Age-Related Inhibition and Learning Effects: Evidence from Transitive Performance

Joanna Bryson (j.j.bryson@bath.ac.uk)
Department of Computer Science, University of Bath
Bath, BA2 7AY, United Kingdom
The Konrad Lorenz Institute for Evolution and Cognition Research
Adolf Lorenz Gasse 2, A-3422 Altenberg, Austria

Abstract

In the absence of sufficient cognitive stimulation, intelligence — and with it, a capacity for learning new things — tends to degrade with age. In this paper I explore a novel hypothesis: that this may be an adaptive solution, since learning is facilitated by temporarily inhibiting action selection and thus introducing temporal delays. An older animal that is not being cognitively challenged may be in a sufficiently stable environment that reducing the delay before action at the cost of also reducing learning capacity may be a sensible tradeoff. I support parts of this model by matching a simulation of it to known reaction-time results, and by providing an account for previously unexplained task-learning results in adult and aged macaques.

Keywords: inhibition; learning; action selection; transitive inference; primate task learning; consciousness.

Introduction

In the absence of sufficient cognitive stimulation, intelligence — and with it, a capacity for learning new things — tends to degrade with age (Schaie et al., 2004). In contemporary culture, we face the prospect of reduced intelligence with some trepidation, and for good cause. In humans, intelligence is correlated with both health and longevity (Deary et al., 2004). We can take comfort, though, in the lack of sufficient stimulation aspect of these findings. For many individuals, intelligence increases over the course of their life (See Figure 1).

Why should intelligence be a “use it or lose it” type of trait? There may be a simple metabolic explanation as in muscle tone. Neurons are highly plastic so may be open to metabolic optimisation, if the capacity for intelligence (as well as thought itself) has metabolic cost. In this paper I concentrate on a hypothetical second, complimentary cost: thinking and learning take time. Time is costly for two reasons:

1. Competition with others. For social organisms, individuals compete with other agents with very nearly equivalent needs and capabilities (e.g. Schaik & Noordwijk, 1988). Organisms also face competition for resources with other species, the ultimate example being predation.

2. Time is itself a finite resource. An organism has a finite lifespan and daily tasks associated with metabolic demands. The consequence of this is an evolved time bud-
effect traditionally attributed to computation the task requires, yet their performance is identical to younger animals that do. Second, they do not learn new behaviour when their reward schedule changes, unlike younger animals.

My interpretation of these results is that the RT associated with this task is completely independent of the task performance, but rather indicative of a general-purpose learning system which allocates time-consuming cognitive resources based on uncertainty in action selection. I argue that this general-purpose system may be attenuated by aging, and speculate that it may be correlated with conscious attention.

Proposed Global Model for Allocating Cognitive Resources

In this section I briefly review the adaptive tradeoffs influencing aging, then I review an established model explaining reaction-time results in a cognitive vision task. From this I propose a general definition and description of cognition, and propose a model of how cognitive resources are allocated. The following sections pertain to data supporting this model.

Evolution and Aging

Life is often defined in terms of a capacity to replicate. Darwin (1859) proposed an explanation for the diversity of life we see by showing how a process of generating an oversupply of diverse offspring which then compete for finite resources leads to systematic sorts of changes in number and characteristics of species. This explanation of biological evolution has been refined to show that competition between individuals is essentially a proxy for competition between what truly replicates (Dawkins, 1976). Genes form coalitions expressed as organisms, but the organisms compete not necessarily for their own survival, but rather for strategies most likely to propagate as many of their genes as possible into the future.

Since both evolution and other non-biological environmental forces generate constant change in an ecosystem, it is generally not in a replicator’s best interests to inhabit one rigidly-defined organism. Thus many organisms express life histories where generations turn over at a high rate. Offspring carry newer genomes than their parents with incrementally more and newer input from selection. However, other organisms exploit niches where benefits of long life tradeoff more strongly against the benefits of evolutionary approaches to learning. For example, trees exploit size to increase access to light and water and to escape some forms of predation. Acquiring size though takes time.

Some animal species also exploit size and its associated longevity, probably initially for similar reasons as some plants do. However, animals also evolved a capacity for individual learning which provides further benefit, though also associated costs (Barrickman et al., 2008). For example, many social species transmit behaviour not only genetically but through social learning, but reliably acquiring behaviour this way takes time (Cače & Bryson, 2007).

