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BAHADUR EFFICIENCIES OF SPACINGS TESTS 
FOR GOODNESS OF FIT 

XlAN ZHOU AND S. RAO JAMMALAMADAKA 

Statistics and Applied Probability Program, University of  California, 
Santa Barbara, CA 93106, U.S.A. 

(Received July 28, 1988; revised November 21, 1988) 

Abstract. This paper is concerned with the exact Bahadur efficiencies of 
spacings statistics. For a general class of statistics based on a fixed 
number of spacings, the explicit forms of the exact slopes are derived, 
and it is shown that the sum of the logarithms of spacings is optimal in 
this class. Some results are extended to the case where the number of 
spacings increase with the sample size to infinity. 

Key words and phrases: Bahadur efficiency, exact slope, large deviation, 
spacings, goodness of fit. 

1. Introduction 

Tests based on the observed frequencies as well as those based on 
spacings provide two basic approaches for the goodness of fit problem. The 
efficiencies of these tests have been studied in the literature. For example, 
Sethuraman and Rao (1970), Del Pino (1979), Kuo and Rao (1981), and 
Jammalamadaka  et al. (1986) studied the Pi tman efficiencies for various 
spacings tests, while Jammalamadaka and Tiwari (1987) considered the 
Pi tman efficiencies of some spacings tests relative to a chi-square test. 
Hoeffding (1965) showed the likelihood ratio test based on multinomial 
frequencies to be optimal, in the Bahadur sense, for a fixed number of 
cells. Quine and Robinson (1985) studied both Pitman and Bahadur 
efficiencies for the case when the number of cells increases to infinity. This 
paper is concerned with the exact Bahadur efficiencies of spacings tests for 
the two corresponding cases. 

Let XI, . . . ,X,  be an ordered sample from a continuous distribution 
function (d.f.) F. The goodness of fit problem is to test the null hypothesis 
Ho: F =  F0, where F0 is specified, against the alternative Hi: F ¢  Fo. By 
applying the probability integral transformation x-- .  Fo(x) on all the data, 
without loss of generality, F0 can be assumed to be uniform on [0, 1] and F 
to be supported in [0, 1]. Define spacings by 
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D! ")= Xt,aa- Xt,a,-,l, i =  1,..., k ,  

where 0 = 2 0 < 2 1  < ... <2k-~ < 2 k =  1 and [ . ]  denotes the integer part. 
Write D*"t= (DI"I,..., Dk(~_ll). We will consider spacings tests that reject H0 
for large values of J, , (D I'l) where J , ( .  ) is a non-negative function defined 
on the (k - 1)-dimensional simplex 

S k - l =  Z = ( Z l , . . . , Z k - O : O < z i < l , i = l , . . . , k - - l ;  = <1 . 

Two tests of particular interest are 

Ik = Ik(v °, D (")) = ~ v ° log (v°/ D! ")) 
i=I 

k 
Q2 O2(Dt , l ,  vO ) i~f(D!.l vo.Q/v o 

"~- - -  i l l  i ,  

and 

k -1  

where v ° ,q.i- 2 j - l ,  v ° (V°l,..., v ° D ('1 D! n~. = • = k-0 and = 1 -  ~ The Bahadur 
i=1 

efficiency of one test relative to another is defined by the ratio of their 
"exact slopes" (cf. Section 3). 

The organization and results of this paper are as follows: in Section 2, 
a large deviation result for Dirichlet distributions is derived, which is 
crucial in finding the Bahadur efficiencies of spacings tests. Section 3 deals 
with the case of fixed k, and 

(i) gives the exact slopes of J, , (D I'~) and their explicit forms for lk 
and {22; 

(ii) shows that Ik has the highest Bahadur efficiency in a general 
family and that the Bahadur efficiency of h relative to Q~ is strictly greater 
than one for most alternatives. 

