Nontrivial t-Designs over Finite Fields
Exist for All t

Arman Fazeli
University of California San Diego
9500 Gilman Drive, La Jolla, CA 92093
afazelic@ucsd.edu

Shachar Lovett
University of California San Diego
9500 Gilman Drive, La Jolla, CA 92093
slovett@ucsd.edu

Alexander Vardy
University of California San Diego
9500 Gilman Drive, La Jolla, CA 92093
avardy@ucsd.edu

June 11, 2013

Abstract

A t-(n, k, λ) design over \mathbb{F}_q is a collection of k-dimensional subspaces of \mathbb{F}_q^n, called blocks, such that each t-dimensional subspace of \mathbb{F}_q^n is contained in exactly λ blocks. Such t-designs over \mathbb{F}_q are the q-anlogs of conventional combinatorial designs. Nontrivial t-(n, k, λ) designs over \mathbb{F}_q are currently known to exist only for $t \leq 3$. Herein, we prove that simple (meaning, without repeated blocks) nontrivial t-(n, k, λ) designs over \mathbb{F}_q exist for all t and q, provided that $k > 12t$ and n is sufficiently large. This may be regarded as a q-analog of the celebrated Teirlinck theorem for combinatorial designs.
1. Introduction

Let X be a set with n elements. A t-(n,k,λ) combinatorial design (or t-design, in brief) is a collection of k-subsets of X, called blocks, such that each t-subset of X is contained in exactly λ blocks. A t-design is said to be simple if there are no repeated blocks — that is, all the k-subsets in the collection are distinct. A trivial t-design is the set of all k-subsets of X. The celebrated theorem of Teirlinck [20] establishes the existence of nontrivial simple t-designs for all t.

It was suggested by Tits [23] in 1957 that combinatorics of sets could be regarded as the limiting case $q \to 1$ of combinatorics of vector spaces over the finite field \mathbb{F}_q. Indeed, there is a strong analogy between subsets of a set and subspaces of a vector space, expounded by numerous authors [6, 9, 24]. In particular, the notion of t-designs has been extended to vector spaces by Cameron [4, 5] and Delsarte [7] in the early 1970s. Specifically, let \mathbb{F}_q^n be a vector space of dimension n over the finite field \mathbb{F}_q. Then a t-(n,k,λ) design over \mathbb{F}_q is a collection of k-dimensional subspaces of \mathbb{F}_q^n (k-subspaces, for short), called blocks, such that each t-subspace of \mathbb{F}_q^n is contained in exactly λ blocks. Such t-designs over \mathbb{F}_q are the q-analogs of conventional combinatorial designs. As for combinatorial designs, we will say that a t-design over \mathbb{F}_q is simple if it does not have repeated blocks, and trivial if it is the set of all k-subspaces of \mathbb{F}_q^n.

The first examples of simple nontrivial t-designs over \mathbb{F}_q with $t \geq 2$ were found by Thomas [21] in 1987. Today, following the work of many authors [3, 11, 15, 16, 18, 19, 22], numerous such examples are known. All these examples have $t = 2$ or $t = 3$. If repeated blocks are allowed, nontrivial t-designs over \mathbb{F}_q exist for all t, as shown in [16]. However, no simple nontrivial t-designs over \mathbb{F}_q are presently known for $t > 3$. Our main result is the following theorem.

Theorem 1. Simple nontrivial t-(n,k,λ) designs over \mathbb{F}_q exist for all q and t, and all $k > 12(t+1)$ provided that $n \geq ckt$ for a large enough absolute constant c. Moreover, these t-(n,k,λ) designs have at most $q^{12(t+1)n}$ blocks.

