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Abstract

Object boundary detection and segmentation is a central
problem in computer vision. The importance of combining
low-level, mid-level, and high-level cues has been realized
in recent literature. However, it is unclear how to efficiently
and effectively engage and fuse different levels of informa-
tion. In this paper, we emphasize a learning based approach
to explore different levels of information, both implicitly and
explicitly. First, we learn low-level cues for object bound-
aries and interior regions using a probabilistic boosting tree
(PBT) [17, 6]. Second, we learn short and long range con-
text information based on the results from the first stage.
Both stages implicitly contain object-specific information
such as texture and local geometry, and it is shown that
this implicit knowledge is extremely powerful. Third, we
use high-level shape information explicitly to further refine
the object segmentation and to parse the object into com-
ponents. The algorithm is trained and tested on a challeng-
ing dataset of horses [2], and the results obtained are very
encouraging compared with other approaches. In detailed
experiments we show significantly better performance (e.g.
F-values of 0.75 compared to 0.66) than the best compa-
rable reported performance on this dataset [14]. Further-
more, the system only needs 1.5 minutes for a typical im-
age. Although our system is illustrated on horse images, the
approach can be directly applied to detecting/segmenting
other types of objects.

1. Introduction
Object boundary detection and segmentation is a key

problem in computer vision. It has been well accepted that
low-level cues such as classical edge detectors are insuffi-
cient to perform this task. For example, Fig. 1 shows the re-
sults of the Canny edge detector [3] when applied to horse
images [2]. It is a nontrivial problem to detect the horse
boundary from the edge map. Marr conceived an outline of
a solution for this problem [13] by combining low-, mid-,
and high-level cues. Despite promising work in this direc-
tion [4, 21, 5, 15], no complete solution has been established
so far.

Figure 1. Illustration of three training images. The first row shows three typical
images, and each contains a horse in the center, where R is the boundary we want to
detect and IR denotes the foreground region. The second row displays edges detected
by Canny edge detector at scale σ = 1.0.

Recently, the problem of combining low-,mid-, and high-
level information for this task has become more tractable
due to progress in machine learning and statistics. Boren-
stein et al. [2] combined top-down information (configura-
tion on learned image patches) and bottom-up approaches
(segmentation based on intensity) for figure-ground seg-
mentation. In the image parsing framework [18], data-
driven techniques (bottom-up) were used to guide genera-
tive (top-down) inference. Fergus et al. [8] built a top-down
model based on features extracted by interest point oper-
ators. Conditional Markov random fields models [10, 16]
have been used to enforce local consistency between neigh-
boring structures. Combining both top-down and bottom-
up learning in a loop is emphasized in [20]. OBJCUT [12]
also combined different levels of information and performs
segmentation by graph cuts.

These approaches have shown the promise of combin-
ing low-level and high-level information. However, when,
where and how to combine different channels of informa-
tion is yet unclear. For example, the image parsing algo-
rithm [18] assumes that generative models are available for
modelling the appearance of objects, but no existing gen-
erative models are able to capture the complex appearance
patterns of the horses in Fig. 1. The patches used in [2]
cannot deal with large scale changes and they also have dif-
ficulties in capturing the complex variations in appearance.
Some approaches like [8, 10, 16] rely on representing fea-
tures and are unable to locate object boundaries. Other ap-
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proaches, while effective, lead to complex models which re-
quire solving time consuming inference problems [20, 12].

In this paper, we use learning based methods to combine
different levels of information both implicitly and explicitly.
This results in simple models which require only simple in-
ference and can be computed in about one minute. We rely
on the probabilistic boosting tree (PBT) [17, 6] algorithm
to learn models for low-level and mid-level cues while im-
plicitly taking high-level context into account, then we use
shape matching [19] to supply explicit high-level informa-
tion and to parse the horses into head, back, legs, and other
parts. Stacking [23] builds classifiers on top of other classi-
fiers and, thus, is slightly related to our approach. However,
stacking is a general term rather than a specific algorithm.