There are two reasons then that it might be adaptive for older animals to reduce their propensity for learning. First, an animal that has been successful for a long time in a fixed environment is likely to have already acquired an adequate behaviour repertoire. Secondly, in a condition where an environment is changing in ways an experienced animal is unable to anticipate, the tradeoff concerning individual vs. genetic learning may shift. It may become more important to favour genetic evolution to the disadvantage of older animals, even if they are still able to reproduce.

Cognition, Learning, Action and Time

I now return to the question of the relationship between time and cognitive behaviour. First, I propose a definition:

- **Cognition** is the process of search an agent goes through when its next action is not readily apparent.

Further, I propose this process consists of:

1. fixing attention on an aspect of the present behaviour context, and
2. searching the expected consequences of potential actions that are primed by this context.

At an explicit level, we consciously experience processes similar to this. The search for a next action persists until we find a solution that passes some threshold criteria for “correct” or “good enough”, or until we “give up”. But why and when do we give up? And how much of this process is really under conscious control? My suggestion is that the priming of potential actions is automatic once attention is fixed on the task, and that in absence of explicit success criteria, the cognitive resources we devote to this task are inversely correlated with our confidence about the current leading candidate action.

To rephrase my proposal, the less certain we are about our next action, the longer we inhibit our performance of that action. While our selection is inhibited and our attention is on the task, an automated process searches for other candidate actions, attending to one at a time. Each such discovered action is tested against an internal model derived from experience (expectations). If an action is found about which we are more certain of a positive outcome, our behaviour expression becomes proportionally less inhibited. When the inhibition times out, the current best candidate action is expressed and its outcome observed.

This model is not entirely novel; it derives from two established ones. The first is the well-established model described by Wolfe et al. (2000) of conjunctive visual search. Vision research has identified a number of properties, such as colour and shape, which are called “pop-out properties” (Treisman & Gelade, 1980). A subject conducting visual search for such a property takes the same amount of time to find an exemplar regardless of the number of distracting items. However, if one must search for an item that combines two pop-out properties, time becomes dependent on the number of distracters. For example, one can easily find the only green T in a field of Ts,
Transitive Performance: A Model Task

Transitive performance is a standard cognitive task used in experimental psychology. Transitive inference (TI) formally refers to the process of reasoning whereby one infers that if, for some quality, A > B and B > C, then A > C. In some domains, such as integers or heights, this property will hold for any A, B or C, though for others it does not. Though classically described as an example of concrete operational thought (Piaget, 1954), it has now been demonstrated in a variety of animals and young children not normally considered to be capable of advanced cognition (Grosenick et al., 2007). The behaviour of choosing A from AC without training after having previously been trained to select A from AB and B from BC is consequently referred to as “transitive performance” (TP).

Representations Underlying TP

A variety of models have been proposed to explain pre-/non-operational transitive performance. Each implies its own processes and representations (see Fig. 2.)

- **a simple association**: a reinforcement weight is paired with each individual stimulus; when more than one stimulus is present, the most reinforced one is selected. This representation is discriminated from others listed here in that items in the middle of the series may have no significant difference in weight (Frank et al., 2003). This representation is most closely associated with the value-transfer model, and is well-supported for explaining TP in birds (von Fersen et al., 1991; Zentall & Sherburne, 1994)

- **b innately sequential**: each value is associated with an ordinal index in a series or a value selected from a gradient; two items are compared by using their indexical values. This representation can be discriminated by generalisations (or mistakes) across series, e.g. the 3rd item of one series may be inserted as the 3rd item of another series. This representation has been convincingly modelled in a related literature on human series learning (Henson, 1998) and has been favoured by many modellers (e.g. Frank et al., 2003). A problem with this model is explaining how subjects determine that TP stimuli form a sequence.

- **c prioritised associations**: an ordered set of paired associations between stimuli and actions; each stimulus is associated with an action (e.g. select the stimuli). If there are actions associated with more than one present stimuli, whichever stimulus has the highest priority takes the agent’s attention and determines its behaviour. This representation can be discriminated from the others by the fact that it fails systematically when three stimuli are presented, even though TP is observed for any pair. It is the only model fully consistent with human and other primate behavioural data on three-item performance (McGonigle & Chalmers, 1977; Chalmers & McGonigle, 1984; Bryson & Leong, 2007). It is also parsimonious in that it does not assume the recognition of a sequence. Rather, it assumes prioritising associations is a standard part of task-learning, an assumption quite similar to that made by the well-established ACT-R model of human learning (Wood et al., 2004).