This theorem can be regarded as a q-analog of Teirlinck’s theorem [20] for combinatorial designs. Our proof of Theorem 1 is based on a new probabilistic technique introduced by Kuperberg, Lovett, and Peled in [12] to prove the existence of certain regular combinatorial structures. We note that this proof technique is purely existential: there is no known efficient algorithm which can produce t-(n,k,λ) design over \mathbb{F}_q for $t > 3$. Hence, we pose the following as an open problem:

Design an efficient algorithm to produce simple nontrivial t-(n,k,λ) designs for large t

(\star)

The rest of this paper is organized as follows. We begin with some preliminary definitions in the next section. We present the Kuperberg-Lovett-Peled (KLP) theorem of [12] in Section 3. In Section 4 we apply this theorem to prove the existence of simple t-designs over \mathbb{F}_q for all q and t. Detailed proofs of some of the technical lemmas are deferred to Section 5.
2. Preliminaries

Let \mathbb{F}_q denote the finite field with q elements, and let \mathbb{F}_q^n be a vector space of dimension n over \mathbb{F}_q. We recall some basic facts that relate to counting subspaces of \mathbb{F}_q^n. The number of distinct k-subspaces of \mathbb{F}_q^n is given by the q-binomial (a.k.a. Gaussian) coefficient

$$\binom{n}{k}_q \overset{\text{def}}{=} \frac{[n]_q!}{[k]_q! [n-k]_q!}$$

where $[n]_q!$ is the q-factorial defined by

$$[n]_q! \overset{\text{def}}{=} [1]_q [2]_q \cdots [n]_q = (1 + q) (1 + q + q^2) \cdots (1 + q + q^2 + \cdots + q^n)$$

Observe the similarities between (1) and (2) and the conventional binomial coefficients and factorials, respectively. Many more similarities between the combinatorics of sets and combinatorics of vector spaces are known; see [10], for example. Here, all we need are upper and lower bounds on q-binomial coefficients, established in the following lemma.

Lemma 2.

$$q^{k(n-k)} \leq \binom{n}{k}_q \leq \binom{n}{k} q^{k(n-k)}$$

Proof. We use the following identity from [10, p. 19],

$$\binom{n}{k}_q = \sum_{1 \leq s_1 < s_2 < \cdots < s_k \leq n} q^{(s_1+s_2+\cdots+s_k)-k(k+1)/2}$$

The largest term in the sum of (3) is $q^{k(n-k)}$, which corresponds to $s_i = n - k + i$ for all i. The number of terms in the sum is $\binom{n}{k}$, and the lemma follows. \qed

3. The KLP theorem

Kuperberg, Lovett, and Peled [12] developed a powerful probabilistic method to prove the existence of certain regular combinatorial structures, such as orthogonal arrays, combinatorial designs, and t-wise permutations. In this section, we describe their main theorem.

Let M be a $|B| \times |A|$ matrix with integer entries, where A and B are the set of columns and the set of rows of M, respectively. We think of the elements of A, respectively B, as vectors in \mathbb{Z}^B, respectively in \mathbb{Z}^A. We are interested in those matrices M that satisfy the five properties below.
1. **Constant vector.** There exists a rational linear combination of the columns of \(M\) that produces the vector \((1, 1, \ldots, 1)^T\).

2. **Divisibility.** Let \(\overline{b}\) denote the average of the rows of \(M\), namely \(\overline{b} = \frac{1}{|B|} \sum_{b \in B} b\). There is an integer \(c_1 < |B|\) such that the vector \(c_1 \overline{b}\) can be produced as an integer linear combination of the rows of \(M\). The smallest such \(c_1\) is called the *divisibility parameter*.

3. **Boundedness.** The absolute value of all the entries in \(M\) is bounded by an integer \(c_2\), which is called the *boundedness parameter*.

4. **Local decodability.** There exist a positive integer \(m\) and an integer \(c_3 \geq m\) such that, for every column \(a \in A\), there is a vector of coefficients \(\gamma^a = (\gamma_1, \gamma_2, \ldots, \gamma_{|B|}) \in \mathbb{Z}^B\) satisfying \(\|\gamma^a\|_1 \leq c_3\) and \(\sum_{b \in B} \gamma_b b = me_a\), where \(e_a \in \{0, 1\}^A\) is the vector with 1 in coordinate \(a\) and 0 in all other coordinates. The parameter \(c_3\) is called the *local decodability parameter*.

5. **Symmetry.** A *symmetry* of the matrix \(M\) is a permutation of rows \(\pi \in S_B\) for which there exists an invertible linear map \(\ell : \mathbb{Q}^A \to \mathbb{Q}^A\) such that applying the permutation on rows and the linear map on columns does not change the matrix, namely \(\ell(\pi(M)) = M\). The group of symmetries of \(M\) is denoted by \(Sym(M)\). It is required that this group acts transitively on \(B\). That is, for all \(b_1, b_2 \in B\) there exists a permutation \(\pi \in Sym(M)\) satisfying \(\pi(b_1) = b_2\).

