑛(0),𝑥𝑥𝑛𝑛): undiscounted average GHG emission for segment 𝑛𝑛 with an initial state, 𝑆𝑆𝑛𝑛(0) under 

policy 𝑥𝑥𝑛𝑛;  

𝑞𝑞𝑛𝑛�𝑆𝑆𝑛𝑛(𝑡𝑡),𝑥𝑥𝑛𝑛(𝑡𝑡)�: GHG emissions for segment 𝑛𝑛 during period 𝑡𝑡 with state 𝑆𝑆𝑛𝑛(𝑡𝑡), under policy 𝑥𝑥𝑛𝑛(𝑡𝑡); 

𝑇𝑇: length of planning horizon; 

𝑁𝑁: total number of pavement segments. 

 

2.1.1 GHG emissions 

We do not use a discount rate for GHG emissions, in accordance with Sedjo and Marland (2003) who 

made the case that future GHG emissions should not be discounted. However, Kendall (2012) argued 

that it is necessary to use the time-adjusted measure to prevent distorting the actual influence of GHG 

emissions in the future. If we use the time correction factor to consider this effect, the GHG 

minimization problem with the budget constraint can be formulated as a mixed-undiscounted-and-

discounted problem. The solution methodology for such a problem can be found in Lee and Madanat 

(2016). In this paper, we focus on the undiscounted problem that has not been addressed and solved in 

the literature.  

In equation (1), 𝑞𝑞𝑛𝑛�𝑆𝑆𝑛𝑛(𝑡𝑡), 𝑥𝑥𝑛𝑛(𝑡𝑡)� is the sum of user emissions and agency emissions caused by 

the activities applied on the segment 𝑥𝑥𝑛𝑛(𝑡𝑡)  with state 𝑆𝑆𝑛𝑛(𝑡𝑡) . The sources of user emissions are: 

additional fuel consumption caused by high roughness (Watanatada, 1986; Zaabar and Chatti, 2010), 
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which can be reduced due to a smoother surface resulting from MR&R activities; and travel time and 

distance delay due to roadway closures during the activities. For the option of ‘do-nothing’, agency 

emissions are zero. If at least one intervention is applied, agency emissions are produced along the 

supply chain of used materials from production to transportation to the site and determined by the nature 

of construction activities.  

 

2.1.2 Pavement state and deterioration model 

The elements of the pavement state vector 𝑆𝑆𝑛𝑛(𝑡𝑡) are surface roughness, 𝑠𝑠𝑛𝑛(𝑡𝑡), measured in units of 

International Roughness Index (IRI) (m/km), and age or the elapsed time since the last construction or 

reconstruction given by ℎ𝑛𝑛(𝑡𝑡) (year). The transition probability, from one state, at 𝑡𝑡, to another, at 𝑡𝑡 +

1, is dependent on exogenous factors (e.g. site-specific traffic loading and climate) and endogenous 

factors (such as history of past interventions). This bi-dimensional state at a time 𝑡𝑡 reflects all the effects 

of previous states and performed interventions, because:  

1. If a pavement was reconstructed at least once after its initial construction, the applied 

interventions and pavement states before the most recent reconstruction have no effect on the 

deterioration process, and thus the only period of time relevant to predict future pavement condition is 

time since the last reconstruction (i.e., age).  

2. The underlying layers’ (base and sub-base) condition is not improved by rehabilitation and 

routine maintenance because these activities are performed only on the surface (wearing course) layer. 

Thus, age accounts for the deterioration of the underlying layers. 

3. The surface layer condition is a complete representation of all maintenance and rehabilitation 

interventions performed on the surface layer since the last reconstruction.  

Because 𝑆𝑆𝑛𝑛(𝑡𝑡) accounts for all the relevant history of pavement segment 𝑛𝑛 at time 𝑡𝑡, it can be 

concluded that the evolution of the (augmented) pavement state 𝑆𝑆𝑛𝑛(𝑡𝑡) is Markovian. 

 

2.2 Budget constraints 
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It is typical that different pavement interventions are funded by different budget sources. For example, 

construction and reconstruction projects are funded by a capital budget, but other managerial 

interventions including routine maintenance and rehabilitation are financed by a maintenance budget. 

The general representation of budget constraints is represented in (2a), where we assume flexible budget 

allocation between different periods.  

𝐴𝐴𝑗𝑗(𝑆𝑆(0), 𝑥𝑥) = �𝐴𝐴𝑛𝑛,𝑗𝑗(𝑆𝑆𝑛𝑛(0),𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

=
1
𝑇𝑇
𝐸𝐸 ���𝑎𝑎𝑛𝑛,𝑗𝑗�𝑆𝑆𝑛𝑛(𝑡𝑡), 𝑥𝑥𝑛𝑛(𝑡𝑡)�

𝑇𝑇−1

𝑡𝑡=0

𝑁𝑁

𝑛𝑛=1

� ≤ 𝐵𝐵𝑗𝑗,∀𝑗𝑗 = 1, … , 𝐽𝐽 (2a) 

, where 

𝐴𝐴𝑗𝑗(𝑆𝑆(0), 𝑥𝑥): average agency costs ($/unit time period) for a system of pavement segments with an initial 

state 𝑆𝑆(0) under policy 𝑥𝑥 constrained by budget 𝑗𝑗, 𝑗𝑗 ∈ {1, … , 𝐽𝐽}; 

𝐽𝐽: number of constraints, i.e. number of budget sources; 

𝑎𝑎𝑛𝑛,𝑗𝑗�𝑆𝑆𝑛𝑛(𝑡𝑡), 𝑥𝑥𝑛𝑛(𝑡𝑡)�: agency costs in period 𝑡𝑡 funded by budget 𝑗𝑗; 

𝐵𝐵𝑗𝑗: budget 𝑗𝑗, 𝑗𝑗 ∈ {1, … , 𝐽𝐽}.    

