Title
Potential role of stabilized criegee radicals in sulfuric acid production in a high biogenic VOC environment

Permalink
https://escholarship.org/uc/item/1c2041rz

Journal
Environmental Science and Technology, 49(6)

ISSN
0013-936X

Authors
Kim, S
Guenther, A
Lefer, B
et al.

Publication Date
2015-03-17

DOI
10.1021/es505793t

License
CC BY 4.0

Peer reviewed
Potential Role of Stabilized Criegee Radicals in Sulfuric Acid Production in a High Biogenic VOC Environment

Saewang Kim,*‡ Alex Guenther,*§ Barry Lefer,‖ James Flynn,‖ Robert Griffin,‖ Andrew P. Rutter,‖,*# Longwen Gong,‖,*∥ and Basak Karakurt Cevik‡

†Department of Earth System Science, University of California—Irvine, Irvine, California 92697, United States
‡Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
§Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington 99164, United States
‖Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77004, United States
‖Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
#S.C. Johnson & Son, Inc., Racine, Wisconsin 53403, United States
∥California Air Resource Board, Monitoring and Laboratory Division, Sacramento California 95811, United States

ABSTRACT: We present field observations made in June 2011 downwind of Dallas—Fort Worth, TX, and evaluate the role of stabilized Criegee radicals (sCIs) in gaseous sulfuric acid (H$_2$SO$_4$) production. Zero-dimensional model calculations show that sCI from biogenic volatile organic compounds composed the majority of the sCIs. The main uncertainty associated with an evaluation of H$_2$SO$_4$ production from the sCI reaction channel is the lack of experimentally determined reaction rates for sCIs formed from isoprene ozonolysis with SO$_2$ along with systematic discrepancies in experimentally derived reaction rates between other sCIs and SO$_2$ and water vapor. In general, the maximum of H$_2$SO$_4$ production from the sCI channel is found in the late afternoon as ozone increases toward the late afternoon. The sCI channel, however, contributes minor H$_2$SO$_4$ production compared with the conventional OH channel in the mid-day. Finally, the production and the loss rates of H$_2$SO$_4$ are compared. The application of the recommended mass accommodation coefficient causes significant overestimation of H$_2$SO$_4$ loss rates compared with H$_2$SO$_4$ production rates. However, the application of a lower experimental value for the mass accommodation coefficient provides good agreement between the loss and production rates of H$_2$SO$_4$. The results suggest that the recommended coefficient for the H$_2$O surface may not be suitable for this relatively dry environment.

INTRODUCTION

Most sulfur compounds emitted to the atmosphere are in a reduced form (e.g., sulfur dioxide, SO$_2$ (IV)). Atmospheric gas-phase oxidation processes sulfur throughout the troposphere and the stratosphere and transforms these emitted sulfur compounds into the most oxidized form of gas-phase sulfuric acid (H$_2$SO$_4$), unless heterogeneous uptake transforms the sulfur into condensed-phase forms. The discussion in this paper will focus exclusively on gas-phase H$_2$SO$_4$ formation from gas-phase SO$_2$ oxidation. Although sulfur compounds contribute a relatively minor fraction of the chemical composition of the troposphere, the critical role of H$_2$SO$_4$ in determining acidity in precipitation and forming particles that influence regional and global climate has been highlighted.3–5 Anthropogenic sulfur emission in the form of SO$_2$ is currently estimated to dominate global sulfur emissions, followed by oceanic dimethylsulfide (CH$_3$SCH$_3$).6 The gas-phase atmospheric oxidation processes of SO$_2$ were thought previously to be driven mostly by hydroxyl radical (OH), as shown in R1—R3.7

$\text{SO}_2 + \text{OH} + \text{M} \rightarrow \text{HSO}_3 + \text{M} \quad (R1)$