The following theorem has been proved by Kuperberg, Lovett, and Peled in [12]. In fact, the results of Theorem 2.4 and Claim 3.2 of [12] are more general than Theorem 3 below. However, Theorem 3 will suffice for our purposes.

Theorem 3. Let \(M\) be a \(|B| \times |A|\) integer matrix satisfying the five properties above. Let \(N\) be an integer divisible by \(c_1\) such that

\[
c|A|^{52/5}c_2c_3^{12/5} \log(|A|c_2)^8 \leq N < |B|
\]

where \(c > 0\) is a sufficiently large absolute constant. Then there exists a set of rows \(T \subset B\) of size \(|T| = N\) such that the average of the rows in \(T\) is equal to the average of all the rows in \(M\), namely

\[
\frac{1}{N} \sum_{b \in T} b = \frac{1}{|B|} \sum_{b \in B} b = \overline{b}
\]

4. Proof of the main result

We will apply Theorem 3 to prove existence of designs over finite fields. We first introduce the appropriate matrix \(M\), which is the incidence matrix of \(t\)-subspaces and \(k\)-subspaces.
Let M be a $|B| \times |A|$ matrix, whose columns A and rows B correspond to the t-subspaces and the k-subspaces of \mathbb{F}_q^n, respectively. Thus $|A| = \binom{n}{t}_q$ and $|B| = \binom{n}{k}_q$. The entries of M are defined by $M_{b,a} = 1_{a \subset b}$. It is easy to see that a simple t-(n, k, λ) design over \mathbb{F}_q corresponds to a set of rows b_1, b_2, \ldots, b_N of M such that

$$b_1 + b_2 + \cdots + b_N = (\lambda, \lambda, \ldots, \lambda) \quad \text{for some } \lambda \in \mathbb{N} \quad (6)$$

Note that this implies $\lambda \binom{n}{t}_q = N \binom{k}{t}_q$, because each row $b \in B$ has Hamming weight $\binom{k}{t}_q$. In order to relate (6) to Theorem 3, we need the following simple lemma. The lemma is well known; we include a brief proof for completeness.

Lemma 4. Let V be a t-subspace of \mathbb{F}_q^n. The number of k-subspaces U such that $V \subset U \subset \mathbb{F}_q^n$ is given by $\binom{n-t}{k-t}_q$.

Proof. Fix a basis $\{v_1, v_2, \ldots, v_t\}$ for V. We extend this basis to a basis $\{v_1, v_2, \ldots, v_k\}$ for U. The number of ways to do so is $(q^n - q^t)(q^n - q^{t+1}) \cdots (q^n - q^{k-1})$. However, each subspace U that contains V is counted $(q^k - q^t)(q^k - q^{t+1}) \cdots (q^k - q^{k-1})$ times in the above expression. \hfill \square

It follows from Lemma 4 that

$$\bar{b} = \frac{1}{|B|} \sum_{b \in B} b = \frac{\binom{n-t}{k-t}_q}{\binom{n}{k}_q} (1, 1, \ldots, 1) = \frac{\binom{k}{t}_q}{\binom{n}{t}_q} (1, 1, \ldots, 1) \quad (7)$$

Therefore, a simple nontrivial t-(n, k, λ) design over \mathbb{F}_q is a set of $N < |B|$ rows of M satisfying

$$b_1 + b_2 + \cdots + b_N = N \bar{b}$$

But this is precisely the guarantee provided by Theorem 3 in (5). Note that the corresponding value of $\lambda = N \frac{\binom{k}{t}_q}{\binom{n}{t}_q}$ would be generally quite large.

4.1. Parameters for the KLP theorem

Let us now verify that the matrix M satisfies the five conditions in Theorem 3 and estimate the relevant parameters c_1, c_2, c_3 in (4).

Constant vector. Each k-subspace contains exactly $\binom{k}{t}_q$ t-subspaces, so the sum of all the columns of M is $\binom{k}{t}_q (1, \ldots, 1)^T$. Hence $(1, 1, \ldots, 1)^T$ is a rational linear combination of the columns of M.