If there are multiple budget expenditure periods in the planning horizon, indexed by 𝑤𝑤 =

1, … ,𝑊𝑊, the budget constraints are represented as: 

𝐴𝐴𝑗𝑗,𝑤𝑤(𝑆𝑆(𝑇𝑇0 + ⋯𝑇𝑇𝑤𝑤−1), 𝑥𝑥) =
1
𝑇𝑇𝑤𝑤

𝐸𝐸 �� � 𝑎𝑎𝑛𝑛,𝑗𝑗�𝑆𝑆𝑛𝑛(𝑡𝑡), 𝑥𝑥𝑛𝑛(𝑡𝑡)�
𝑇𝑇0+⋯𝑇𝑇𝑤𝑤−1

𝑡𝑡=𝑇𝑇0+⋯𝑇𝑇𝑤𝑤−1

𝑁𝑁

𝑛𝑛=1

� ≤ 𝐵𝐵𝑗𝑗, 

∀𝑗𝑗 = 1, … , 𝐽𝐽,∀𝑤𝑤 = 1, … ,𝑊𝑊, 

(2b) 

, where 

𝐴𝐴𝑗𝑗,𝑤𝑤(𝑆𝑆(𝑇𝑇0 + ⋯𝑇𝑇𝑊𝑊−1),𝑥𝑥): average agency costs ($/unit time period) for a system of pavement segments 

constrained by budget 𝑗𝑗 during budget expenditure period 𝑤𝑤; 

𝑇𝑇𝑤𝑤: duration of the 𝑤𝑤𝑡𝑡ℎ budget expenditure period, 𝑇𝑇0 = 0; 

𝑊𝑊: number of budget expenditure periods in 𝑇𝑇 years, 𝑇𝑇0 + ⋯𝑇𝑇𝑊𝑊 = 𝑇𝑇. 

 

3. Solution methodology 

The constrained optimization problem is solved by the Lagrangian Relaxation method (Bellman, 1956). 

In Section 3.1, we propose a solution methodology for the problem defined by (1) and (2a). Section 3.2 
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present the solution methodology for the problem with multiple budget expenditure periods, 𝑊𝑊 > 1, 

defined by (1) and (2b). 

 

3.1 Flexible budget allocation problem 

The optimal Lagrangian function, ℒ∗�𝑆𝑆(0)�, the lower bound of the original problem, with 

non-negative Lagrangian multiplier 𝛬𝛬 = �𝛬𝛬1, …𝛬𝛬𝑗𝑗, … ,𝛬𝛬𝐽𝐽� is given in equation (3). Note that the unit of 

each Lagrangian multiplier is metric tons of 𝐶𝐶𝑂𝑂2  per dollar, so all terms in (3) have the same 

dimensions. In (3), the decision variables are {𝑥𝑥;𝛬𝛬}, and the solution method has two steps: (a) to find 

the optimal 𝑥𝑥 for given Lagrangian multiplier, denoted by 𝑥𝑥|Λ; and (b) to find the optimal Lagrangian 

multiplier, 𝛬𝛬.  

 
ℒ∗�𝑆𝑆(0)� = 𝑠𝑠𝑠𝑠𝑠𝑠

𝛬𝛬
𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥

𝑄𝑄(𝑆𝑆(0), 𝑥𝑥) + �𝛬𝛬𝑗𝑗 ∙ �𝐴𝐴𝑗𝑗(𝑆𝑆(0), 𝑥𝑥) − 𝐵𝐵𝑗𝑗�
𝐽𝐽

𝑗𝑗=1

  (3) 

To separate the system-level problem (3) into 𝑁𝑁 segment-level problems, we assume that: 

Assumption 1. The additional GHG emissions from alternative route 𝑛𝑛′  due to MR&R activities 

performed on highway segment 𝑛𝑛  are added to 𝑞𝑞𝑛𝑛  instead of 𝑞𝑞𝑛𝑛′ , and 𝑞𝑞𝑛𝑛′�𝑆𝑆𝑛𝑛′(𝑡𝑡),𝑥𝑥𝑛𝑛′(𝑡𝑡)�  and 

𝑎𝑎𝑛𝑛′,𝑗𝑗�𝑆𝑆𝑛𝑛′(𝑡𝑡), 𝑥𝑥𝑛𝑛′(𝑡𝑡)� are independent of 𝑥𝑥𝑛𝑛(𝑡𝑡), ∀𝑛𝑛,∀𝑛𝑛′ ≠ 𝑛𝑛. 

 To justify Assumption 1, the following discussion is necessary. While a roadway is under 

construction, no management activities are performed on the alternative routes because this may cause 

significant traffic capacity reduction. Therefore, unless most segments in a roadway network need 

maintenance actions urgently at the same time, it is reasonable to assume that GHG emissions from 

alternative routes, 𝑞𝑞𝑛𝑛′�𝑆𝑆𝑛𝑛′(𝑡𝑡),𝑥𝑥𝑛𝑛′(𝑡𝑡)�, are not influenced by activities applied on a pavement segment, 

𝑥𝑥𝑛𝑛(𝑡𝑡). Moreover, we do not account for possible cost savings from coordinated MR&R activities 

simultaneously performed on multiple adjacent segments. 

 Based on this discussion, Assumption 1 is realistic. Accordingly, 𝑄𝑄𝑛𝑛′(𝑆𝑆𝑛𝑛′(0),𝑥𝑥𝑛𝑛′)  and 

𝐴𝐴𝑛𝑛′,𝑗𝑗(𝑆𝑆𝑛𝑛′(0),𝑥𝑥𝑛𝑛′) are independent of 𝑥𝑥𝑛𝑛, so we can derive Proposition 1. 

Proposition 1. 𝑄𝑄𝑛𝑛′(𝑆𝑆𝑛𝑛′(0),𝑥𝑥𝑛𝑛′) + ∑ 𝛬𝛬𝑗𝑗 ∙ 𝐴𝐴𝑛𝑛′,𝑗𝑗(𝑆𝑆𝑛𝑛′(0),𝑥𝑥𝑛𝑛′)
𝐽𝐽
𝑗𝑗=1  is independent of 𝑥𝑥𝑛𝑛, ∀𝑛𝑛,∀𝑛𝑛′ ≠ 𝑛𝑛. 
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The Lagrangian problem (3) is separable, based on Proposition 1, so the optimal policy under 

a certain set of Lagrangian multipliers, 𝑥𝑥|Λ, is a set of segment-level policies, 𝑥𝑥𝑛𝑛 for all segments, as 

expressed in (4). 

 
 𝑥𝑥|𝛬𝛬 = �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑥𝑥𝑛𝑛
𝑄𝑄𝑛𝑛(𝑆𝑆𝑛𝑛(0),𝑥𝑥𝑛𝑛) + �𝛬𝛬𝑗𝑗 ∙ 𝐴𝐴𝑛𝑛,𝑗𝑗(𝑆𝑆𝑛𝑛(0),𝑥𝑥𝑛𝑛)

𝐽𝐽

𝑗𝑗=1

,∀𝑛𝑛� (4) 

 Based on the results obtained by solving (4), we can find the optimal Lagrangian multipliers by 

solving (5). 

 
ℒ∗�𝑆𝑆(0)� = 𝑠𝑠𝑠𝑠𝑠𝑠

𝛬𝛬
𝑄𝑄�𝑆𝑆(0), 𝑥𝑥|𝛬𝛬� + �𝛬𝛬𝑗𝑗 ∙ �𝐴𝐴𝑗𝑗�𝑆𝑆(0), 𝑥𝑥|𝛬𝛬� − 𝐵𝐵𝑗𝑗�

𝐽𝐽

𝑗𝑗=1

  (5) 

The following two sub-sections, 3.1.1 and 3.1.2, will present the solution methodologies of the 

segment-level problem in (4) and the Lagrangian problem given in (5) respectively. 