$\text{HSO}_3 + \text{O}_2 \rightarrow \text{SO}_4 + \text{HO}_2 \quad (R2)$

$\text{SO}_3 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_4 \quad (R3)$

The potential role of stabilized Criegee biradicals (sCIs)8 in SO$_2$ oxidation has been discussed since the 1970s. Cox and Penkett8 reported significant SO$_2$ formation rates from chamber experiments with various alkene compounds, ozone (O$_3$), and SO$_2$. They speculated sCIs prompted SO$_2$ oxidation because the reaction between SO$_2$ and O$_3$ is insignificant under atmospheric conditions. Calvert and Stockwell9 presented comprehensive zero-dimensional model calculation results examining atmospheric acid formation under various physical and chemical conditions. Calvert and Stockwell9 reported significant SO$_3$ formation rates from chamber experiments with various alkene compounds, ozone (O$_3$), and SO$_2$. They speculated sCIs prompted SO$_2$ oxidation because the reaction between SO$_2$ and O$_3$ is insignificant under atmospheric conditions. Calvert and Stockwell9 presented comprehensive zero-dimensional model calculation results examining atmospheric acid formation under various physical and chemical conditions.
Table 1. Summary of Field Deployed Instrumentation Referred in This Study during DFW-2011

<table>
<thead>
<tr>
<th>species/parameter</th>
<th>measurement technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Thermo Electron Corp. 48C Trace Level CO Analyzer (Gas Filter Correlation)</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>Thermo Electron Corp. 43C Trace Level SO$_2$ Analyzer (Pulsed Fluorescence)</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>Thermo Electron Corp. 42C Trace Level NO—NO$_2$—NO$_3$ Analyzer (Chemiluminescence)</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>Thermo Electron Corp. 42C-Y NO$_x$ Analyzer (Molybdenum Converter)</td>
</tr>
<tr>
<td>VOCs</td>
<td>PTR-ToF-MS (Ionicon Analytik) and GC-FID</td>
</tr>
<tr>
<td>OH and H$_2$SO$_4$</td>
<td>Chemical Ionization Mass Spectrometer</td>
</tr>
<tr>
<td>particle mobility-based size distribution</td>
<td>Scanning Electrical Mobility Spectrometer Model 2002 (Brechtel Manufacturing)</td>
</tr>
<tr>
<td>temperature, relative humidity</td>
<td>Cambell Scientific HMP45C-L temperature and relative humidity probe</td>
</tr>
</tbody>
</table>

Implications of the proposed faster reaction rates have been investigated from local to global scales. A one-dimensional modeling study\(^{18}\) illustrated that using the newly reported rate constants results in H$_2$SO$_4$ levels that are 33–46% higher inside a forest canopy in a clean boreal forest with high monoterpene levels. In contrast, a global modeling study\(^{19}\) observed only a small increase (4%) of H$_2$SO$_4$ by applying the faster rate constants on the global scale. More recently, a laboratory study\(^{13}\) showed that the reaction rate of R5 is much lower (5.4 × 10$^{-18}$ cm3 s$^{-1}$) than what was previously reported\(^{12}\) (4 × 10$^{-13}$ cm3 s$^{-1}$). Therefore, the study argued that the previous evaluations on the impact of the CH$_2$OO + SO$_2$ reaction in H$_2$SO$_4$ formation should be understood as a lower limit since the importance of R5 competition with R4 for sCI may be overestimated. Discussion on the importance of the sCI reaction channel in aerosol sulfate formation using regional chemical transport models also have been presented,\(^{20,21}\) but our discussion is limited to gas-phase chemistry.

In June 2011, comprehensive observations including carbon monoxide (CO), nitrogen oxides (NO$_x$ = NO + NO$_2$), total reactive nitrogen (NO$_y$), SO$_2$, O$_3$, volatile organic compounds (VOCs), OH, H$_2$SO$_4$, and aerosol surface area were conducted at the Eagle Mountain Lake monitoring site in Tarrant County, TX, northwest of the metropolitan Dallas—Fort Worth (DFW) area. This site is influenced mostly by urban pollution outflow, but significant levels of biogenic VOCs (BVOCs) were detected frequently due to the surrounding rural area. The data set is presented to assess quantitatively the role of sCIs in H$_2$SO$_4$ production. A zero-dimensional model is employed to estimate sCI concentrations formed from VOC precursors to evaluate H$_2$SO$_4$ production rates from the OH reaction channel (R1) and the sCI reaction channel (R4). Finally, we examine H$_2$SO$_4$ uptake to aerosol surface to compare with H$_2$SO$_4$ production rates, as aerosol uptake is known to be the dominant H$_2$SO$_4$ sink.\(^{25}\) These analyses provide an opportunity to comprehensively assess our current understanding of tropospheric H$_2$SO$_4$.