In Section 4, we consider the case when k is allowed to increase with 
n, to infinity. The exact slopes of /k and Q2 are obtained again and it is 
shown that the Bahadur efficiency of Ik relative to Q2 is infinity in this case. 

2. A large deviation theorem for Dirichlet distributions 

For z ~ Sk-1, we always write Zk = 1 -- Zl . . . . .  Zk-t. 
For v ~ Sk-~, D ( n v )  will denote the Dirichlet distribution with density 

on Sa-~ given by 

k Z nv~ 1 p,(zl v) -- F(n)  FI 
F ( n v O . . .  F(nvk)  i ~ 1 

and the corresponding probability measure will be denoted by P , ( A I v )  for 
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any measurable subset A of Sk-~. Define 

k 1)i 
Ik(V, z) = • Vi log - -  for v, z C Sk- 1 

i= 1 Zi  

and 

Ik (v ,A)  = inf Ik(V,Z) for A C Sk-1 . 
z ~ A  

Let J~(z) and J ( z )  be non-negative functions defined on Sk-~ and fl = 
sup {J(z): z ~ Sk-1} (fl < ~) .  Define for t ~ (0,fl) 

An(t)  = {z: J~(z) _> t}, A ( t )  = {z: J(z )  >_ t} . 

The main result of this section is 

and  

THEOREM 2.1. A s s u m e  
(A1) Jn(z) --" J(z)  un i formly  in Sk-1, 
(A2) J(z )  is con t inuous  a n d  has no  local m a x i m u m  values in Sk-l ,  

(A3) v cnl ~ v (i.e., v! nl --, vi, i = 1,..., k)  as n ~ ~ .  

Then f o r  any  t e (O, fl) 

1 
lim - - -  log Pn{An(t) lv Inl} = h ( v ,  A (t)) . 
n-= n 

The proof  follows from Lemmas 2.1 and 2.2. First note that by 
Stirling's formula, we have 

(2.1) ~ < F ( n + l ) < 2  2 ~ - ~  for n___l. 

LEMMA 2.1. Le t  An C Sk-~ a n d  v (~), v ~ Sk-1 such that  v in) ~ v. I f  
Ik(v ,A~)-- ,  d as n ~ ~ a n d  i f V e > 0 ,  3 a n o n - e m p t y  open set A ,  in Sk-~ 
a n d  an integer N such that Ik (v ,A , )  < d +  e and  A~ C An V n > N, then 

1 
lim - - - l o g  Pn(A~lv Inl) = d . 
n-= n 

PROOF. Let max vi < a < 1. Then 3 N = N(v,  a) such that V n > N, 
l<_i<_k 

n >  m a x ( 1 / v !  n)) and n - l + a v i < v ! n l < a - l v i ,  i =  1 , . . . ,k .  By (2.1) and the 
l<_i<_k 

equality F ( x  + 1) = xF(x ) ,  we can obtain V n > N, 
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( n )lk-w2~ (v!.))~/2_.:zy:_ 1 
p . ( z l  v I")) ~ 2 ~ i=lI"I " ' 

(2.2) 
k 

_< 2(n)lk-,)/2 iUl(avi)-,,VjOzi .... 

<- 2(n) Ik- l)/2e-anhI~'Z) a-n/a {-I V7 v'~a- l/a) 
i = 1  

where the second inequality holds because av~ < v!")< 1 and nv!")< nvda,  
nv! n) 

which imply (v!"l)~/2-": < (v!"l)-": < (av~)- ' < (av3-"'/°. So 

P. (A. [ v I"l) = fa. P" (z[ v I")) dz  

<_ 2 (n) Ik - ')/2e- anh(v, A°) a- n/a {I V'/'l~- '/~) 
i = 1  

lim l log Pn(Anlvln)) > ad  + l log (a--l) k~.~ 
- - , = i  vi log vi 

n - ~  n a = 

Letting a --- 1 - gives 

(2.3) lim - 1 log P.(A . I  vl")) >_ d .  
n~e¢ n 

On the other hand, again by (2.1) we obtain 

21_~._ ( ~{k-1)/2 ~1 • n ) e-nh(v"'z) p.(zl v I'l) >- -~ /__1~1 (]/!"))1/2 

Thus, 3 N~ = Nl(V) such that V n > N1, 

(2.4) p , ( z l  v~")) ~ e -'1'~:'z) V z e &-~ . 