We compare our system with other approaches which
have tackled this problem. The most directly compara-
ble approach is the work of Ren et al. [14] which gives
detailed performance evaluations for combining low-,mid-
, and high- level information. Our results show significant
improvements at all levels. It is less easy to make direct
comparison with other works [2, 12, 20] because some of
them were not evaluated on large testing datasets, and the
details of performance evaluation were not given for others.
Also some approaches [12, 20] used color images, which
are less challenging than gray-scale images we are using.
Our approach is a very simple and clear one, and it only
needs about 1.5 minutes on an ordinary PC for a typical im-
age, while speed is not reported in other works.

2. Problem Formulation
In this section, we give the formulation of our approach.

Given a gray-scale image, we assume there is an object of
interest in the foreground and our task is to automatically
detect the boundary of that object, and thus, perform fore-
ground and background segmentation. In addition, we want
to parse the object and identify its parts (e.g. head, leg,
back, etc.).

2.1. The ideal Bayesian formulation
For an input image I, the task of foreground/background

segmentation is to infer which pixels belong to the back-
ground and which belong to the foreground. A solution W
can be denoted as

W = {(Rk, θk), k ∈ {0, 1}}

where R1 is the region for the foreground and θ1 denotes
its corresponding model parameter; R0 denotes the back-
ground region. A region consists of a set of connected pix-
els. Equivalently, a region can be denoted by its boundaries
since one can always be derived from the other. We have
R0

⋃
R1 = Λ and R0 ∩ R1 = ∅, where Λ defines the 2D

lattice of the input I, which is the set of all the pixels. The
optimal solution W ∗ can be inferred in the Bayesian frame-

work as

W ∗ = argmaxW p(W |I)
= argmaxW p(I(R0)|R0, θ0)p(I(R1)|R1, θ1)p(R1)

where p(I(R0)|R0, θ0) and p(I(R1)|R1, θ1) define the ap-
pearance models for the background and foreground, re-
spectively; p(R1) denotes a shape prior for the foreground.
This formulation assumes independence between the fore-
ground and background, and it requires the full knowledge
about the complex appearance models p(I(R1)), p(I(R0))
of the foreground and background. However, learning these
models is a very challenging task; for example, no existing
generative models are able to deal with the appearance and
shape variations of the foreground and background in Fig. 1.
We therefore choose an alternative perspective which at-
tempts to directly approximate the posterior probability dis-
tribution p(W |I).
2.2. An Alternative Perspective

We can express the log posterior distribution
− log p(W |I) as an energy function E(C; I), where
C denotes the boundary of the foreground.

We define the energy function by

E(C; I) = Edis(C; I) + Eshape(C) (1)

where Edis(C; I) models the appearance cues, and
Eshape(C) defines a shape prior. Our low- and mid-level
models correspond to learning increasingly complex mod-
els for Edis(C; I) and the high-level model corresponds to
Eshape(C).

We define Edis(C; I) by generalizing a pseudo-
likelihood function:

Edis(C; I) = −
∑

s∈Λ/C

log p(I(s), y(s) = 0|I(N(s)/s))

−
∑

s∈C

log p(I(s), y(s) = 1|I(N(s)/s))(2)

where I(·) is the intensity value(s) at the given pix-
els(s); N(s) is a neighborhood on pixel s, N(s)/s
includes all the pixels in the neighborhood except s;
p(I(s), y(s)|I(N(s)/s)) is a conditional joint probability.
y(s) = 1 indicates that pixel s is on the object boundary.

We can re-express the likelihood function as follows:

Edis(C; I) = −
∑

s∈Λ

log p(I(s), y(s) = 0|I(N(s)/s))

−
∑

s∈C

log
p(y(s) = 1|I(N(s)))
p(y(s) = 0|I(N(s)))

(3)

which can be done by adding

−
∑

s∈C

log p(I(s), y(s) = 0|I(N(s)/s))



into the first term in the right side of Eqn. 2 and subtracting
it from the second term in the right side of Eqn. 2. The
first term in Eqn. 3 does not depend on C and hence can be
ignored. We write:

Edis(C; I) = −
∑

s∈C

log
p(y(s) = 1|I(N(s)))
p(y(s) = 0|I(N(s)))

, (4)

where p(y(s) = 1|I(N(s))) is the posterior probability of a
pixel s belonging to the object boundary given a neighbor-
hood centered at s.