Symmetry. An invertible linear transformation \(L : \mathbb{F}_q^n \to \mathbb{F}_q^n \) acts on the set of \(k \)-subspaces by mapping \(U = \langle v_1, v_2, \ldots, v_k \rangle \) to \(L(U) = \langle L(v_1), L(v_2), \ldots, L(v_k) \rangle \). It acts on the set of \(t \)-subspaces in the same way. Note that if \(U \) is a \(k \)-subspace and \(V \) is a \(t \)-subspace, then \(V \subset U \) if and only if \(L(V) \subset L(U) \). Now, let \(\pi_L \in S_B \) be the permutation of rows of \(M \) induced by \(L \), and let \(\sigma_L \in S_A \) be the permutation of columns of \(M \) induced by \(L \). Then \(\pi_L(\sigma_L(M)) = M \). Note that \(\sigma_L \) acts as an invertible linear map on \(\mathbb{F}_q^A \) by permuting the coordinates. Hence, \(\pi_L \) is a symmetry of \(M \). The corresponding symmetry group is, in fact, the general linear group \(\text{GL}(n,q) \). It is well known that \(\text{GL}(n,q) \) is transitive: for any two \(k \)-subspaces \(U_1, U_2 \), we can find an invertible linear transformation \(L \) such that \(L(U_1) = U_2 \), which implies \(\pi_L(b_1) = b_2 \) for the corresponding rows.

Boundedness. Since all entries of \(M \) are either 0 or 1, we can set \(c_2 = 1 \).

Local decodability. Let \(m \) be a positive integer to be determined later. Fix a \(t \)-subspace \(V \) corresponding to a column of \(M \). We wish to find a short integer combination of rows of \(M \) summing to \(me_V \). In order to do so, we fix an arbitrary \((t+k)\)-subspace \(W \) that contains \(V \). As part of the short integer combination, we will only choose those rows that correspond to the \(k \)-subspaces contained in \(W \). Moreover, the integer coefficient for a \(k \)-subspace \(U \subset W \) will depend only on the dimension \(j = \dim(U \cap V) \). We denote this coefficient by \(f_{k,t}(j) \).

We need the following conditions to hold. First, by Lemma 4, there are \(\binom{k}{k-t}q \) \(k \)-subspaces \(U \) such that \(V \subset U \subset W \). Therefore, we need

\[
f_{k,t}(t) \binom{k}{k-t}q = m \tag{8}
\]

Second, for any other \(t \)-subspace \(V' \subset \mathbb{F}_q^n \), we need that

\[
\sum_{V' \subset U \subset W} f_{k,t}(\dim(U \cap V)) = 0 \tag{9}
\]

where the sum is over all \(k \)-subspaces \(U \) containing \(V' \) and contained in \(W \). Note that we only need to consider those \(t \)-subspaces \(V' \) that are contained in \(W \). For all other \(t \)-subspaces, our integer combination of rows of \(M \) produces zero by construction.

The following lemma counts the number of \(k \)-subspaces which contain \(V' \) and whose intersection with \(V \) has a prescribed dimension. Its proof is deferred to Section 5.

Lemma 5. Let \(V_1, V_2 \) be two distinct \(t \)-subspaces of \(\mathbb{F}_q^n \) such that \(\dim(V_1 \cap V_2) = l \) for some \(l \) in \(\{0, 1, \ldots, t - 1\} \). The number of \(k \)-subspaces \(U \subset \mathbb{F}_q^n \) such that \(V_1 \subset U \) and \(\dim(U \cap V_2) = j \), for some \(j \in \{l, l + 1, \ldots, t\} \), is given by

\[
q^{(k-t-j+l)(t-j)} \binom{t-l}{j-l}q \binom{n-2t+l}{k-t-j+l}q \tag{10}
\]
With the help of Lemma 5, we can rephrase (9) as the following set of \(t \) linear equations:

\[
\sum_{j=l}^{t} f_{k,t}(j) \left[\begin{array}{c} t-l \\ t-j \\ k-t+l \\ j \end{array} \right] q^{(k-t-j+l)(t-j)} = 0 \quad \text{for} \quad l = 0, 1, \ldots, t-1
\]