Let e > 0, A, and Nz be as in the conditions of the lemma and d(e )=  
Ik(V, A,).  Then, 3 z ~ A, such that d(e) < Ik(v, z) < d( t )  + e. Thus B~ = A, N 
{z: d ( e ) <  Ik(V,Z)< d ( t ) +  e} is a non-empty open subset of Sk-i SO that 

f B d z  O. Since J~ C Ik(vl"), z) ---" in B~. > Sk-1, Ik(V,Z) uniformly Z E Thus, 

3 N3 = N3(v,e) such that V n > N3, Ik(VI"~,Z) < Ik(V,Z) + e V z ~ Be and so 
V n > max (N1, N2, N3), by (2.4) and note that Be C A, C A. 

P. (A. [v I")) >- fB~ e-"t'~v'"" Z)dz -Js~ > ( e-"(h~v' z)+,)dz 

>-- e-n(d(e)+ 2~) f lj, dg . 
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Hence lim - ( l /n)  log P.(A.Iv (")) <_ d(e) + 2e < d +  3e V e > 0, which together 
?I--OO 

with (2.3), proves the lemma. [] 

LEMMA 2.2. I f  J ( .  ) is con t inuous  a n d  has no local m a x i m u m  values 
in Sk-1, then f o r  each v ~ Sk-i ,  Ik(v ,A(t ) )  is con t inuous  in t ~ (O, fl). 

PROOF. Fix t ~ (0,fl). By Lemma 4.3 of Hoeffding (1965), 3 z ° ~ A( t )  
such that Ik(v, z °) = A ( v , A ( t ) ) .  Note that z ° ~ Sk-1 because Ik(v, z °) < ~ and 
Ik(V, .)  is continuous. By the conditions on J(z),  for e > O, :1 z '  ¢ Sk-~ such 
that Ilk(V, z ')  - Ik(V,Z°)l < e and J = J(z ' )  - J(z °) > 0. If t _< s < min (t + J, fl), 
then J(z ' )  = J(z  °) + J > t + J > s, so that z '  ~ A(s)  and Ik(v,A(t))  <_ lk(v ,A(s))  
<-- Ik(v, Z') < A(V, Z °) + e = Ik(v, A( t ) )  + e. This shows the right continuity of 
Ik (v ,A( t ) )  in t. For the left continuity, let s, ! t. Again by Lemma 4.3 of 
Hoeffding (1965), for each n, 3 z" ~ A(s , )  such that Ik(v,z  ~) = h ( v , A ( s , ) ) .  
Because {z n} is bounded,  there is a convergent subsequence {z "'} of {zn}. Let 
zoo be the limit of {z"'}. Then zoo~Sk-1 since h ( v , z " )  is bounded by 
Ik(v ,A( t ) ) .  Thus, J(zoo) = ,'-oolim J ( z ' )  >_ ~im,_ s , ,= t. It follows that z °o ~ A( t )  

and 

(2.5) h ( v , A ( s o , ) )  = I k ( v , z " ' )  - I (v,z >_ I k ( v , A ( t ) )  . 

Finally, since s, T t implies that Ik(V, A(s , ) )  is increasing in n and Ik(V, A(s , ) )  
< Ik(V,A(t))  V n, (2.5) shows that Ik(v ,A(s , ) )  --" Ik(v ,A( t ) )  as n ~ ~ ,  which 
gives the left continuity and completes the proof. [] 

PROOF OF THEOREM 2.1. Let t c (0,fl) and e > 0. By Lemma 2.2, 
3 J > 0 such that t + J < fl and 

(2.6) Ik(V, A( t ) )  - ~ < I k (v ,A ( t  -- J)) < Ik(V, A ( t  + J)) < Ik(v, A( t ) )  + t . 

