Title
Challenges in Adaptive Path Sampling with Mobile Sensors

Permalink
https://escholarship.org/uc/item/1b99m17f

Authors
Parker, Andrew
Hansen, Mark
Estrin, Deborah

Publication Date
2007-10-10

Peer reviewed
Challenges in Adaptive Path Sampling with Mobile Sensors

Andrew Parker, Mark Hansen, Deborah Estrin
CENS Systems Lab - http://research.cens.ucla.edu/

Introduction: Some applications naturally call for path samples rather than point samples

Solar Light Radiation and NIMS-3D
- Solar light radiation can have high spatio-temporal variability
 - Often, the strategy for estimating solar light radiation distributions is to find boundaries or other structures
- NIMS-3D is mobile and capable of high sampling rates
 - The PAR sensor uses little energy and can sample at about 10hz while the robot moves at about 14 cm/s.

Problem Description: Algorithms originally developed for point samples rarely scale well

Adaptive sampling: a two-part problem
- Part A: Where to sample next given the current model?
 - One way to approximate paths is to bring to zero the sensor dwell time and energy requirements
 - The result is that a very small step is made to explicitly sample the next point, taking several minutes to traverse a few feet

Some techniques to help speed things up
- Faster simulations: Spatio-temporal partitioning of the sample data
 - In simulation and emulation, data samples from the environment are usually drawn from a time-series of images
 - An improvement is to spatially partition the sample data, and then to stack the partitions into contiguous chunks of time

- Quickly update minimum distances between sampled points and all other points
 - Many algorithms trade off spatial coverage and feature coverage
 - Using cumulative minimum distance overlays can speed up spatial coverage calculations

Proposed Solution: Bayesian regression with colored triangulation models

Part A: Sample the model to identify regions of interest
- Regions of interest could include:
 - Areas of high uncertainty
 - Areas of high variance
 - Features (edges, junctions, etc.)

Part C: Update model parameters
- Parameters could include:
 - Mean number of triangles
 - Distinct colored regions
 - Number and spacing of colors

Part B: Sample the environment
- Sampling criteria could include:
 - Favoring nearby areas
 - Maintaining spatial coverage

Advantages of this approach
- Promotes paths to first-class citizens
- Represent samples as vertices and edges in free space instead of pixels in a matrix
- Captures structuring elements in the data
- Intermediate pattern analysis: edges, junctions, and uniform regions
- Easy to consider things beyond just interpolating the field
 - Percentage of field in shadow
 - Distribution of sun fleck sizes
 - Distribution of sun fleck life-times

Challenges to this approach
- Unclear what the right model is
 - Entirely different triangulation models may be needed for different phenomena
- Design and implementation of the sampler is tricky
 - A fair amount of math is required to prove correctness of the sampler
 - Sampler must be efficient to minimize autocovariance times