The next section discusses how we learn Edis(C; I) to
model low- and mid-level cues. Ideally, we would also learn
the shape prior Eshape but this is beyond the scope of this
paper. Instead we build on previous work [19] and use a
simple mixture model to define a shape prior by

p(C) =
1

|DB|
∑

Ci∈DB

p(Ci), (5)

where DB includes all the shape templates manually la-
beled for the 100 training images, and p(Ci) allows global
affine and local non-rigid transformations for a template Ci.

3. Learning Edis(C; I)
A key step in our approach is how to learn and compute

p(y(s)|I(N(s))) in Eqn. 4. As we can see in Eqn. 4, the
decision on whether a pixel s is on the object boundary is
decided by a neighborhood of s. There are two extreme
situations: (1) the neighborhood is so small that it only con-
tains pixel s. In this case, Edis(C; I) is purely computed
by a classifier on a single pixel intensity. Although it is
very easy to learn and compute such a classifier, the results
are poor because a single pixel intensity is rarely enough to
classify a pixel. (2) The neighborhood is as big as the en-
tire image. In this case, the information contained is very
sufficient, but learning an accurate Edis(C; I) is extremely
difficult.

In this paper, we define cues to be low- and middle-level
based on the size of the neighborhood N(s) and the types
of features used to learn the distribution p(y(s)|I(N(s))).
Low-level cues depend on small sized regions while mid-
level cues are allowed to have a larger context.

3.1. Low-level Approaches
Classic edge detectors [3, 11] use only gradient in-

formation which corresponds to selecting a very small
neighborhood N(s) and a restricted class of distributions
p(y(s)|I(N(s))). The relative ineffectiveness of Canny
edge detectors for this task, see Fig. 1, suggests that these
neighborhoods are too small, though better results might
be obtained by using slightly bigger neighborhoods and ex-
plicit learning [9].

(a) Illustration of BEL.

(b) A boundary map by BEL. (c) Classified foreground.

Figure 2. (a) Illustration of the BEL edge detector; (b) shows a result by the BEL
detector; (c) displays a result by a similar classifier learned on the foreground regions.

3.2. Boosted Edge Learning [6]
To model low-level cues, we use a 31×31 neighborhood

and learn a classifier p(y(s)|I(N ′(s))). We need a classifier
which is easy to learn and fast to compute, therefore we
adopt the recently proposed edge detector, Boosted Edge
Learning (BEL) [6], which is built on top of a probabilistic
boosting tree classifier [17]. Learning and computing an ap-
proximation to p(y(s)|I(N ′(s))) is briefly described below
and we refer to [6] for more details.

For training:

1. Collect a set of training images in which the object bound-
aries are manually labelled;

2. Sample a number of positive (image patches with a boundary
pixel in the center) and negative (image patches with a non-
boundary pixel in the center) examples as training set;

3. Train a boosting classifier [7] based on around 50,000 fea-
tures computed in each image patch, including Canny edge
results at different scales, Haar filter responses, gradients,
and curvatures;

4. Divide the training set (or bootstrap more samples from the
training images) into left and right branches and recursively
train sub-trees;

5. Go back to step 3 until a certain stopping criterion is met.

For testing:

1. Scan through the input image pixel by pixel;

2. Compute the discriminative model p(y(s)|I(N ′(s))) based
on the features selected by the overall classifier from a 31 ×
31 image patch;

3. Output the edge probability map.



In the testing procedure, the overall discriminative prob-
ability is approximated by:

p(y|I(N ′(s))) ≈
∑

l1

q̂(y|l1, I(N ′(s)))q(l1|I(N ′(s)))

≈
∑

l1,l2

q̂(y|l2, l1, I(N ′(s)))q(l2|l1, I(N ′(s)))q(l1|I(N ′(s)))

≈
∑

l1,··· ,ln
q̂(y|ln, · · · , l1) · · · q(l2|l1, I(N ′(s)))q(l1|I(N ′(s)))

where li’s are the tree layers in PBT [17], and
q(l2|l1, I(N(s))) etc. compute the discriminative model by
each AdaBoost node in the PBT.

Fig. 2(a) shows an illustration of the BEL detector. Even
better results might be obtained using a larger neighbor-
hood, say 61 × 61, but we lack sufficient data for neigh-
borhoods of this size and, more importantly, it is not clear
what features should be used to learn the probability distri-
butions. Instead, we proceed to a compositional approach
where we learn distributions for 31×31 neighborhoods and
then combine them to get probability distributions on larger
neighborhoods.