Since J,  --. J uniformly in Sk-1, 3 N such that V n > N, A ( t  + J) C A , ( t )  C 
A ( t  - J), hence I k ( v ,A ( t  - J)) <_ h ( v , A , ( t ) )  < l k ( v , A ( t  + J)). This and (2.6) 
show that 

(2.7) h(v,  A, (t)) --'/k (v, A (t)). 

Moreover, take A, = {z: J(z)  > t + J}. Then At is open and non-empty, and 

(2.8) Ik(V, A O  = I k ( V , A ( t  + < I k ( V , a ( t ) )  + . 

Finally, the theorem follows from (2.7), (2.8) and Lemma 2.1. [] 
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3. Bahadur efficiencies of spacings tests with fixed k 

In this section, we consider the case when k and 2,-'s are fixed and 
assume n > max ( 2 i - 2 i - 1 )  -1 so that D!"I> 0 with probabil i ty one (see 

l<_i<_k 

Section 1 for notations). It is well-known that under H0, D In) has a 
Dirichlet distribution with parameters [n2i] - [n2i- ~], i = 1,..., k. If we write 

V! n)= ([n,~i]- [nJ.i-l])/n, 1 )(n)= (v]n),..., V(kn-)l), then O I"t - - D ( n v  I")) and v t") --- 

v ° = (v°,..., v°-l) where v ° = 2 i -  2i-,. 
Since D I"l ~ v ° (a.s.) under H0, it is reasonable to reject H0 when D I"t 

is too far from v °. Thus we consider a family F of spacings tests which 
reject H0 for large values of J~(DI"I), where J~( . )  is defined on Sk-~ with 
properties: 

(i) J,(z) _> 0 V z ¢ Sk-~ and J,(z) = 0 iff z = v°; 
(ii) J,(z)--" J(z) uniformly in Sk-~ for some J satisfying (A2) of 

Theorem 2.1. 
In particular, we are interested in 

J,(z) Ik(v °, z) and J,(z)  2 o -- = Qk(z, v ) V n 

where 

k 
2 Qk (z, v) = i~l(zi - vi)Z/vi for z, v e Sk-I.  

The test Q~(D I"l, v °) can be thought of as a spacings version of  the classical 
chi-square test, and in fact, both nQ~(Dl"),v °) and 2nlk(v°,D Inl) have a 
limiting distribution of X~-~- (But we will not give the proofs here.) The 
assumption that J has no local maximum values in Sk-1 is not unusual 
because, as a measure of the distance between z and v °, J(z) should increase 
when z moves farther away from v °. It is easy to check that Ik(V °, Z) and 
Q~(z, v °) both have this property. 

The exact slope of a test statistic T, is defined as follows: let Ho be 
rejected for large values of T,. If - 2n -1 log [1 - Go(T,)] _e_.e sr under H1, 
where Go(t) = Po(Tn <- t) and P0 is the null probabil i ty measure, then sr is 
the exact slope of T,. The Bahadur  efficiency of a test T~ relative to 
another T,' is defined by BE(T , ,  T,;)= sr/sr" provided sr and st' are not 
both zeros. The following is a basic theorem for exact slopes: 

THEOREM 3.1. (Bahadur (1960)) I f  T. ~ b under H1 and 

2 
lim - - -  log Po{T, >- t} = c(t), t ~ I ,  
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f o r  s o m e  open interval  I conta in ing  b and  f o r  s o m e  c(t) which  is cont inu-  
ous  on I, then sr = c(b). 

Now we are ready to give the exact slopes for tests in the family F.  