The Two-Tier Model

In previous work we have simulated the prioritised associative model of transitive performance (Bryson & Leong, 2007; Wood et al., 2004). We called our model the two-tier model, to emphasise the fact that we were proposing two concurrent disjoint learning tasks. One tier learns the of paired association between stimuli and one of two actions: select or inhibit selection (Harris & McGonigle, 1994). Another tier learns a prioritisation of these rules. Of course, because this learning system is modular it can easily be trapped in local minima. Though apparently a disadvantage, the difficulties our simulation has learning the original adjacent pairs models the difficulty of live subjects. Both our simulation and real animals need orderly training to reliably master the task, and even so some agents fail to meet criteria. Further, the
errors made by our system are consistent with those made by live subjects. The modules we propose are consistent with one of the leading theories of hippocampal functioning (Baxter & Murray, 2001; Heckers et al., 2004; Alvarado & Bachevalier, 2005).Modularity is adaptive because intelligent solutions are only useful if they are computationally tractable (Bryson, 2002).

Explaining the Symbolic Distance Effect

I now return to testing the action-selection model described in Section 2. The two-tier model has been shown to account for all the known characteristics of TP with one exception, the Symbolic Distance Effect (SDE). The SDE is a characteristic reaction time (RT) effect: one that first drew interest to TP as a learning task (Bryant & Trabasso, 1971). When subjects execute a transitive comparison, they operate faster the further away two items are in the implied sequence. For example, a correct decision on BD would be slower than one on BE, even if E is not the last item in the sequence.

If TP were performed by simple inference, then items further apart would be expected to take longer, because more inferences have to be performed. That they are in fact faster helped motivate the *innately sequential* theories described earlier, as researchers tried to conceive an internal representation where further-removed stimuli were easier to discriminate (Bryant & Trabasso, 1971). However, the SDE is not a reliable individual effect, only an aggregate one (McGonigle & Chalmers, 1992). This is another factor in favour of prioritised association models, since they allow individual differences in the order of representation (Harris & McGonigle, 1994; Wood et al., 2004).

In the two-tier model, priorities of the associated stimulus / action pairs are normalised such that each pair had a value between 0 and 1, and all the priority values add up to 1. This paper’s action-selection hypothesis assumes RT should be correlated with certainty in action choice. Here I propose “certainty” be modelled as the distance between the priorities of any two stimuli. I examined these values for a population of 144 agents with a wide range of individual learning parameters, the same range reported in Bryson & Leong (2007). These were trained on adjacent pairs drawn from seven stimuli, A–G. The agents for the present experiment were never exposed to transitive test pairs, so these could not affect their priority values. Although there is a large variety of individual orderings of priority on stimuli, in aggregate the average ratio of

\[
\frac{\text{priority}(B) - \text{priority}(E)}{\text{priority}(C) - \text{priority}(E)}
\]

(1)

is 2.034, with ninety-five percent confidence intervals in the range [1.98, 2.09] (SD = 0.33, SE = .03). In other words, if the reaction time for the two-tier model is set proportional to the absolute difference between the priorities for the stimuli, then two-tier simulations do display the SDE in aggregate though not for every individual. On this qualitative level, the results match those reported by McGonigle & Chalmers (1992) for live subjects.

Age, Action and Learning

As further support for my hypothesis, I now propose a novel explanation of the results of Rapp et al. (1996). It has generally been assumed that RT results are due to processing complexity; for example that more sequential steps must be taken to perform a task. But the model I am proposing here assumes an any-time process (Dean & Boddy, 1988). An any-time algorithm is one which can always generate some solution, but that improves the solution the longer it has to compute. In my proposal, the length of time given is determined by the agent’s certainty about its next action, and controlled by frontal-lobe inhibition. During the period of delay, the agent visually and intellectually attends to the problem space, mentally exploring possible next acts until it becomes disinhibited either because the inhibition fades naturally or because the level is reset when a superior solution is discovered. As I proposed in the introduction, the period of inhibition may also be determined by age, growing shorter as an adult ages.