 

3.1.1 Dynamic programming algorithms for the segment-level problem 

We address two different representations of the segment-level problem and their respective solution 

methodologies: (a) finite time horizon problem, where 𝑇𝑇 < ∞; and (b) infinite time horizon problem, 

where 𝑇𝑇 → ∞. The complexities of both methodologies are polynomial in |𝕩𝕩𝑛𝑛| and |𝕊𝕊𝑛𝑛|, which must 

be finite numbers to make the algorithms feasible. Because the number of pavement repair and 

maintenance options is limited in practice, |𝕩𝕩𝑛𝑛| is finite. Regarding |𝕊𝕊𝑛𝑛|, we need to examine the 

possible ranges of roughness level and age: 

• Severely deteriorated pavement surfaces associated with extensive area of fatigue cracking 

including alligator, longitudinal and reflection cracking in the wheel path (MEPDG Interim 

Guide 2008) cause significant traffic delays, vehicle wear and tear and user discomfort. Because 

the index of roughness reflects the area of fatigue cracking as well as length of transverse 

cracking and average rut depth, it is reasonable to introduce a maximum allowable roughness 

to prevent such problems. If roughness is equal to or higher than this level, either rehabilitation 

or reconstruction must be applied. Therefore, roughness has a range with a finite upper bound.   
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• Pavement structures with infinite age are unrealistic in practice, so all segments should be 

reconstructed in the infinite planning horizon problem. As for the finite horizon problem, age 

is finite by virtue of the fact that age cannot exceed the length of the planning horizon.  

Therefore, age is a finite number. Together with our previous observation that roughness is 

finite, we conclude that |𝕊𝕊𝑛𝑛| is finite.  

 

Finite horizon problem 

Given finite 𝑇𝑇, the Dynamic programming for the segment-level problem (4) is presented by (6). 

 ℒ𝑛𝑛𝑇𝑇(𝑆𝑆(𝑇𝑇)|𝛬𝛬) = 0  

 , and  

ℒ𝑛𝑛𝑡𝑡 (𝑆𝑆(𝑡𝑡)|𝛬𝛬) = min
𝑥𝑥𝑛𝑛(𝑡𝑡)|𝛬𝛬

𝐸𝐸 �
1

𝑇𝑇 − 𝑡𝑡 �
𝑞𝑞𝑛𝑛�𝑆𝑆𝑛𝑛(𝑡𝑡), 𝑥𝑥𝑛𝑛(𝑡𝑡)� + �𝛬𝛬𝑗𝑗 ∙ 𝑎𝑎𝑛𝑛,𝑗𝑗(𝑆𝑆𝑛𝑛(𝑡𝑡),𝑥𝑥𝑛𝑛)

𝐽𝐽

𝑗𝑗=1

�

+
𝑇𝑇 − 𝑡𝑡 − 1
𝑇𝑇 − 𝑡𝑡

ℒ𝑛𝑛𝑡𝑡+1(𝑆𝑆𝑛𝑛(𝑡𝑡 + 1)|𝛬𝛬)� ,∀𝑆𝑆𝑛𝑛(𝑡𝑡) ∈ 𝕊𝕊𝑛𝑛, 𝑡𝑡 = 0, … ,𝑇𝑇 − 1 

(6) 

, where 

ℒ𝑛𝑛𝑇𝑇(𝑆𝑆𝑛𝑛(𝑇𝑇)|𝛬𝛬): terminal Lagrangian function value at 𝑇𝑇 for given 𝑆𝑆𝑛𝑛(𝑇𝑇) under 𝛬𝛬; 

ℒ𝑛𝑛𝑡𝑡 (𝑆𝑆𝑛𝑛(𝑡𝑡)|𝛬𝛬): minimum expected average Lagrangian value from 𝑡𝑡 until 𝑇𝑇, given state 𝑆𝑆𝑛𝑛(𝑡𝑡) under 

chosen 𝛬𝛬. 

 Program (6) is solved from 𝑡𝑡 = 𝑇𝑇  to 𝑡𝑡 = 0  recursively. There exists uncertainty regarding 

several parameters that influence GHG emissions in after the end of the planning horizon, so the 

terminal value is assumed to be zero.  

 

Infinite horizon problem 

An emission-free terminal state may seem unrealistic, which is why a steady state solution (Bertsekas, 

2011) may be preferable. Such a solution can be obtained by solving an infinite horizon problem defined 

with 𝑇𝑇 → ∞. In the steady state, the segment-level policy, 𝑥𝑥𝑛𝑛, is a state-based policy that is independent 

of time. In other words, 𝑥𝑥𝑛𝑛 = {𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛), ∀𝑆𝑆𝑛𝑛 ∈ 𝕊𝕊𝑛𝑛}. The solution methodology for the infinite horizon 
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problem can be based on either Value Iteration or Policy Iteration, and is presented in detail in Appendix 

A.  

 

3.1.2 Numerical algorithm for the Lagrangian problem 

Once the segment-level policies have been determined, the problem becomes one of solving for the 

Lagrangian multipliers. The following numerical algorithm is proposed to find the optimal Lagrangian 

multipliers under an appropriate assumption such as the convexity of ℒ with respect to 𝛬𝛬. 

Each iteration is indexed by 𝑘𝑘, and the Lagrangian multiplier vector in the iteration step is 

denoted by 𝛬𝛬𝑘𝑘. In step 1, we initialize the Lagrangian multipliers and the corresponding 𝑥𝑥|𝛬𝛬 obtained 

from (4). If 𝛬𝛬 = 𝟎𝟎, the Lagrangian problem is identical to the unconstrained problem addressed in (1) 

without the budget constraint (2a). If the unconstrained solution, 𝑥𝑥0, satisfies the budget constraints, it 

is not necessary to proceed to the next steps because the optimal solution is 𝑥𝑥0. If it does not, we update 

the Lagrangian multipliers in step 4, by using the gradient approximation method. Consequently, 𝑥𝑥𝑘𝑘 is 

found based on the updated 𝛬𝛬𝑘𝑘 in step 5. If 𝐴𝐴𝑗𝑗�𝑆𝑆(0), 𝑥𝑥𝑘𝑘� ≤ 𝐵𝐵𝑗𝑗 ,∀𝑗𝑗 and the solution converges, then 𝑥𝑥𝑘𝑘 

defines the optimal policy, and we terminate the iterations. If the solution converges but ∃𝑗𝑗, 𝑠𝑠. 𝑡𝑡.𝛬𝛬𝑗𝑗 =

0, we terminate the algorithm because the problem is infeasible. Otherwise, we move to the next 

iteration. 