<table>
<thead>
<tr>
<th>METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations. Observations were conducted in June of 2011 at the Eagle Mountain Lake monitoring site. The inlets for gas phase analysis (CO, NO$_x$, NO$_y$, SO$_2$, O3, and VOCs) were installed on top of a walk-up tower (∼10 m from the ground) using perfluorokalkoxy Teflon tubing (1/4″ OD). Analytical techniques for gas, particle, and meteorological parameters presented in this study are summarized in Table 1. Online aerosol measurements were conducted using an inlet separate from that for the gas-phase instrumentation. It consisted of stainless steel tubing of 3/8″ OD. The end of the inlet was approximately 3 m above ground level and included a PM${2.5}$ cyclone to ensure that only fine PM was collected. Aerosol surface area distributions were calculated from measured</td>
</tr>
</tbody>
</table>
distributions of the mobility aerodynamic diameter determined by a Brechtel Manufacturing, Inc., Scanning Electrical Mobility Spectrometer Model 2002. VOC observations were conducted using an IONICON Analytik GmbH proton transfer reaction-time-of-flight mass spectrometer (PTR-ToF-MS 8000). This technique uses protonated water (H$_3$O$^+$) as the reagent ion and can quantify a wide range of VOCs that have higher proton affinity than H$_2$O$^+$ (691 kJ mol$^{-1}$), including many of the important biogenic and anthropogenic VOCs. A MATLAB (MathWorks) script was used to calculate 1 min average data from raw data files containing 1 s average spectra. Weekly multipoint calibration was conducted with a multicomponent calibration standard (methanol, acetonitrile, acetaldehyde, acetone, methyl vinyl ketone (MVK), limonene, 2-methyl-3-butene-2-ol, benzene, and methyl ethyl ketone), prepared by the NOAA Chemical Sciences Division in Boulder, CO. The background signal was assessed with VOC-scrubbed ambient air utilizing a heated Pt-wool catalytic convertor (400 °C). The estimated analytical uncertainty is 15% (2σ), and the lower limit of detection is ~20 ppt for a 1 min average (2σ). Because the PTR-ToF-MS technique used does not provide quantification of alkanes and light alkene compounds, a publicly available AutoGC data set collected at the observational site was used for this study (http://www.tceq.state.tx.us/cgi-bin/compliance/mynos/site_photo.pl;cams=75). Texas Commission on Environmental Quality (TCEQ) maintains operation and reporting of the VOC data under the EPA quality guidelines.

The H$_2$SO$_4$ and OH observations were conducted using a CIMS with an atmospheric pressure ionization system. The nitrate ion system was used to ionize H$_2$SO$_4$. Atmospheric OH was first converted into H$_2$SO$_4$ by adding excess NO$_3$ in the sample flow. More detailed descriptions of the instrument are reported elsewhere. Analytical uncertainties for OH and H$_2$SO$_4$ analysis are assessed to be 35% (3σ) including the statistical errors from the calibration procedures for the 1 min period. The assessed lower limit of detection for both OH and H$_2$SO$_4$ was 1 × 107 molecules cm$^{-3}$ (2σ).

Zero-Dimensional Model
The University of Washington Chemical Mechanism (UWCM; https://sites.google.com/site/wolfgangm/models)v2.1 was used for sCI calculations. The chemical mechanisms of methane, ethane, propane, n-butane, isobutane, n-pentane, iso-pentane, n-hexane, n-heptane, ethene, propene, 1-buten, cis-2-buten, benzene, toluene, butadiene, isoprene, α-pinene, and β-pinene were extracted from Master Chemical Mechanism (MCM; http://mcm.leeds.ac.uk/MCM/).v3.2 for the UWCM model calculations on top of the embedded HO$_2$–NO$_x$ chemical mechanisms. Isoprene oxidation schemes were updated as described in Archibald et al. Photolysis rates were calculated using the scheme presented in Sauder et al. The sCI reaction channels were incorporated explicitly in MCM v3.2, and the model calculations were conducted using the default rate constants (e.g., with CO, NO, NO$_2$, and H$_2$O), except the rates of sCIs with SO$_2$ as described in Table 2. In addition, R5a was updated as shown in Stone et al. We constrained observed concentrations of CO, NO$_x$, SO$_2$, ozone, VOCs, OH, ambient temperature, and humidity to calculate seven sCIs (Table 2) so that we can evaluate H$_2$SO$_4$ formation rates from reactions between SO$_2$ and sCI. This model calculation scheme can be found in previous publications.