To assist this compositional approach, we apply the same
method to learn the “body map” of the foreground object.
The only difference is that a PBT classifier on the pixels on
and off the objects, p(y(s)|I(N ′(s))) looks at the “differ-
ence” between the object boundary and non-boundary pix-
els, while p(z(s)|I(N ′(s))) classifies the object body itself
to account for the texture and lighting patterns implicitly,
where z(s) = 1 denotes that pixel s is on the object body.
Fig. 2(b) and Fig. 2(c) show examples of probability map
on object boundary and body, respectively. As we can see,
the result is better than that shown in Fig. 1.

We now proceed to build mid-level classifiers by using
PBT to combine features including the PBT boundary map
and PBT body map. This combination adds context infor-
mation by increasing the neighborhood size. Intuitively, the
body map in the expanded neighborhood of the edge can
support the local evidence for the edge given by the PBT
boundary map. For example, the body map should be large
on one side of the boundary and small on the other side.
This is described in the next section.

3.3. Combing More Context Information
As mentioned above, boundary map p(y(s)|I(N ′(s)))

and body map p(z(s)|I(N ′(s))) partially capture infor-
mation for p(y(s)|I(N(s))). We want to collectively
learn/compute a model for p(y(s)|I(N(s))) based on
p(y(s)|I(N ′(s))) and p(z(s)|I(N ′(s))). Although it is pos-
sible to combine this information using methods like condi-
tional random fields [10], this leads to time-consuming in-
ference computations requiring either Gibbs sampling [10]
or belief propagation [20]. Instead, we learn another clas-
sifier to combine this information, which greatly reduces

(a) Short-range context information

(b) Long-range context information

Figure 3. Illustration of the second stage classifier accounting for more middle
level context information.

the time for inference. We design two schemes to compute
p(y(s)|I(N(s))).

Short-range Context Information

(a) Short Range Context. (b) Long Range Context.

Figure 4. Results by the second stage classifiers on an example.

A straightforward approach is to learn another classifier
directly on top of the boundary map and the body map. We
call this “short-range” context information. To reduce the
number of pixels to be checked, we explicitly use the result
by Canny edge detector at a small scale σ = 1.0 and only
those pixels on the Canny edge map will be considered. We
still use a neighborhood of size 31 × 31 centered at pixel
s. Note this neighborhood essentially covers the original
image patch of 61 × 61 as each pixel in the boundary map



itself is decided by its 31 × 31 neighborhood. Fig. 3(a)
shows an illustration. We train a PBT classifier on 5, 000
features using the three channels. The training/testing strat-
egy is nearly identical to that stated in learning/computing
p(y(s)|I(N ′(s))). Fig. 4(a) illustrates the result by this ap-
proach on an example. Our results on the testing images
show a big improvement over that by BEL in the first layer.

Long-range Context Information
The above classifier accounts for somewhat “short-

range” context information. We also design another strat-
egy to account for “long-range” context information, which
more explicitly carries middle level information. The ba-
sic idea can be briefly described as the following. For any
point on the boundary of an object, the point on “the other
side” of the object shows some affinity with this point. For
a boundary point, we shoot a ray along its normal direction
until it hits another boundary point. Often: (1) the inten-
sity patterns between the two points observe some regular-
ity; (2) the local geometric properties on the two points also
show some consistency (e.g., they are more or less parallel
to each other). Previous approaches often use Gestalt law
to account for this type of information by some specifically
defined rules. Not only do they need to involve heavy man-
ual design, but an optimal way to combine them is usually
not available. Here, we adopt the PBT classifier and use
a candidate pool of around 20, 000 features, which include
difference between the texture patterns, geometric proper-
ties of the two end points, as well as texture property of
the images between the two points. Fig. 3(b) shows an il-
lustration. The training process is similar to that in BEL
while now we are looking at an elongated bar. In the testing
stage, for any boundary point on the Canny edge map, we
shoot a ray along its normal direction. For any edge point
on the ray, we apply the learned classifier to compute how
likely this pair is on the foreground object. Our results also
demonstrate an improvement over that by BEL. Fig. 4(b)
illustrates the result by this approach on an example.