1 THEOREM 3.2. Let  the alternative be H~: F = F1 and  v ~ = (Yl,. . . ,  v~-1) 
with  v~ = Fl l (2 i )  - F1-1(2i-1). I f  v x ~ Sk-1, v 1 ~ v ° and  J(v 1) ~ sup J(z),  then 
the exact  slope o f  J,(Dl"l) f o r  .In ~ F 

(3.1) ss = 2Ik(v° ,A(J(vl ) ) )  > O, (A( t )  = {z: J(z) >_ t}). 

PROOF. First note that  under  H~, D I") -- v I a.s., hence 

(3.2) J~(D I"l) --" j ( v l ) ,  

(a.s.) under  HI. Because D I") ~ D ( n v  I")) and v I") ~ v ° by Theorem 2.1 

(3.3) 
2 

lim - - -  log Po{J , (D I")) > t} = 2h (v° ,A ( t ) )  , 
n ~ ° °  n 

for t e (0,fl) where fl = sup J(z). Moreover,  by the condit ions we have 
J(v  1) ~ (O, fl) and by L e m m a  2.2/k(V °, A(t))  is cont inuous  in t e (0,fl). Thus  
(3.1) follows f rom (3.2), (3.3) and Theorem 3.1. [] 

THEOREM 3.3. Let y1 be as in Theorem 3.2 a n d  sz deno te  the exact  
slope Of lk(V °, DI~I), then sl > ss f o r  all J~ ~ F.  

PROOF. By T h e o r e m  3.2, we have ss = 2 Ik (v° ,A (J (v l ) ) ) ,  ( A ( t ) =  
{ J >  t}), and in part icular ,  Sz=2Ik(vO,  v 1) since h(v°,{Ik(v°,z)>>_t})= t. 
Notice that  t < J(v 1) implies v I c A( t )  and Ik(v°, f l)  >_ h (v° ,A ( t ) ) .  Hence 
Ik(v °, v 1) _> h(v  °, A(J(vl ) ) ) .  That  is, si >_ ss. [] 

Remark .  Since s1 > 0, Theorem 3.3 shows that  the Bahadur  efficiency 
of Ik(v °, D I"l) relative to any J ,  e F is B E ( L  J )  -- sl/ ss > 1. Hence Ik(v °, D I"l) 
is the opt imal  test in the family F (in the Bahadur  sense). The following 
theorem shows that  the l ikelihood ratio test is optimal,  in the Bahadur  
sense, for spacings tests, as for mult inomial  frequencies. 

THEOREM 3.4. For every z ~ Sk-~, 

. m  1 [log n.,v°, ..v°z, 
n ~ ° °  n v 
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PROOF. St i r l ing ' s  f o r m u l a  (2.1) and the equa l i t y  F ( x  + 2 ) =  
x ( x  + 1)F(x) imply 

(3.4) p,(z l  v) < Cn2ke -"1kt~'~) {7 z:, l V n and v e Sk-i , 
i = 1  

where C > 0 is a constant, and similar to (2.4) we can obtain that :1 N such 
that V n > N, 

(3.5) p . ( z l v  °) >_ e -"1.~¢'~) and p.(z lz )  >- e -"~ '~  = I . 

(3.4) and (3.5) show that V n > N, 

P"(Zl v°) < P"(zlv°) < Cn2ke-"la ~°.~) 1-I z:, 
sup p,(z l  v) p ,(z l  z) i: 

1 

and 

k P"(zlv°) >_ e-"~tv°'z)( cn2k)-I H zi . 
sup p,(zlv) i=1 

Hence 

lim - 1 log p , ( z l v  °) - h(v °, z).  [] 
-~ n sup pn(z[ v) 

THEOREM 3.5. Let v I be as in Theorem 3.2. The exact slope o f  
Q~ ( D ~"t, v °) is given by 

So=(1  o l+v0mi  nlog 1 
- -  I"min) log a - i f '  

where o o Vmin = min vi and 
l<_i<_k 

[o ]1,2 [lo ill2 - -  Vmin 2 1 Vmin "q2'vl v °) b = 1 + Qk(v ,v  °) 
- - o  ~ k l ,  , 0 • a = 1 - 1 - -  Vrnin - -  Vmin 

The proof  of Theorem 3.5 is similar to that of  Theorem 8.1 of 
Hoeffding (1965). The details are omitted here. For the same reason, the 
following theorem is also stated without proof. 