This zero-dimensional modeling approach has the advantage of being able to estimate short-lived radical species while avoiding uncertainty introduced by the processes associated with vertical and horizontal chemical transport and emissions by constraining relatively long-lived trace gas species. Therefore, this approach is used commonly by the radical observation community to examine whether current photochemical understanding explains observed radical levels. We compared model predicted MVK + MACR (methylene) levels with the observations for the sensitivity test, which indicates acceptable agreement (within 40%). The results indicate that UWCM 2.1 reliably describes the complicated HO$_2$–NO$_x$–VOCs system.

RESULTS AND DISCUSSION
A global modeling study concluded that H$_2$SO$_4$ production from sCIs was significant only in high BVOC environments. To explore roles of sCIs in H$_2$SO$_4$ production, as shown in Figure 1, a five-day period (June 17th to June 21st, indicated as a green square) of enhanced BVOC influences was selected from the month-long study.

Observed trace gas diurnal variations used for zero-dimensional model constraints are presented in Figure 2. In general, criteria pollutants such as CO, NO$_x$, and SO$_2$ were observed at smaller mixing ratios during this five-day period, compared with the whole observational period (Figure 1). The observed NO level was typically more than a few hundred ppt, which can be considered as the high NO$_x$ regime for the peroxy radical chemistry perspective. The diurnal variations of the observed VOCs are also summarized in Figure 2. Each chemical class such as alkanes, alkenes, aromatics, and BVOCs shows distinctive diurnal variations. BVOCs and alkanes especially indicate contrasting diurnal variations. These differences are caused by the complex interplay of emissions, photochemistry, and meteorological processes such as boundary layer height evolution and advection.

This is the first published OH observation in the DFW metropolitan area. However, field OH observations have been conducted in Houston, TX. The averaged midday OH concentrations from two Houston, TX field campaigns in the summer season were in the range of 1.5 × 107 to 2.0 × 107 molecules cm$^{-3}$, which is much higher than the OH levels observed during this study. However, the afternoon O$_3$ levels observed during the Houston field campaigns (75 ppb) were much higher than the O$_3$ levels during this study. In general, the observed OH levels for this study are comparable with previously reported OH levels from other moderately polluted environments. The observed daytime H$_2$SO$_4$ maximum was ~7 × 106 molecules cm$^{-3}$. This is much lower than the reported values (~2 × 107 molecules cm$^{-3}$) for airborne observations over the boundary layer of Northeastern U.S. and the Ohio Valley region during NEAQS-2004. As one of the major aims of the NEAQS-2004 campaign was to sample power plant plumes, it is
understandable that the observed H$_2$SO$_4$ levels from NEAQS-2004 are higher than those from this study. However, limited previous observations indicate that local pollution levels are not necessarily directly correlated with observed H$_2$SO$_4$. For example, the observed averaged daytime maxima of H$_2$SO$_4$ from Mexico City, Mexico40 and Beijing, China42 were reported as 1.6 \times 107 and 5 \times 106 molecules cm$^{-3}$, respectively, although the observed SO$_2$ levels were at similar levels of ~5-10 ppb for both campaigns. This nonlinearity between H$_2$SO$_4$ and its precursor, SO$_2$, suggests that better understanding of the H$_2$SO$_4$ source and sink relationship is needed to accurately predict the atmospheric distributions of H$_2$SO$_4$.43