Equations (8) and (11) together form a set of \(t + 1 \) linear equations, which can be represented in the form of a matrix production:

\[
Df = (0, 0, \ldots, 0, m)^T
\]

where \(f = (f_{k,t}(0), f_{k,t}(1), \ldots, f_{k,t}(t))^T \) and \(D \) is an upper-triangular \((t+1) \times (t+1) \) matrix with entries

\[
d_{l,j} = \left[\begin{array}{c} t-l \\ t-j \\ k-t+l \\ j \end{array} \right] q^{(k-t-j+l)(t-j)} \quad \text{for} \quad 0 \leq l \leq j \leq t
\]

The condition \(t \leq k \) ensures nonzero values on the main diagonal. Therefore, \(\det D \) is nonzero and the system of linear equations is solvable. By Cramer’s rule, we have

\[
f_{k,t}(j) = \frac{\det D_j}{\det D} m
\]

where \(D_j \) is the matrix formed by replacing the \(j \)-th column of \(D \) by the vector \((0, 0, \ldots, 1)^T\). Note that \(\det D \) is an integer. Thus we set \(m = \det D \), so that \(f_{k,t}(j) = \det D_j \). This guarantees that the coefficients \(f_{k,t}(0), f_{k,t}(1), \ldots, f_{k,t}(t) \) are integers.

We are now in a position to establish a bound on the local decodability parameter \(c_3 \). First, the following lemma bounds the determinants of \(D \) and \(D_j \). We defer its proof to Section 5.

Lemma 6.

\[
| \det D | \leq q^{k(t+1)^2}
\]

\[
| \det D_j | \leq q^{k(t+1)^2} \quad \text{for} \quad j = 0, 1, \ldots, t
\]

The number of \(k \)-subspaces \(U \) contained in \(W \) is \([k+t \choose k]_q\). We have multiplied the row of \(M \) corresponding to each such subspace by a coefficient \(f_{k,t}(j) \) which is bounded by \(q^{k(t+1)^2} \). Hence

\[
c_3 = \max\{m, \|f\|_1\} \leq [k+t \choose k]_q q^{k(t+1)^2} \leq \left(\begin{array}{c} k+t \\ k \end{array} \right)_q q^{k(t+1)^2} \leq q^{2k(t+1)^2}
\]

Divisibility. The proof of local decodability also makes it possible to establish a bound on the divisibility parameter \(c_1 \). We already know that for \(m = \det D \), we can represent any element in \(m\mathbb{Z}^A \) as an integer combination of rows of \(M \). By (7), we have \([n \choose t]_q \bar{b} = [k \choose t]_q (1, 1, \ldots, 1)\). Hence, \(m[n \choose t]_q \bar{b} \in m\mathbb{Z}^A \) can be expressed as an integer combination of rows of \(M \). It follows that

\[
c_1 \leq m \left[n \choose t \right]_q q^{k(t+1)^2} \left(\begin{array}{c} n \\ t \end{array} \right) q^{t(n-t)} \leq q^{k(t+1)^2 + t(n-t) + n}
\]
4.2. Putting it all together

We have proved that the incidence matrix M satisfies the five conditions in Theorem 3 and established the following bounds on the parameters:

\[
c_1 \leq q^{k(t+1)^2 + t(n-t) + n} \tag{17}
\]
\[
c_2 = 1 \tag{18}
\]
\[
c_3 \leq q^{2k(t+1)^2} \tag{19}
\]

By Lemma 2, we also have

\[
|A| = \left[\begin{array}{c} n \\ t \end{array} \right]_q \leq \left(\begin{array}{c} n \\ t \end{array} \right)_q^{t(n-t)} \leq q^{t(n-t) + n} \tag{20}
\]
\[
|B| = \left[\begin{array}{c} n \\ k \end{array} \right]_q \geq q^{k(n-k)} \tag{21}
\]

Combining (4) with (17) – (20), we see that the lower bound on N in Theorem 3 is at most

\[
c' |A|^{52/5} c_1 (c_2 c_3)^{12/5} \log(|A|c_2)^8 \leq c q^{(57/5) - (t+1)n + ckt^2} n^c \tag{22}
\]

for some absolute constant $c > 0$. If we fix t and k, while making n large enough, then the right-hand side of (22) is bounded by $cq^{12(t+1)n}$. In view of (21), this is strictly less than $|B|$ whenever $k > 12(t+1)$ and n is large enough. It now follows from Theorem 3 that for large enough n, there exists a simple t-(n, k, λ)-design over \mathbb{F}_q of size $N \leq cq^{12n(t+1)}$. The reader can verify that this holds whenever $n \geq \tilde{c} kt$ for a large enough constant $\tilde{c} > 0$.