4. Performing shape matching
Once p(y(s)|I(N(s))) has been learned, we then need to

infer a solution C from Eqn. 1 taking into account the shape
prior Eshape(C). This task can be directly performed by
shape matching. We adopt a scheme reported in [19] which
can be viewed as a probabilistic version of shape context
approach [1].

(a) Target shape (b) Transformation (c) Source shape

Figure 5. Illustration of a shape matching case in which a source shape Ci is
matched with a target shape C through a transformation function F .

We formulate the Eshape term by

Eshape(C) = Ematching(C, F (Ci)) + Eprior(F ) (6)

where Ci denotes one of the templates in the training set,
and F accounts for the global affine transformation and lo-
cal non-rigid deformation on Ci. Intuitively, we want to find
the template which best matches with C while not undergo-
ing large deformation. More details can be found in [19, 1]
and Fig. 5 illustrates the basic idea.

5. Outline of the Algorithm
Equipped with all the methods in our approach, we are

now ready to give an outline of the algorithm.
Training

1. Collect a set of training images in which the object bound-
aries are manually annotated. We also obtain the correspond-
ing label maps and shape templates.

2. Train a classifier on the object boundaries.

3. Train a classifier on the object label maps.

4. Train another classifier on top of the results by the above
classifiers (either the short-range or the long-range method
described before).

Testing

1. Run the boundary classifier to obtain an object boundary
map.

2. Run the body map classifier to obtain an object body map.

3. Run the context information classifier to obtain a refined
boundary map (short-range context classifier gives a better
result).

4. Sample a set of points based on the probability map com-
puted in step 3.

5. Use the shape matching algorithm to obtain the best match
and output the result.

Fig. 6 illustrates our approach as realizing different lev-
els of information, from low to high. The Canny edge de-
tector accounts for only low-level information as it looks
at gradient information only. The BEL edge detector ex-
plores both low level and somewhat middle level informa-
tion. The short-range context information contains more
context from different channels while the long-range con-
text information looks at the middle-level (e.g. Gestalt law)
information more explicitly. Finally, the high level infor-
mation steps in to clarify some ambiguity which can not be
resolved from the previous steps without explicit shape in-
formation.

6. Experiments
Our system was trained on 100 randomly selected im-

ages from a dataset consisting 328 horse images [2].
The dataset also contains manually annotated ground truth
boundaries. We use the remaining images for testing and
we work on gray scale images.
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Figure 6. Illustration of our methods engaging the low, middle, and high level
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Section 5 gives an outline of our algorithm. First, we
adopt the BEL edge detector [6] for detecting object bound-
aries. The training and testing procedures are briefly de-
scribed in section 3.2. Similarly, we can train a classifier to
classify pixels on the foreground regions, which are horse
bodies in this paper. We use the same procedures as those
for training/testing the boundaries, with different positive
and negative examples.

Both the detectors share the same set of candidate fea-
tures in training, e.g. different Haar filters with different
sizes at various locations [22], and histogram features on
various Gabor functions. Not surprisingly, the boundary
classifier mostly selects Haar filters and the body detector
picks more histogram features, which are effective in cap-
turing the complex appearances of the foreground. Fig. 8a
shows some testing images and we can see that they have
large variations in texture, pose, scale, and lighting patterns.
Examples of the detected boundaries and the foreground re-
gions are shown in Fig. 8b and Fig. 8c, respectively. The
training stage needs about 10 hours on a computer with
2.4GHz CPU and 1.0GB memory and the testing stage only
needs about 15 seconds for a typical 300 × 200 gray scale
image.

After the first level information (boundaries and fore-

ground regions) is obtained, we train another classifier to
account for more middle level information. We can either
use that for the “short-range” or the “long-range” context
information. The procedure is stated in section 3.3. In prac-
tice, the classifier for short-range context information gives
slightly better results (see Fig. 7). One possible reason is
that the long-range context considers the affinity between
two boundary points. Though they have some consistency
in terms of normal direction, curvature, and texture, they
observe more variations. This makes the classification task
more difficult. We use short-range context classifier in this
paper, which combines information from Canny edges at a
small scale, and both the boundary and body maps. Once
trained, the classifier gives refined boundaries on the testing
images, see Fig. 8(d). This step gives the biggest perfor-
mance improvement in our system.