The model calculated sCI concentrations presented in Figure 3 include the total sCI number densities and the speculated sCI number densities. For comparative purposes, we conducted the identical calculations for a time period with decreased BVOC influence, indicated by the red rectangle in Figure 1. As shown in Figure 3a, the total sCIs during the period of decreased BVOCs are assessed to be approximately half of the total sCIs during the high BVOC period in the afternoon. Therefore, the discussion is focused on the high BVOC period henceforth. Among the calculated sCI species, sCI from α-pinene (APINBOO), isoprene (MVKOO and MACROO), and β-pinene (NOPINOO) ozonolysis compose most of total sCIs, along with CH$_3$OO (Figure 3b). Overall, the calculated peak sCI levels are higher than the maximum sCI levels (\sim1 \times 106 molecules cm$^{-3}$) predicted by a regional model for the summer season.21 It should be noted that the direct comparison between the short-term observationally based estimation and the seasonal estimate of the regional model (12-km resolution) should be cautiously interpreted.

Theses outcomes are calculated using default MCM 3.2 rate constants, which apply k_{R5a} and k_{R5b} as 5.0 \times 10$^{-18}$ and 1.0 \times 10$^{-17}$ molecules$^{-1}$ cm3 s$^{-1}$, respectively. Recent studies have also highlighted the uncertainty in the rate constant of R5 (R5a + R5b) as the reaction with water vapor mostly determines the chemical loss rates of sCIs. The published range of the rate constant for R545 is 2 \times 10$^{-19}$ to 1 \times 10$^{-18}$ molecules cm$^{-3}$ s$^{-1}$. A series of more recent laboratory and theoretical studies also presented a wide range of recommendations for the reaction rates of R5. Welz et al.12,44 reported a significantly higher upper limit for k_{R5} (k_{R5a} = k_{R5b} = 4 \times 10$^{-18}$ molecules cm$^{-3}$ s$^{-1}$) compared to the 9 \times 10$^{-17}$ molecules cm$^{-3}$ s$^{-1}$ from Stone et al.13 Stone et al.13 also experimentally derived k_{R5a} (5.4 \times 10$^{-17}$ molecules cm$^{-3}$ s$^{-1}$), very close to that applied in MCM 3.2. Theoretical studies45,46 evaluating the kinetics of sCI with water dimer argue that a reaction with water dimer becomes the dominant sCI chemical sink especially for the small sCI. Verecken et al.46 presented zero-dimensional model simulation results indicating that CH$_3$OO mostly (99 to 100%) reacts with water dimer under typical boundary layer conditions ranging from boreal forest to mega city environments. Therefore, if we include the fast water dimer reaction in the zero-dimensional model calculation, it results in no contribution to H$_2$SO$_4$ formation from R4. For comparison purpose, we calculated CH$_3$OO with the upper limit of k_{R5} presented by Welz et al.12 The results shown in Figure 3c suggest significant suppression in CH$_3$OO by applying the fast k_{R5a} which would cause substantially less contribution of the sCI reaction channel to H$_2$SO$_4$ formation. Further studies on chemical interactions between water vapor and sCIs are urged in this context.

Figure 1. Calculated OH reactivity (s$^{-1}$), a multiplication of the concentration of a gas species and its reaction rate constant with OH) from different observed (a) VOC classes and (b) criteria trace gases. The average daytime (11:00 to 17:00) OH reactivity for the sums of the presented chemical classes are 2.4 s$^{-1}$ and 3.4 s$^{-1}$ for the low BVOC (the red rectangle) and the high BVOC (the green rectangle) periods, respectively. Alkane: ethane, propane, isobutene, n-butane, cyclopentane, isopentane, n-pentane, n-hexane, heptane; alkene: ethene, 1-butene, 1,3-butadiene, 2-pentene; OVOCs: acetone, hydroxycetone, methylglyoxal, methyl ethyl ketone; BVOCs: isoprene, monoterpenes, methyl vinyl ketone+methacrolein; and aromatics: benzene, toluene, C8-aromatics, C9-aromatics.
Considering the reaction rate constant for R1 is 1.3×10^{-12} cm3 s$^{-1}$ when expressed as second order at 298 K and 1 atm, sCl is not likely to make significant contributions to H$_2$SO$_4$ production compared to OH, especially in the morning to noon. The peak of total sCl concentrations was observed in the late afternoon, coinciding with the afternoon O$_3$ enhancement shown in Figure 2. As reviewed above, the rate constants of SO$_2$ with CH$_2$OO12 (k_{Welz}) and monoterpene sCl15 ($k_{Mauldin}$) have been experimentally determined and are significantly different ($k_{Welz}/k_{Mauldin} = 65$). Empirical rate constants of sCIs from isoprene ozonolysis and SO$_2$ have not been reported, as only relative rate coefficients are available.16 Therefore, there is significant uncertainty in H$_2$SO$_4$ production rate estimations depending upon which reaction rate constant is applied. To examine this uncertainty, the H$_2$SO$_4$ production rates were calculated by applying two different estimates of reaction rate constants, as summarized in Table 2. Scenario I applied k_{Welz} for reactions of SO$_2$ with sCIs to estimate the maximum H$_2$SO$_4$ forming potential from the sCl reaction channel. However, Scenario II constrains the low end of contributions of the sCl reaction channel to the H$_2$SO$_4$ production by applying $k_{Mauldin}$ to the sCl reactions with SO$_2$. H$_2$SO$_4$ formation rates from the sCl (Figure 3b) and OH reaction channels are compared in Figure 4.