5. Proof of the technical lemmas

In this section, we prove the two technical lemmas (Lemma 5 and Lemma 6) we have used to establish the local decodability property.

5.1. Proof of Lemma 5

Let V_1, V_2 be two distinct t-subspaces of \mathbb{F}_q^n with $\dim(V_1 \cap V_2) = l$. Let U be a k-subspace of \mathbb{F}_q^n such that $V_1 \subset U$ and $\dim(U \cap V_2) = j$. Further, let $X = V_1 \cap V_2$ and $Y = V_1 + V_2$. It is not difficult to show that the following holds:

\[
\dim(X) = l \quad \dim(Y) = 2t - l
\]
\[
\dim(U \cap V_1) = t \quad \dim(U \cap V_2) = j
\]
\[
\dim(U \cap X) = l \quad \dim(U \cap Y) = t + j - l \tag{23}
\]
We will proceed in three steps. First, fix a basis \(\{v_1, v_2, \ldots, v_l\} \) for \(V_1 \). Next, we extend \(V_1 \) to the subspace \(Z = U \cap Y \) which has an intersection of dimension \(j \) with \(V_2 \). In order to do that, we pick \(j - l \) vectors \(v_{l+1}, v_{l+2}, \ldots, v_{l+j-l} \) from \(Y \setminus V_1 \), in such a way that \(v_1, v_2, \ldots, v_{l+j-l} \) are linearly independent. The number of ways to do so is

\[
N_1 = \prod_{i=0}^{j-l-1} (q^{2i-l} - q^{l+i})
\]

However, each such subspace \(Z \) is counted more than once in (24), since there are many different ordered bases for \(Z \). The appropriate normalizing factor is \(N_2 = \prod_{i=0}^{j-l-1} (q^{i+j-l} - q^{i+l}) \). Hence, the total number of different choices for \(Z \) is

\[
\frac{N_1}{N_2} = \prod_{i=0}^{j-l-1} \frac{q^{2i-l} - q^{l+i}}{q^{i+j-l} - q^{i+l}} = \prod_{i=0}^{j-l-1} \frac{q^{l-i} - q^i}{q^{l-i} - q^i} = \left[t - l \right]_q
\]

In order to complete \(U \), we need to extend \(Z \) by \(k - (t + j - l) \) linearly independent vectors chosen from \(\mathbb{F}_q^N \setminus Y \). The number of ways to do so is \(N_3 = \prod_{i=0}^{k-(t+j-l)-1} (q^n - q^{(2t-l)+i}) \), with normalizing factor \(N_4 = \prod_{i=0}^{k-(t+j-l)-1} (q^k - q^{(t+j-l)+i}) \). We have

\[
\frac{N_3}{N_4} = \prod_{i=0}^{k-(t+j-l)-1} \frac{q^{(2t-l)+i}}{q^{(t+j-l)+i}} \cdot \frac{q^{n-(2t-l)-i-1}}{q^{k-(t+j-l)-i-1}} = q^{(k-t-j+l)(t-j)} \left[\frac{n - 2t + l}{k - (t + j - l)} \right]_q
\]

Combining (25) and (26), the total number of different choices for the desired subspace \(U \) is given by (10), as claimed.

5.2. Proof of Lemma 6

Lemma 6 follows from the following two lemmas. The first bounds the product of the largest elements in each row. The second bounds the number of nonzero generalized diagonals in \(D_j \) — that is, the number of permutations \(\pi \in S_{t+1} \) such that \((D_j)_{i,\pi(i)} \neq 0 \) for all \(i \in \{0, 1, \ldots, t\} \).