In the case of TP, the agent is unlikely to find another solution because the task space is severely impoverished, as is typical in artificial experimental settings. However, we are still able to view the inhibitory aspect of this process, which results in the SDE.

TP in Aged Monkeys (Rapp et al., 1996)

Support for this theory can be found in the work of Rapp et al. (1996), on TP in aged monkeys. First, Rapp et al. show that rhesus macaques of an advanced age (20-24 years) learn the initial, adjacent pairs for TP in approximately the same time as younger animals. Further, those that pass criteria in learning the pairs perform just as well as younger animals on the transitive pairs. However, these aged animals do not exhibit the SDE, but rather complete all transitive tests in the same time, which is much faster than their younger conspecifics. In general, RTs tend to increase with age, so this finding is particularly remarkable. It also indicates that the SDE does not reflect computational processing necessary for TP.

Second, due to an error in procedure, all monkeys received an unusual reward schedule for the only transitive pair they were initially tested on, BD. The error in procedure was as follows. Bryant & Trabasso (1971), who originally specified the protocol for pre-operational TP, specified that the test, transitive pairs should be “non-differentially rewarded”. Since Bryant & Trabasso worked with children, the reward consisted of thanking the child for any choice, but not telling them whether they were right or wrong. This solution is not typically seen as available for non-human species. McGonigle & Chalmers (1977) reasoned that non-differential reward should simply be reward regardless of choice. Since well-trained subjects presumably expect reward for the choice they have made, this schedule is the least disruptive available.
Rapp et al. however interpreted non-differential reward to mean random reward. In the initial testing, they rewarded any choice on BD with 50% probability. The subjects were then trained on further adjacent pairs (EF and FG). Rapp et al. were surprised to subsequently find that the younger animals, while performing correctly on the newly-available transitive pairs such as BE, CE, and DF, were now at chance on BD. The aged monkeys however still performed correctly on BD.

The fact that the performance changed for the younger adult animals after the unusual reward schedule (not on test day) has subsequently been explained by Ellenbogen et al. (2007), who show the importance of both delay and sleep for learning TP implicitly. What is more relevant to the present theory is the correlation between the lack of SDE in the aged monkeys and the lack of effect of the random reward schedule. This sustains my argument that the purpose of the period of the SDE is in fact to explore alternative solutions which leads as a side effect to learning.

Conclusion

In this article I have proposed two things:

1. A relatively novel explanation of reaction time effects in action selection. This extends from the Wolfe et al. (2000) account of reaction time for visual cognition.

The explanation of reaction time effects is that animals allocate time to be spent on search and learning based on how uncertain they are of the next action they should perform. This uncertainty triggers a level of inhibition which is also dependent on a second factor — the age of the animal. The adaptationist explanation for this latter dependency I have proposed is that in a stable environment aged individuals can be expected to already know appropriate action, and in a changing environments the optimal average reproductive age for a species may decrease.

Clearly at this point my hypotheses are speculative, as such they motivate a good deal of future research. For example, this model predicts that it may be possible to eliminate reaction time effects (such as the symbolic-distance effect for transitive performance) in human subjects, perhaps by distracting their attention with another task or by chemically altering their level of inhibition. My hypothesis predicts that the new RT will be directly correlated with the level of learning, but less so with the level of performance. In the present paper I have supported my proposals in two ways:

- By providing the first explanation of previous findings by Rapp et al. (1996), that aged monkeys express no SDE and also do not detect changes to their reward schedule, and
- to extend the Bryson & Leong (2007) two-tiered model of transitive performance to account for the symbolic-distance effect.

Acknowledgements

Mark Baxter first drew my attention to Rapp et al. (1996) as an unexplained result in the area of both aging and transitive performance, and has generally served as an expert consultant, including reading drafts. Thanks also to Nick Priest for a useful discussion of evolution and aging.

References

Čače, I., & Bryson, J. J. (2007). Agent based modelling of communication costs: Why information can be free. In C. Lyon, C. L. Nehaniv, & A. Cangelosi (Eds.), *Emergence*
and evolution of linguistic communication (pp. 305–322). London: Springer.