In the bottom panel, the diurnal variations of H$_2$SO$_4$ production rates from SO$_2$ + OH (in red) and sCl + SO$_2$ (in blue) are presented. On the top panel, the ratios of H$_2$SO$_4$ production rates from the sCl reaction channel to the OH reaction channel are presented. As expected, the relative importance of the sCl reaction channel becomes more significant in the afternoon, but the magnitude depends on the scenario. For example, at noon, the H$_2$SO$_4$ production rate ratio, presented in the upper panel of Figure 4, is estimated to be \sim15% for Scenario I. In contrast, only \sim0.2% is estimated for Scenario II. In addition, the sCl reaction channel is the only apparent H$_2$SO$_4$ production pathway during the night when observed OH was below the detection limit. Nighttime H$_2$SO$_4$ production rate estimates vary over a wide range due to the different reaction constants applied in different calculation scenarios. This uncertainty needs to be addressed, as the cause of nighttime new particle formation events continues to puzzle the scientific community.47 It is known that new particle formation events are mostly driven by the significant presence of H$_2$SO$_4$.4 Because the importance of sCl as an oxidant for SO$_2$ has been underestimated, the prevailing hypothesis has been the...
Figure 3. UWCM zero-dimensional model calculations of (a) the diurnal variation of total sCI concentrations, (b) the diurnal variations of speciated sCI concentrations during the high BVOC period, and (c) the comparison of CH$_2$OO concentrations by applying two different k_5 in the model. The model outcomes with Scenario II (Table 2) are shown.

Figure 4. Comparison between OH (red) and sCI (blue) oxidation channels (bottom panel). Two different sCI + SO$_2$ scenarios are compared by applying two different rate constants for isoprene sCIs indicated by dashed and solid blue lines. The ratios of H$_2$SO$_4$ production rates between the sCI and the OH production channels are shown in the top panel. The systematic differences between Scenario I and Scenario II are caused by the applications of different rate constants for sCIs from isoprene ozonolysis, as shown in Table 2.
existence of nighttime OH to trigger R1. However, we did not observe detectable levels of nighttime OH in this study.

Finally, we calculate the loss rates of H$_2$SO$_4$ to compare with the estimated H$_2$SO$_4$ production rates. Using measured aerosol surface area, H$_2$SO$_4$ loss rates from diffusion-limited H$_2$SO$_4$ aerosol uptake (molecules s$^{-1}$) are estimated as follows:

$$R_{AU} = \frac{4}{(\alpha u)} \cdot A \cdot n_x$$ \hspace{1cm} (1)$$

where AU is the aerosol uptake, α is the mass accommodation coefficient, u is the molecular speed (cm s$^{-1}$), A is the Fuchs surface area (cm2), and n_x is the concentration of H$_2$SO$_4$ (molecules cm$^{-3}$). As u (through temperature and pressure), A, and n_x are constrained observationally, the main uncertainty of

Figure 5. (a) The diurnal variations of calculated H$_2$SO$_4$ production (blue) and loss rates (red). Three different loss rate calculations with different mass accommodation coefficients (α) are presented and two different production rate calculations with the different combinations of production channels and reaction constants are presented. (b) The ratios of loss to production rates of H$_2$SO$_4$. The production rates from the model calculation Scenario II with loss rates calculated using different α values are presented.