 

Algorithm: 

1. Set 𝑘𝑘 ← 0,𝛬𝛬0 ← 0 and find 𝑥𝑥0 ← 𝑥𝑥|𝛬𝛬0. 

2. If 𝑥𝑥0 satisfies the budget constraints, then stop.  

3. 𝑘𝑘 ← 𝑘𝑘 + 1,  

4. Update 𝛬𝛬𝑘𝑘 for all 𝑗𝑗 by gradient approximation. 

5. Find 𝑥𝑥𝑘𝑘  ← 𝑥𝑥|𝛬𝛬𝑘𝑘 . 

6. If a termination condition is satisfied, then stop; otherwise, go to step 3. 

 

3.2 Multiple budget expenditure period problem 
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If the problem is constrained by (2b) instead of (2a), the corresponding representations of the segment-

level problem and Lagrangian problem are (7) and (8) respectively. 

 
 𝑥𝑥|𝛬𝛬 = �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑥𝑥𝑛𝑛
𝑄𝑄𝑛𝑛(𝑆𝑆𝑛𝑛(0),𝑥𝑥𝑛𝑛) + ��𝛬𝛬𝑗𝑗,𝑤𝑤 ∙ 𝐴𝐴𝑛𝑛,𝑗𝑗,𝑤𝑤(𝑆𝑆(𝑇𝑇0 + ⋯𝑇𝑇𝑤𝑤−1), 𝑥𝑥𝑛𝑛)

𝐽𝐽

𝑗𝑗=1

𝑊𝑊

𝑤𝑤=1

,∀𝑛𝑛� (7) 

 
ℒ∗�𝑆𝑆(0)� = 𝑠𝑠𝑠𝑠𝑠𝑠

𝛬𝛬
𝑄𝑄�𝑆𝑆(0), 𝑥𝑥|𝛬𝛬� + ��𝛬𝛬𝑗𝑗,𝑤𝑤 ∙ �𝐴𝐴𝑗𝑗,𝑤𝑤�𝑆𝑆(𝑇𝑇0 + ⋯𝑇𝑇𝑤𝑤−1), 𝑥𝑥|𝛬𝛬� − 𝐵𝐵𝑗𝑗�

𝐽𝐽

𝑗𝑗=1

𝑊𝑊

𝑤𝑤=1

  (8) 

The solution for the finite horizon problem is: 

 ℒ𝑛𝑛𝑇𝑇(𝑆𝑆(𝑇𝑇)|𝛬𝛬) = 0  

 , and  

ℒ𝑛𝑛𝑡𝑡 (𝑆𝑆(𝑡𝑡)|𝛬𝛬) = min
𝑥𝑥𝑛𝑛(𝑡𝑡)|𝛬𝛬

𝐸𝐸 �
1

𝑇𝑇 − 𝑡𝑡 �
𝑞𝑞𝑛𝑛�𝑆𝑆𝑛𝑛(𝑡𝑡),𝑥𝑥𝑛𝑛(𝑡𝑡)� +

𝑇𝑇
𝑇𝑇𝑤𝑤

∙�𝛬𝛬𝑗𝑗,𝑤𝑤 ∙ 𝑎𝑎𝑛𝑛,𝑗𝑗(𝑆𝑆𝑛𝑛(𝑡𝑡),𝑥𝑥𝑛𝑛)
𝐽𝐽

𝑗𝑗=1

�

+
𝑇𝑇 − 𝑡𝑡 − 1
𝑇𝑇 − 𝑡𝑡

ℒ𝑛𝑛𝑡𝑡+1(𝑆𝑆𝑛𝑛(𝑡𝑡 + 1)|𝛬𝛬)� 

, 𝑖𝑖𝑖𝑖 (𝑇𝑇0 + ⋯𝑇𝑇𝑤𝑤−1) ≤ 𝑡𝑡 ≤ (𝑇𝑇0 + ⋯𝑇𝑇𝑤𝑤)− 1,∀𝑆𝑆𝑛𝑛(𝑡𝑡) ∈ 𝕊𝕊𝑛𝑛. 

(9) 

The solution for the infinite horizon problem, where 𝑇𝑇𝑤𝑤 < ∞ and 𝑊𝑊 → ∞, is the same as shown 

in Section 3.1.1 because it is in the steady state. 

For the Lagrangian problem, the numerical method presented in Section 3.1.2 can be used. 

 

4. Case Study 

A highway system consisting of 311 AC pavement segments, selected from Caltrans District 4 in 

California, is used to test our optimization model. For every segment, information regarding traffic 

volume, traffic loading, structural design and lane number is available. 

The deterioration process of the surface layer is stochastic. We use Paterson’s pavement 

roughness progression model, which accounts for the effects of age, average daily traffic loading and 

pavement design (Paterson, 1987). This prediction model has a mathematical closed form and provides 

the standard deviations of all model coefficients. Therefore, by combining the improvement models 
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(the effect of the maintenance and rehabilitation activities) with the deterioration model, we can obtain 

probabilistic prediction of the deterioration process.  

 The data set at our disposal does not specify the IRI and ages of the pavements. Thus, we 

randomly generate the current roughness levels and ages for the pavement segments to be uniformly 

distributed between 1.2 m/km and 2.0 m/km (i.e. 𝑠𝑠𝑛𝑛(0) ← 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(1.2, 2)) and 0 and 20 years, (i.e. 

ℎ𝑛𝑛(0) ← 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0, 20)) respectively. 

The cost and emission models might vary in the future due to rapid advances in vehicle 

technology. Further, future budget allocations remain unpredictable. For these reasons, we solve the 

finite planning horizon problem over a 40-year time period rather than the infinite planning horizon 

problem. The unit time period is 3 months, i.e. 𝑇𝑇 = 160, and the maximum allowable roughness is 6 

IRI. However, in this section, we use year as a unit of time instead of 3 months to present numbers for 

convenience, e.g. MT CO2e/year instead of MT CO2e/3-months. We assume flexibility of budget 

allocation between periods along the planning horizon, i.e. the problem is constrained by (2a). 

 In terms of budget scenarios, we consider two cases: 

 (a) all activities are funded from a single combined budget, 𝐽𝐽 = 1; and 

 (b) activities are funded from two separate budget sources, 𝐽𝐽 = 2. 