Lemma 7.

\[
\prod_{l=0}^{t} \max_{j} d_{l,j} \leq 2^{k(t+1)+1} q^{(k-t)t+1}
\]

Proof. We first argue that for \(l \in \{1, 2, \ldots, t\} \), the largest element in row \(l \) is \(d_{l,l} \). For \(l = 0 \), the largest element in the row is either \(d_{0,0} \) or \(d_{0,1} \). To see that, we calculate
\[
\frac{d_{l,j+1}}{d_{l,j}} = \begin{bmatrix} t - l & k - t + l \\ - j - 1 & j + 1 \end{bmatrix}_q \cdot \begin{bmatrix} t - l & k - t + l \\ t & j \end{bmatrix}_q \cdot q^{(k-t+j+l-1)(t-j-1)-(k-t+j+l)(t-j)} \\
\frac{[t-j]_q![j-l]_q!}{[t-j-1]_q![j-l+1]_q!} \cdot \frac{[j]_q![k-t+l-j]_q!}{[j+1]_q![k-t+l-j-1]_q!} \cdot q^{1-(t-j)-(k-t+j+l)} \\
= \frac{q^{t-j-1}}{q^{j-l+1}-1} \cdot \frac{q^{k-t+j+l-1}}{q^{j+l+1}-1} \cdot q^{1-(t-j)-(k-t+j+l)} \\
= \frac{q^{t-j-1}}{q^{j-l+1} \cdot (q^{j+1}-1)(q^{j-l+1}-1)} \\
< \frac{q}{(q^{j+1}-1)(q^{j-l+1}-1)}
\]

Note that unless \(j = l = 0 \), this implies that \(d_{l,j+1} < d_{l,j} \). The only remaining case is \(d_{0,1} / d_{0,0} < q/(q-1)^2 \). This ratio can be at most 2 for \(q = 2 \), and is below 1 for \(q > 2 \). Hence

\[
\prod_{l=0}^t \max_j d_{l,j} \leq 2 \prod_{j=0}^t d_{j,j}
\]

We next bound this product:

\[
\prod_{j=0}^t d_{j,j} = \prod_{j=0}^t \begin{bmatrix} k - t + j \\ j \end{bmatrix}_q q^{(k-t)(t-j)} \leq \prod_{j=0}^t \left(\begin{bmatrix} k - t + j \\ j \end{bmatrix}_q q^{(k-t)+(k-t)(t-j)} \right) \leq 2^{k(t+1)} q^{(k-t)(t+1)}
\]

\(\square\)

Lemma 8. \(D_j \) has at most \(2^t \) nonzero generalized diagonals.

Proof. Let \(\pi \in S_n \) be such that \((D_j)_{i,\pi(i)} \neq 0 \) for all \(i \). If \(j > 0 \) then we must have \(\pi(i) = i \) for all \(i < j \), and \(\pi(t) = j \). Letting \(r = t - j \) this reduces to the following problem: let \(R \) be an \(r \times r \) matrix corresponding to rows \(j, \ldots, t-1 \) and columns \(j+1, \ldots, t \) of \(D_j \). This matrix has entries \(r_{l,j} \neq 0 \) only for \(j \geq l - 1 \). We lemma that such matrices have at most \(2^t \) nonzero generalized diagonals. We show this by induction on \(r \). Let us index the rows and columns of \(R \) by \(1, \ldots, r \). To get a nonzero generalized diagonal we must have \(\pi(r) = r - 1 \) or \(\pi(r) = r \). In both cases, if we delete the \(r \)-th row and the \(\pi(r) \)-th column of \(R \), one can verify that we get an \((r-1) \times (r-1) \) matrix of the same form (e.g. zero values in coordinates \((l,j) \) whenever \(j < l - 1 \)). The lemma now follows by induction. \(\square\)

Proof of Lemma. The determinant of \(D \) or \(D_j \) is bounded by the number of nonzero generalized diagonals (which is 1 for \(D \), and at most \(2^t \) for \(D_j \)), multiplied by the maximal value a product of choosing one element per row can take. Hence, it is bounded by

\[
\max\{|\det D|, |\det D_j|\} \leq 2^t \cdot 2^{k(t+1)+1} q^{(k-t)(t+1)} \leq q^{t+k(t+1)+1+(k-t)(t+1)} \leq q^{k(t+1)^2}
\]

\(\square\)
Acknowledgment

We are grateful to Michael Braun and Alfred Wasserman for helpful discussions regarding the history and the current state of knowledge about t-designs over finite fields.

References