Figure 6. Diurnal variations of $[\text{OH}]_{SS}$ (eq 3) and $[\text{OH}]_{\text{observed}}$.

$[\text{OH}]_{SS} = \frac{4}{(\alpha u)} \cdot A \cdot n_x$
the estimation is associated with α. Previous studies40,41,48 have consistently applied a value of 0.65 that was recommended by a laboratory flow tube study,70 with a lower limit of 0.43 and an upper limit of 1. Calculated H_2SO_4 aerosol uptake rates using the recommended, upper, and lower values are shown as red traces in Figure 5. In addition, the diurnal profiles of H_2SO_4 production rates are shown in blue. A number of studies40,41 have deduced OH concentrations by assuming pseudo steady-state for H_2SO_4 (loss rate = formation rate) and solving for OH:

$$\left(\frac{4}{\alpha}\right)^{-1} A_n = k_{\text{R1}}[\text{OH}][\text{SO}_4^2^-] + k_{\text{R4}}[\text{sCI}][\text{SO}_4^2^-] \quad (2)$$

$$[\text{OH}]_{\text{SS}} = \left(\frac{4}{\alpha}\right)^{-1} \frac{A_n}{k_{\text{R1}}[\text{SO}_4^2^-]} - \frac{k_{\text{R4}}[\text{sCI}][\text{SO}_4^2^-]}{k_{\text{R1}}[\text{SO}_4^2^-]} \quad (3)$$

The comparisons between production and loss rates in Figure 5a indicate that the H_2SO_4 production rates from all calculation scenarios are substantially lower than H_2SO_4 loss rates calculated with an accommodation rate of 0.65. The application of the lower limit (0.43) in the H_2SO_4 loss rate calculation results in a good agreement between the H_2SO_4 loss and the production rates. More quantitative comparisons are presented in Figure 5b, showing the ratios of H_2SO_4 loss to production rates. In this analysis, we applied Scenario II for the sCI contribution to H_2SO_4 production to compare with the previous studies,40,41 considering a minimal sCI contribution to H_2SO_4 production. When the lower limit ($\alpha = 0.43$) was applied, the ratios were calculated mostly close to 1, as the higher mass accommodation coefficients cause substantial overestimation of H_2SO_4 loss rates. The ratios are 1.44 and 2.05 at noon for $\alpha = 0.65$ and $\alpha = 1.0$, respectively.

The DFW area was under very hot and dry conditions during the observational period as shown in Figure 2. Therefore, it may not be appropriate to apply the empirical mass accommodation coefficient deduced from the experimental setup of H_2SO_4 uptake. This systematic overestimation of H_2SO_4 loss rates would cause overestimation of OH using the pseudo steady-state equation as shown in Figure 6. The figure clearly shows that the application of the recommended mass accommodation coefficient causes significant overestimation of steady-state OH ([OH]$_{\text{SS}}$) with respect to the observed OH diurnal variations. The lower limit of the mass accommodation coefficient (0.43) results in a diurnal variation of [OH]$_{\text{SS}}$ in agreement with the observed [OH] diurnal variation. Indeed, the calculation scheme using a data set from Mexico City, another very dry environment, indicates the substantial systematic overestimation (~30%) of observed OH concentrations, which is consistent with our analysis results.40

REFERENCES

AUTHOR INFORMATION

Corresponding Author

Phone: 1-949-824-4531; fax: 1-949-824-3874; e-mail:sawungk@uci.edu (S.K.)

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This study was supported by the TCEQ Air Quality Research Program. Support of A. P. Rutter by the Dreyfus Foundation is gratefully acknowledged. The authors would like to thank Melanie Calzada and Caroline Gutierrez for their help in data collection in the field and the Texas National Guard for providing access to the Eagle Mountain Lake site.
condensation nuclei and the aerosol indirect effect to Criegee + SO2 chemistry. Atmos. Chem. Phys. 2013, 13 (6), 3163−3176.