  In the first scenario, reconstruction, rehabilitation, and maintenance activities are funded from 

a combined single budget, whereas in the second, reconstruction projects are financed by a capital 

budget 𝑗𝑗 = 1, but maintenance and rehabilitation activities are financed by a maintenance budget 𝑗𝑗 =

2. Reconstruction and rehabilitation cannot be carried out together in the same period, and the timing 

of the treatments is assumed to be at the starting point of the period. Reconstruction and rehabilitation 

improve condition state instantly, but maintenance activities, such as bituminous surface treatments, 

non-structural overlay, crack sealing, slurry sealing, fog sealing, etc., are performed frequently and 

almost continuously over a period.  

In short, 𝕩𝕩𝑛𝑛, consists of six options: (a) do-nothing during the period; (b) rehabilitation only at 

the starting point of the period; (c) reconstruction only at the starting point of the period; (d) 
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maintenance only over the period,.; (e) rehabilitation at the starting point of the period and maintenance 

over the period; and (f) reconstruction at the starting point of the period and maintenance over the period.  

The emission and cost models for users and the interventions are presented in Appendix B. 

GHG emissions due to routine maintenance activities are insignificant (and assumed to be zero) 

compared to the emissions produced from the other activities. For instance, for crack sealing, one of 

the routine maintenance activities, the total amount of material is much lower than that of major 

rehabilitation and reconstruction activities (Smith and Romine, 2001). Moreover, because of its duration 

and number of closed lanes, the traffic disruptions can be considered negligible. 

 

4.1 Case study results 

 Figure 1 illustrates how the objective emissions changes with respect to the combined agency budget. 

The agency budget at the left end of the curve is the total agency cost necessary to maintain the network 

with minimal interventions while satisfying the worst-case constraints of maximum allowable 

roughness and maximum lifecycle length. If the available budget is lower than the lower bound, it is 

impossible to keep the network above the minimum standards. 

  The right-end point represents the agency budget necessary to minimize the total GHG 

emissions. At this point, 𝛬𝛬1 = 0. To the right of this point, the budget constraint is not binding, and the 

optimal objective value and policy are same as those at this point. The curve can be interpreted as a 

Pareto frontier obtained from the bi-objective optimization problem minimizing emissions and agency 

costs. The Pareto frontier shows that significant reductions in GHG emissions can be achieved with 

small increases in budget, if the current budget is small, and that there are decreasing marginal 

improvements in GHG emissions reduction. Figure 1 also shows that for this system of pavements, a 

total reduction in GHG emissions of 20% from 23,460 MT CO2e/year to 18,930 MT CO2e/year is 

possible if the total budget is increased by 35% from $ 3.71 M/year to $5.50 M/year. 
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Figure 1. Possible minimum annual GHG emissions from highway users and MR&R activities, 𝑄𝑄∗, as 

a function of combined annual agency budget, 𝐵𝐵1 (𝐽𝐽 = 1) 

 

 The optimal proportions of reconstruction, rehabilitation and maintenance projects in the 

combined agency budget are shown in Figure 2. As seen in this figure, as the budget increases, the 

importance of rehabilitation and maintenance activities increases to reduce total users’ emissions by 

keeping pavements in good condition. The proportion of capital costs allocated to reconstruction, 

relative to rehabilitation, decreases as the budget increases. This is because the combination of more 

intensive maintenance and rehabilitations makes reconstruction less necessary. 
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Figure 2. Optimal budget proportions of MR&R activities (%) under a combined annual budget, 𝐵𝐵1 

(𝐽𝐽 = 1)   

 

 Figure 3 represents optimal policy regimes in the case of separate budgets. The x-axis refers to 

the capital budget, 𝐵𝐵1, the y-axis stands for the maintenance budget, 𝐵𝐵2, and the optimal emissions for 

given budget situations, 𝑄𝑄|𝐵𝐵1,𝐵𝐵2
∗ , are represented by different gray shades according to their values. Point 

(a) is located at the optimum in the unconstrained problem, i.e. minimization of GHG emissions without 

budget constraints. If a budget situation is located in region A, it has the same optimal solution as that 

of point (a), and both constraints are not binding.  

 Point (b) represents the optimal maintenance budget when the capital budget is zero. The case 

study has a finite planning horizon, so it is possible to have no reconstruction in the planning horizon, 

which is why point (b) is located on the y-axis. If the capital budget is zero, the highest maintenance 

budget is necessary to satisfy the other constraints at optimality. In region B, the area above the line 

between (a) and (b), the capital budget is binding and the maintenance budget is not binding at 

optimality. The line between (a) and (b) is equivalent to the optimal solutions found for the GHG 

emissions minimization problem constrained only by the capital budget.  
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 Point (c) shows the optimal capital budget for a zero maintenance budget. In this situation, only 

reconstructions are performed on all of the segments during the planning horizon. Region C is defined 

as the right side of the line between points (a) and (c), and a situation in C has a binding maintenance 

budget constraint and a non-binding capital constraint. 

 Line 𝑎𝑎𝑎𝑎���� is identical to the optimal solution found for the combined budget problem, 𝐽𝐽 = 1. In 

other words, 𝛬𝛬1 is equal to 𝛬𝛬2 on 𝑎𝑎𝑎𝑎����. Point (a) corresponds to the right-end point in Figure 1, and point 

(d) matches the left-end point. As shown in Figure 2, rehabilitation and routine maintenance costs 

increase while reconstruction costs decrease as a combined budget increases (from point (d) to point 

(a)).  

Line 𝑒𝑒𝑒𝑒𝑒𝑒����� represents the boundary between the feasible region and the infeasible region. In the 

infeasible region F, there is no policy to satisfy the maximum allowable roughness constraint. The area 

between 𝑒𝑒𝑒𝑒𝑒𝑒����� and 𝑏𝑏𝑏𝑏𝑏𝑏����� can be divided into two regions, D and E, separated by 𝑎𝑎𝑎𝑎����. In both regions, both 

budget constraints are binding. In region D, 𝛬𝛬1 is bigger than 𝛬𝛬2, while 𝛬𝛬2 is bigger than 𝛬𝛬1 in region 

E.  