THEOREM 3.6. Let  B E ( L  Q2) denote  the Bahadur  ef f iciency o f  
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Ik(v °, D I"l) relative to Q2k(D~nl, v°). Then BE(I, Q2) > 1 unless 

(3.6) 
: Ymin , v) /v  ° =  b i f  v ° o 

a otherwise, 

where a, b are as in Theorem 3.5. 

Remark. For  F~ ¢ F0, (3.6) generally does not hold and we may  
choose 2~'s to let (3.6) fail (for example,  let v)/v ° take more  than  two 
different values). Hence Theorem 3.5 states that  Ik(v °, D I")) is basically 
more  efficient than  Q2(v°, D Inl) (in the Bahadur  sense). 

4. The Bahadur efficiencies of spacings tests when k --  

In this section, we allow k to increase with n to infinity, but  take the 
part i t ion ,,~i'S in a particular way as 

2~= i/k i =  0, 1 , . . . , k ,  

so that  2 i -  ,!.,-1 = 1/k for i = 1 .... ,k.  Moreover ,  we assume, wi thout  loss of 
generality, that  m = n/k  takes integer values so that  

v! "1= ([n2~] - [n2,-1])/n = 2 , -  2,-1 = 1/ k, i= 1 ..... k . 

We are interested in the Bahadur  efficiencies of the tests Ik(V I"l, D (")) and 
Q~(D I"), vl"l). Let H~: F = F~ satisfy the following assumptions: 

ASSUMPTIONS 4.1. 
(i) G~ = F~ -l and g l  = (~ exist on [0, 1]; 

(ii) gl is cont inuous on [0, 1]; 
(iii) 0 < g~(y) < oo V y ~ [0, 1]. 

Let k vary with n, in such a way as 

(4.1) k = k ( n ) = c n q ( l + o ( 1 ) ) ,  c > 0 ,  0 < q < l .  

THEOREM 4.1. I f  H1 satisfies Assumptions 4.1 and k = k(n) is as 
given in (4.1), then the exact slopes of  lk(v I"l, D I"l) and Q~(D I"l, v I")) are 

fo' s1 = - 2 log gl (y)dy and sQ = O, respectively. Hence, BE(L Q2) = o o .  

We will prove two lemmas first. 

LEMMA 4.1. Under the conditions of  Theorem 4.1, 
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1 
(4.2) lira - - -  Po{Ik(v ("), D (')) >_ t} = t . 

n ~  n 

PROOF. Letp, (z lv)  and P,(AIv) be as in Section 2. By (2.2), 

( El )(k-lJ/2 k (k)l/2-n/k 
p,(z lv  (')) < 2 -~n i=117 z7/k-1 

< 2nkkke-(n-k)h(v'"),z) . 

Hence for A, = {z: Ik(v ('), z) >_ t}, since h(v  ("), A,)  = t, 

(4.3) 

lim - 1 log P, (A, I v(')) 

>>_lim[(1- k )Ik(v(n),A,) k log(nk) 1 log2]  t . . . . .  ~ . 

n~ n l'l n 

On the other hand, Jensen's inequality gives Ik(V ('), Z) > 12(1/k, zl), where z~ 
is the first coordinate of z. It is not hard to see that I2(1/k, Zl) is increasing 
in z~ ~ ( I / k, 1) and 3 Xk ~ (1/ k, 1) such that I2( l / k, xk ) = t. Thus by (2.1), 

Po{Ik(v (n), D (n)) >_ t} >_ Po{Iz(v ("), DI ")) _> t} = Po{D} ") > xk} 

= r(n)  ~iz,~_~(l_zi),_m_idz, 
F(m)F(n - m) 

->4X]-~l n-1 [ (m  1 - ~ 1  )]~/2e-"~. 