Once refined object boundaries are obtained, we then use
high level shape information to further improve the results.
Rather than using an average template of all the training
examples [14], we represent our shape model by a mix-
ture model based on all the training examples. We sample
around 300 points from a refined boundary map. Each tem-
plate in the 100 training examples is used to match against
these points using the method described in [19]. The best
match with the lowest energy is then used. The time spent
on matching is about one minute although we have 100 tem-
plates. Moreover, since we can annotate each segment of
template boundaries, e.g. head, back, legs, the matching re-
sult also provides identified parts. Therefore, not only can
we detect the object boundaries, but also we are able to tell
where the body parts are. This shape matching process ob-
tains an approximation to minimizing the energy function
in Eqn. 1. Based on the matched results, we can further
remove some false alarms and infer some missing parts.
Fig. 7 shows a precision-recall curve after this procedure
and Fig. 8(e) demonstrates the final results for some testing
images and the different parts of the horses are labelled ac-
cording to the matching results. The last two rows in both
the columns Fig. 8(e) show the “failure” examples by our
algorithm, which are due to confusing and cluttered back-
grounds.

The shape matching results can further be used to elimi-
nate the false alarms from the body map and thus we can get
a cleaner probability map. When thresholding the resulting
probability body map at 0.1, we get 95% of the foreground
and 76% of the background in the manually labelled map
coincide with our classification result. This is better than
the performance reported in [2, 20].

We evaluated our system using precision-recall rates; see
the curves in Fig. 7. Compared to [14], our system achieves
better performance with even fewer training images and
more testing images. There are other works [2, 20, 12] in
the literature which tackled the same problem. However,



[20] and [12] worked on color images while we only used
gray scale images. Moreover, the details of the performance
evaluation in [2, 20, 12] are not so clear. The speed of our
algorithm is about 1.5 minutes per image, while speed is not
reported in all the above works.
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Final Result(F=0.75)
Pb in [14](F=0.54)
Pb+M in [14](F=0.56)
Pb+M+H in [14](F=0.66)

Figure 7. Precision-recall curves by our results on the testing images (three black
curves). Results on the same dataset from [14] are also displayed for a comparison
(three grey/green curves). The dotted curve shows the result of using long-range
context information. The F value shown in the legend is the maximal harmonic
mean of precision and recall and provides an overall ranking.

7. Conclusions and Discussions
In this paper, we have proposed a general learning based

approach for object boundary detection and segmentation.
The classifiers described in this paper implicitly and explic-
itly account for information including low-level, middle-
level and context. Instead of leaving the computing burden
to sophisticated inference algorithms [18, 20, 12], our algo-
rithm couples modelling and computing at its early stage.
Therefore, the computing processes described in this paper
are straight forward and directly tied to the training pro-
cesses. It takes around 1.5 minutes on a modern PC to
segment a horse from an image of size 300 × 200. The
learning processes avoid heavy manual design and the very
same training program can be used to tackle a variety of
classes of objects using an identical setting of parameters.
We have shown significant improvement over existing ap-
proaches with detailed precision-recall curves. Moreover,
the effectiveness of each step of our algorithm is clearly
clarified in the error measurement. This facilitates future
research of bringing in other components and identifying
what role of each level of information plays.

The long-range context information seems to be a bit
worse than short-range context. This deserves further study
as the former naturally carries richer information than the
latter. Also, we will apply our system to other datasets with
different objects of interest. More thorough experiments
will also be conducted to test the robustness of our algo-
rithm on images of different sizes, cluttered conditions, and

multiple conditions.
Acknowledgment S.Z. and Z.T. were funded by the NIH,

Grant U54 RR021813 entitled Center for Computational Biology
(CCB). We thank the anonymous reviewers for giving many con-
structive suggestions in carrying out thorough experimental evalu-
ations.

References
[1] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object

recognition using shape contexts”, PAMI, vol. 24, no. 24, 2002.
[2] E. Borenstein, E. Sharon and S. Ullman, “Combining top-down and

bottom-up segmentation”, Proc. IEEE workshop on Perc. Org. in
Com. Vis., June 2004

[3] J. F. Canny, “A Computational Approach to Edge Detection”, PAMI,
Nov. 1986.