In regions D and E, the 3-dimensional solution plane �𝑄𝑄|𝐵𝐵1,𝐵𝐵2
∗ ,𝐵𝐵1,𝐵𝐵2� is interpreted as a Pareto 

frontier obtained from the multi-criteria problem considering: i) GHG emission; ii) capital costs; and 

iii) maintenance costs. The Pareto frontier is useful as it allows decision makers to focus on tradeoffs 

among the expected GHG emissions and multiple budgets only within range of optimal policies, 

contained entirely in regions D and E. 
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Figure 3. Possible minimum annual GHG emissions from highway users and MR&R activities, 𝑄𝑄∗, 

with two-dimensional budget situations: capital budget, 𝐵𝐵1, on the x-axis; and maintenance budget, 𝐵𝐵2, 

on the y-axis  

 

4.2 Sensitivity analysis results 

The magnitude of traffic delays is one of the largest sources of uncertainty in our analysis is because 

they depend on the network topology, which is not accounted for in our model, and driver behavior, 

which is difficult to predict. The sensitivity of the results with respect to traffic delays due to highway 

closures during rehabilitation and construction is examined. As for the other sources of uncertainty, 

Reger et al. (2015) showed that the solutions considering rehabilitation only are robust with respect to 

the pavement deterioration rate and percentage change in fuel consumption. The GHG emissions from 

a reconstruction project are mainly affected by roadway closure and materials. The sensitivity with 

respect to the former is examined here. We assume that the amount of materials and corresponding 

emissions are relatively deterministic compared to the other variables. 
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Figure 4 shows the effect of different traffic delays from reconstruction and rehabilitation 

activities, for two cases: a 20% reduction and a 20% increase from the original level under a combined 

budget ( 𝐽𝐽 = 1 ) reflecting situations where traffic delays are overestimated and underestimated 

respectively. There is almost no difference (about 2%) in the emission levels among scenarios if the 

budget is $ 3.8 M/year. This is because the possible number of rehabilitations and reconstructions 

throughout the planning horizon is limited due to the low budget, so the fluctuation of traffic delays 

during these interventions does not bring a significant effect on the total emissions. However, if the 

budget is sufficient to perform frequent rehabilitations and reconstructions, the impacts of the traffic 

delay variations on both the optimal emission and the optimal management policy increase. We can 

conclude that the optimal solution is robust to traffic delays changes under low budgets but more 

sensitive for high budgets. Therefore, as expected intuitively, it is more important to analyze the traffic 

impacts of interventions accurately when available budgets are high. 

 

Figure 4 Sensitivity Analysis of the possible minimum annual GHG emissions from highway users and 

MR&R activities, 𝑄𝑄∗, to traffic delays due to highway closures, 𝐵𝐵1= $ 3.71 M/year (𝐽𝐽 = 1) 
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5. Conclusion 

In this paper, we addressed the optimization problem of minimizing GHG emissions under single or 

multiple budget constraints. The bottom-up solution algorithm uses Lagrangian Relaxation and 

Dynamic Programming.  

A case study is presented using a system of pavement segments in California. The results 

indicate the possibility of reduction in GHG emissions by 20% through increasing the total budget by 

35% on the Pareto frontier. For the case of different budget sources for maintenance and reconstruction, 

we obtain a Pareto frontier that provides the minimum emissions achievable subject to different budget 

constraints.  

The sensitivity analysis results show that the solution is robust with respect to the uncertainty 

in forecasting traffic delays when agency budgets are low. As the available budget increases, the optimal 

results become more sensitive to uncertainty.  

The main limitation of our work is that we do not account for functional or economic 

interdependence among pavement segments in networks. For example, because consecutive segments 

comprise a network link, a partial or complete closure of a segment yields a capacity drop through the 

link. Therefore, cost savings can be achieved by clustering rehabilitation or construction activities on 

segments in the same year, even if the optimal timings of these activities are different across segments. 

Likewise, reconstruction of a segment on a link may lead to traffic diversion to an alternate route, thus 

increasing GHG emissions on it. Accounting for network interdependencies such as these adds 

significant complexities that are beyond the scope of this paper.  It may be possible to account for these 

interdependencies by using tools such as Approximate Dynamic Programming, which have been used 

to address them (Medury and Madanat, 2013). 
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Appendix A Steady State Solution Algorithm 

The steady state solution methodology is presented in this Appendix. Since 𝑇𝑇 = ∞, the problem (4) is 

a general average problem, where the optimal average values are independent of the initial state (Lee 

et al. 2016). Therefore, the initial state 𝑆𝑆(0) is omitted from the representation of the function and the 

inner problem is expressed as (A.1), where 𝐻𝐻𝑛𝑛|Λ
∗  is the optimal value of 𝑄𝑄𝑛𝑛(𝑥𝑥𝑛𝑛) +∑ 𝛬𝛬𝑗𝑗 ∙ 𝐴𝐴𝑛𝑛,𝑗𝑗(𝑥𝑥𝑛𝑛)𝑄𝑄

𝑗𝑗=1 . 

 
𝐻𝐻𝑛𝑛|Λ
∗  = min

𝑥𝑥𝑛𝑛
𝑄𝑄𝑛𝑛(𝑥𝑥𝑛𝑛) + �𝛬𝛬𝑗𝑗 ∙ 𝐴𝐴𝑛𝑛,𝑗𝑗(𝑥𝑥𝑛𝑛)

𝐽𝐽

𝑗𝑗=1

,∀ (A.1) 

 The problem (A.1) has a same optimal policy, 𝑥𝑥𝑛𝑛∗ , as a shortest path problem with the stage 

value presented in (A.2) (Bertsekas, 1998). This stage value is the difference between the original stage 

value, which is the expected term expressed in (A.2), and its average value along the infinite time 

horizon, 𝐻𝐻𝑛𝑛|Λ
∗  . 

 
𝐸𝐸 �𝑞𝑞𝑛𝑛�𝑆𝑆𝑛𝑛,𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛)� +�𝛬𝛬𝑗𝑗 ∙ 𝑎𝑎𝑛𝑛,𝑗𝑗�𝑆𝑆𝑛𝑛,𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛)�

𝐽𝐽

𝑗𝑗=1

� − 𝐻𝐻𝑛𝑛|Λ
∗   (A.2) 

 The optimal objective value of the shortest path problem is denoted by ℎ𝑛𝑛∗ (𝑆𝑆𝑛𝑛|Λ), and its 

Bellman Equations is: 

 
 ℎ𝑛𝑛∗ (𝑆𝑆𝑛𝑛|Λ) = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛)∈𝕩𝕩𝑛𝑛
𝐸𝐸 �𝑞𝑞𝑛𝑛�𝑆𝑆𝑛𝑛, 𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛)� + �𝛬𝛬𝑗𝑗 ∙ 𝑎𝑎𝑛𝑛,𝑗𝑗�𝑆𝑆𝑛𝑛,𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛)�

𝐽𝐽

𝑗𝑗=1

+ 𝐸𝐸[ℎ𝑛𝑛∗ (𝑆𝑆𝑛𝑛′ |Λ)]�  

−𝐻𝐻𝑛𝑛|Λ
∗ ,∀𝑆𝑆𝑛𝑛 ∈ 𝕊𝕊𝑛𝑛, 

(A.3) 

, where  

𝑆𝑆𝑛𝑛′ : pavement state at the end of the period associated with the transition probability, 𝑓𝑓�𝑆𝑆𝑛𝑛′ |𝑆𝑆𝑛𝑛,𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛)�.  