Hence 

(4.4) lim 1 log Po(/k(v (n), D (')) > t) <_ t 

Since D (') ~ D(nv  (')) under Ho, (4.3) and (4.4) prove the lemma. [] 

LEMMA 4.2. Suppose 
(i) 111 satisfies Assumptions 4.1 with corresponding GI and gl; 

(ii) h is a continuous function in (0, ~); 
(iii) n /m  j --, O for  somej  >_ 2. 

Then under H1, 

i  fo, h(g,(y))dy --~ _ 
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PROOF. Let Ut < U2 < ... < U,-~ be an ordered sample f rom a uni- 
form distr ibution on [0, 1] and T/~1 = Uim - U#,-m. Then by the Mean Value 
Theorem,  kD! ~1 ~ g l ( U i m )  kTi I~l where Uim-m < Uim < U,.m. It can be shown 
that  under  the conditions of the lemma 

max IkT / " ) -  11 --e-*e 0 and max I 
l<_i<_k l<_i<_k 

/1~0 
~ m -  T , 

which imply 

i max I koch'-gl (-~) -lm,ax I g1(~,~'n'-gl (~-)l 

_<max,_~,_~, ei(~,.m,-,,(~-)(~,.'~', 

I ( i )  t + m a x  g~ kT, -I') 1 ~ 0  
I<_i<_k T --  " 

It follows that  under  HI, 

(4.5) --ff i~=~ h(kD~'l) - --ff i= h g~ O. 

k 1 

But since ( l / k ) i ~ h ( g 1 ( i / k ) )  -"fo h(gl(y))dy, (4.5) proves L e m m a  4.2. [] 

PROOF OF THEOREM 4.1. Take h(x)= - l o g  x. Then L e m m a  4.2 
yields that  under  HI, 

1 k 
Ik(Vt")' D("I) = -ff i~l - log (kD] "1) e_~ fo' - log g,(y)dy > O, 

f o  and f rom Lemma  4.1 we get sz = - 2 log gl(y)  dy. On the other hand,  

{k I Po[Q~,(DI'I, v I~l) >_ t] = Po i~=l (kD! ~1- l) 2 -> kt 

>_ Po { Dl"' > ( l + t ) } 

F(n) 1 m -  
= r¢m)r(.-m) f ~  '(1-x)°-m-'ax 
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~'(~--~)m/21[ 1 - - ( ~ ) l / 2 ] n  " 

Thus  V t > O, 

(4.6) 

0 _< - 1 log Po{Q~(D I"), v I")) >_ t} 
n 

m 
1 k 

2k log-~ + t 
1 [ 

- -  + - - l o g  n -  log 1 -  ~ 0  
n 

as n --- e~ and k ~ ~ .  Moreover ,  by  L e m m a  4.2 we see that  under  HI,  

1 i~=l(kD!.) - 1) 2 ~_~fol[gl(y)_ 1]2dy > 0 .  Q~ ( D I"l, v t")) = - f f  = 

Hence  (4.6) and Th eo rem 3.1 show that  sQ = 0. [] 

5. Conclusion 

The exact  B a h a d u r  efficiency of  the test statistic based on spacings 
k k 

Ik = i=IE 1/0 log (v°i/D! ")) relative to its compe t i to r  Qk 2 = El(D!n).: - -  FiOx2") / vi° is 

shown to be greater  than 1 for  finite k (cf. T h e o r e m  3.5) and equals  infinity 
if k is a l lowed to increase with n (cf. T h e o r e m  4.1). This cont ras ts  with the 
results tha t  for  f ixed m, the test Q~, somet imes  called the G r e e n w o o d  
statistic, has the highest a sympto t i c  relative efficiency in the P i tman  sense. 
See, for  instance, R a o  and Ku o  (I984). 
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