[4] S. Dickinson, A. Pentland, and A. Rosenfeld, “From Volumes to
Views: An Approach to 3-D Object Recognition”, Comp. Vis. and
Image Und., Vol. 55, No. 2, March 1992.

[5] B. Dubuc and S.W. Zucker, “Complexity, Confusion, and Perceptual
Grouping”, IJCV, 2001.

[6] P. Dollár, Z. Tu, and S. Belongie, “Supervised learning of edges and
object boundaries”, Proc. of CVPR, 2005.

[7] Y. Freund and R. Schapire, “A Decision-theoretic Generalization of
On-line Learning And an Application to Boosting”, ICML, 1996.

[8] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by
unsupervised scale-invariant learning”, Proc. of CVPR, 2003.

[9] S. Konishi, A. L. Yuille, J. M. Coughlan, and S. C. Zhu. Statistical
edge detection: Learning and evaluating edge cues. PAMI, 25(1):57–
74, Jan. 2003.

[10] S. Kumar and M. Hebert, “Discriminative random fields: a discrimi-
native framework for contextual interaction in classification”, Proc. of
ICCV, 2003.

[11] M. Kass, A. Witkin and D. Terzopoulos, “Snakes: Active Contour
Models,” Int’l J. Computer Vision, vol. 1, no. 4, pp. 321-332, Jan.
1988.

[12] M. P. Kumar, P.H.S. Torr, and A. Zisserman, “OBJCUT”, Proc. of
CVPR, 2005.

[13] D. Marr. Vision. W.H. Freeman and Co. San Francisco, 1982.
[14] X. Ren, C. Fowlkes, and J. Malik, “Cue integration in figure/ground

labeling”, Proc. of NIPS, 2005.
[15] C. Taylor and D. Kriegman, “Structure and Motion from Line Seg-

ments in Multiple Images”, PAMI, 1995.
[16] A. Torralba, K. P. Murphy and W. T. Freeman, “Contextual Models

for Object Detection using Boosted Random Fields”, Proc. of NIPS,
2005.

[17] Z. Tu, “Probabilistic boosting-tree: learning discriminative models
for classification, recognition, and clustering”, Proc. of ICCV, 205.

[18] Z. Tu, X. Chen, A. Yuille, and S.C. Zhu, “Image parsing: unifying
segmentation, detection, and object recognition”, IJCV, 2005.

[19] Z. Tu and A. Yuille, “Shape Matching and Recognition–Using Gen-
erative Models and Informative Features”, Proc. of ECCV, May 2004.

[20] A. Levin and Y. Weiss, “Learning to combine bottom-up and top-
down Segmentation”, Proc. of ECCV, 2006.

[21] S. Ullman R. Basri “Recognition by Linear Combinations of Mod-
els”, PAMI, May, 1991.

[22] P. Viola and M. Jones, “Fast Multi-view Face Detection”, Proc. of
CVPR, 2001.

[23] D. H. Wolpert, “Stacked generalization”, Neural Networks 5(2):
241-259, 1992.



(e)( d )(c)(b)(a)(e)(d )(c)(b)(a)

head

legs
legs

back

tail

tail

head

back

legs legs

tail

head

back

legs legs

tail
head back

legs legs

tailhead back

tail

head
back

legslegs

tail
head back

legslegs

head back

legs

legs

tail

head
back

legslegs

tailhead back

legslegs

tail

head back

legs
legs

head

legs
legs

back

tail

head

legs
legs

back

head

legs legs

back

head

legs

legs

back

head

legs legs

back

head

legs

back

tail
head

legs
legs

back

tail
head

legs
legs

back

head

legs
legs

back

head

legs legs

back

tail

head

legs legs

back tail

Figure 8. Results on some testing images. (a) shows input images in gray scale. (b) are the boundary maps detected by BEL. (c) shows the body maps. (d) demonstrates
refined boundaries based on the short-range context information. (e) gives final results after shape matching, and also the different parts of the horses are labelled according to
the shape matching results. These images are representatives of the data set, which have different appearances, poses, scales, and lightening conditions. We see how each level of
information is helping detecting their boundaries. The last two rows in both the columns show two worst results by our algorithm.