 The above Bellman equation is solved by either of two iteration methods, commonly known as 

the value iteration and the policy iteration. In this paper, we briefly present the relative value iteration 

algorithm, which is equivalent to the value iteration method, and the policy iteration algorithm. In the 

algorithms, 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 refers to the best state, typically achievable by reconstruction; it is known to be a 

recurrent state as shown in Lee et al. (2016). A mathematical proof of this result can be found in 

Bertekas (1998).  
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Algorithm A1. Relative Value Iteration: 

1. Set iteration index 𝑘𝑘 ← 0, and initialize ℎ𝑛𝑛0(𝑆𝑆𝑛𝑛|Λ) for all 𝑆𝑆𝑛𝑛 ∈ 𝕊𝕊𝑛𝑛. 

2. 𝑘𝑘 ← 𝑘𝑘 + 1 

3. Update ℎ𝑛𝑛𝑘𝑘(𝑆𝑆𝑛𝑛Λ) for all 𝑆𝑆𝑛𝑛 ∈ 𝕊𝕊𝑛𝑛 by (A.4). 

4. If ℎ𝑛𝑛𝑘𝑘(𝑆𝑆𝑛𝑛Λ) = ℎ𝑛𝑛𝑘𝑘−1(𝑆𝑆𝑛𝑛Λ), the algorithm terminates; otherwise, go to step 1. 

ℎ𝑛𝑛𝑘𝑘(𝑆𝑆𝑛𝑛|Λ) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛)∈𝕩𝕩𝑛𝑛

�𝐸𝐸 �𝑞𝑞𝑛𝑛�𝑆𝑆𝑛𝑛,𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛)�+ �𝛬𝛬𝑗𝑗 ∙ 𝑎𝑎𝑛𝑛,𝑗𝑗�𝑆𝑆𝑛𝑛,𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛)�
𝐽𝐽

𝑗𝑗=1

+ ℎ𝑛𝑛𝑘𝑘−1(𝑆𝑆𝑛𝑛′ |Λ)�� 

− 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛)∈𝕩𝕩𝑛𝑛

�𝐸𝐸 �𝑞𝑞𝑛𝑛�𝑆𝑆𝑛𝑛,𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛)�+ �𝛬𝛬𝑗𝑗 ∙ 𝑎𝑎𝑛𝑛,𝑗𝑗�𝑆𝑆𝑛𝑛,𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛)�
𝐽𝐽

𝑗𝑗=1

+ ℎ𝑛𝑛𝑘𝑘−1(𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛′ |Λ)�� 

(A.4) 

 

Algorithm A2. Policy Iteration: 

1. Set iteration index 𝑘𝑘 ← 0, and initialize 𝑥𝑥𝑛𝑛0(𝑆𝑆𝑛𝑛) and ℎ𝑛𝑛0(𝑆𝑆𝑛𝑛|Λ) for all 𝑆𝑆𝑛𝑛 ∈ 𝕊𝕊𝑛𝑛. 

2. 𝑘𝑘 ← 𝑘𝑘 + 1. 

3. Calculate 𝐻𝐻𝑛𝑛|Λ
𝑘𝑘  and  ℎ𝑛𝑛𝑘𝑘(𝑆𝑆𝑛𝑛|Λ) by (A.5). 

4. Update 𝑥𝑥𝑛𝑛𝑘𝑘(𝑆𝑆𝑛𝑛) for all 𝑆𝑆𝑛𝑛 ∈ 𝕊𝕊𝑛𝑛 by (A.6). 

5. If 𝐻𝐻𝑛𝑛|Λ
𝑘𝑘 = 𝐻𝐻𝑛𝑛|Λ

𝑘𝑘−1 and ℎ𝑛𝑛𝑘𝑘(𝑆𝑆𝑛𝑛|Λ) = ℎ𝑛𝑛𝑘𝑘−1(𝑆𝑆𝑛𝑛|Λ), the algorithm terminates; otherwise, go to step 

1. 

ℎ𝑛𝑛𝑘𝑘(𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛|Λ) = 0  

, and  

 ℎ𝑛𝑛𝑘𝑘(𝑆𝑆𝑛𝑛|Λ) + 𝐻𝐻𝑛𝑛|Λ
𝑘𝑘 = 𝐸𝐸 �𝑞𝑞𝑛𝑛 �𝑆𝑆𝑛𝑛,𝑥𝑥𝑛𝑛𝑘𝑘−1(𝑆𝑆𝑛𝑛)�+ �𝛬𝛬𝑗𝑗 ∙ 𝑎𝑎𝑛𝑛,𝑗𝑗 �𝑆𝑆𝑛𝑛,𝑥𝑥𝑛𝑛𝑘𝑘−1(𝑆𝑆𝑛𝑛)�

𝐽𝐽

𝑗𝑗=1

+ ℎ𝑛𝑛𝑘𝑘(𝑆𝑆𝑛𝑛′ |Λ)� (A.5) 

𝑥𝑥𝑛𝑛𝑘𝑘(𝑆𝑆𝑛𝑛) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛)∈𝕩𝕩𝑛𝑛

𝐸𝐸 �𝑞𝑞𝑛𝑛�𝑆𝑆𝑛𝑛,𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛)�+ �𝛬𝛬𝑗𝑗 ∙ 𝑎𝑎𝑛𝑛,𝑗𝑗�𝑆𝑆𝑛𝑛, 𝑥𝑥𝑛𝑛(𝑆𝑆𝑛𝑛)�
𝐽𝐽

𝑗𝑗=1

+ ℎ𝑛𝑛𝑘𝑘(𝑆𝑆𝑛𝑛′ |Λ)� ,∀𝑆𝑆𝑛𝑛 (A.6) 
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Appendix B Emission, Cost and Performance Models 

Pavement deterioration and improvement models are presented in (B.1), where 𝜏𝜏 is a unit period length 

and 𝑙𝑙𝑛𝑛  refers to the annual average traffic loading. The AC pavement structures have three layers 

including hot mix asphalt (HMA),𝑖𝑖 = 1, aggregate sub-base, 𝑖𝑖 = 2, and aggregate base,𝑖𝑖 = 3, and their 

thickness are denoted by 𝜌𝜌𝑖𝑖. The coefficients are: 𝛽𝛽𝑖𝑖=0.0173/mm; =0.00551/mm; and =0.00433/mm 

(AASHTO, 1933). The random parameters are: 𝛼𝛼~𝑇𝑇𝑇𝑇(725, 94400, 0,∞) ; 𝑏𝑏~𝑇𝑇𝑇𝑇(0.08, 7.3 ×

 107, 0,∞)∗; 𝑞𝑞~𝑇𝑇𝑇𝑇(−4.99, 0.064,−∞, 0). Here, TN stands for the truncated normal distribution. 

𝑆𝑆𝑛𝑛(𝑡𝑡 + 𝑢𝑢) = {𝑠𝑠𝑛𝑛(𝑡𝑡 + 𝑢𝑢),ℎ𝑛𝑛(𝑡𝑡 + 𝑢𝑢)} 

= �𝑠𝑠𝑛𝑛(𝑡𝑡)𝑒𝑒𝑏𝑏𝑏𝑏 + 𝛼𝛼 ∙ 𝑢𝑢 ∙ � � �𝛽𝛽𝑖𝑖 ∙ 𝜌𝜌𝑖𝑖�
𝑖𝑖=1,2,3

+ 1�
𝑞𝑞

∙ 𝑙𝑙𝑛𝑛 ∙ 𝑒𝑒𝑏𝑏(ℎ𝑛𝑛(𝑡𝑡)+𝑢𝑢),ℎ𝑛𝑛(𝑡𝑡) + 𝑢𝑢� ,∀𝑢𝑢 ∈ (0, 𝜏𝜏] 
(B.1) 

The user emission model due to lower fuel efficiency from higher roughness on segment 𝑛𝑛 is 

represented in (B.2), where 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑛𝑛 is the annual average traffic volume and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑛𝑛 is the annual 

average truck traffic volume. The coefficients are 𝑒𝑒1 = 0.0028917 kg-CO2e/IRI-km-car and 

𝑒𝑒2 =0.0075516 kg-CO2e/IRI-km-truck (Horvath, 2004). 

�(𝑒𝑒1 ∙ (𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑛𝑛 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑛𝑛) + 𝑒𝑒2 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑛𝑛) ∙ 𝑠𝑠𝑛𝑛(𝑡𝑡 + 𝑢𝑢)
𝜏𝜏

0

𝑑𝑑𝑑𝑑 (B.2) 

The costs and performance models of routine maintenance are expressed in (B.3) and (B.4) 

respectively, where 𝐷𝐷𝑛𝑛 is the lane number of segment n. The cost parameters are: 𝑐𝑐1 = 88$/lane-km-

year; 𝑐𝑐2 = 120; and 𝑐𝑐3 = 440$/lane-km-year (Gu et al. 2012). 

𝜏𝜏 ∙ 𝐷𝐷𝑛𝑛 ∙ �𝑐𝑐1𝑒𝑒𝑐𝑐2Δ𝑏𝑏 + 𝑐𝑐3� (B.3) 

𝑆𝑆𝑛𝑛(𝑡𝑡 + 𝑢𝑢) = 

�𝑠𝑠𝑛𝑛(𝑡𝑡)𝑒𝑒(𝑏𝑏−Δ𝑏𝑏)𝑢𝑢 + 𝑎𝑎 ∙ 𝑢𝑢 ∙ � � �𝛽𝛽𝑖𝑖 ∙ 𝜌𝜌𝑖𝑖�
𝑖𝑖=1,2,3

+ 1�
𝑞𝑞

∙ 𝑙𝑙𝑛𝑛 ∙ 𝑒𝑒(𝑏𝑏−Δ𝑏𝑏)(ℎ𝑛𝑛(𝑡𝑡)+𝑢𝑢),ℎ𝑛𝑛(𝑡𝑡) + 𝑢𝑢� ,∀𝑢𝑢

∈ (0, 𝜏𝜏] 

(B.4) 

The costs, performance and emission models of rehabilitation are expressed in (B.5), (B.6) and 

(B.7) respectively (Lee and Madanat 2015a), where 𝑠𝑠0  refers to the best achievable roughness by 

rehabilitation, and 𝑡𝑡+ stands for the time point following the time point 𝑡𝑡 when the rehabilitation is 
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performed. The coefficients are: 𝜇𝜇1 = 0.66; 𝜇𝜇2 = 7.15 mm/IRI; 𝜇𝜇3 = 18.3 mm (Ouyang and Madanat 

2004); 𝑚𝑚1 = 413  $/lane-km-mm; 𝑚𝑚2 = 33,012  $/lane-km; and 𝑒𝑒3 =  225 kg-CO2e/lane-km-mm 

(Horvath, 2004). 

𝐷𝐷𝑛𝑛 ∙
𝜇𝜇2 + 𝜇𝜇3

𝑠𝑠𝑛𝑛(𝑡𝑡)
𝜇𝜇1

∙ max[0, min[𝑠𝑠𝑛𝑛(𝑡𝑡) − 𝑠𝑠0,𝜇𝜇1 ∙ 𝑠𝑠𝑛𝑛(𝑡𝑡)]] ∙ 𝑚𝑚1 + 𝐷𝐷𝑛𝑛 ∙ 𝑚𝑚2 (B.5) 

𝑆𝑆𝑛𝑛(𝑡𝑡+) = {𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠0, (1 − 𝜇𝜇1) ∙ 𝑠𝑠𝑛𝑛)) ,ℎ𝑛𝑛} (B.6) 

𝐷𝐷𝑛𝑛 ∙ max[0, min[𝑠𝑠𝑛𝑛(𝑡𝑡) − 𝑠𝑠0,𝜇𝜇1 ∙ 𝑠𝑠𝑛𝑛(𝑡𝑡)]] ∙ 𝑒𝑒3 (B.7) 

The reconstruction cost, performance and emission models are shown in (B.8), (B.9) and (B.10) 

respectively. The coefficients are: 𝑚𝑚3
1 =125.2 $/lane-km-mm, 𝑚𝑚3

2 =39.8 $/lane-km-in, and 𝑚𝑚3
3 =31.3 

$/lane-km-in. 𝑚𝑚4 = 57,380  $/lane-km, 𝑒𝑒41 =539.3 kg-CO2e/lane-km-mm and 𝑒𝑒42 = 𝑒𝑒43 =136.8 kg-

CO2e/lane-km-mm (Horvath, 2004). The user emissions resulting from the traffic disruption are 

approximately 20% of the total emissions from the construction, so scaling factor 𝛶𝛶𝑛𝑛 is multiplied. 

� �𝐷𝐷𝑛𝑛 ∙ 𝜌𝜌𝑖𝑖 ∙ 𝑚𝑚3
𝑖𝑖 �

𝑖𝑖=1,2,3

+ 𝐷𝐷𝑛𝑛 ∙ 𝑚𝑚4 (B.8) 

𝑆𝑆𝑛𝑛(𝑡𝑡+) = {𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛, 0} (B.9) 

𝛶𝛶𝑛𝑛 ∙ � 𝐷𝐷𝑛𝑛 ∙ 𝜌𝜌𝑖𝑖 ∙ 𝑒𝑒4𝑖𝑖
𝑖𝑖=1,2,3

 (B.10) 
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