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Identifying the genomic regions bound by sequence-specific regulatory factors is central 

both to deciphering the complex DNA cis-regulatory code that controls transcription in 

metazoans and to determining the range of genes that shape animal morphogenesis. Here, 

we use whole-genome tiling arrays to map sequences bound in Drosophila melanogaster 
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embryos by the six maternal and gap transcription factors that initiate anterior–posterior 

patterning. We find that these sequence-specific DNA binding proteins bind with 

quantitatively different specificities to highly overlapping sets of several thousand 

genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro 

recognition sequences for each factor are enriched in bound regions. This enrichment, 

however, is not sufficient to explain the pattern of binding in vivo and varies in a context-

dependent manner, demonstrating that higher-order rules must govern targeting of 

transcription factors. The more highly bound regions include all of the over forty well-

characterized enhancers known to respond to these factors as well as several hundred 

putative new cis-regulatory modules clustered near developmental regulators and other 

genes with patterned expression at this stage of embryogenesis. The new targets include 

most of the microRNAs (miRNAs) transcribed in the blastoderm, as well as all major 

zygotically transcribed dorsal–ventral patterning genes, whose expression we show to be 

quantitatively modulated by anterior–posterior factors. In addition to these highly bound 

regions, there are several thousand regions that are reproducibly bound at lower levels. 

However, these poorly bound regions are, collectively, far more distant from genes 

transcribed in the blastoderm than highly bound regions; are preferentially found in 

protein-coding sequences; and are less conserved than highly bound regions. Together 

these observations suggest that many of these poorly-bound regions are not involved in 

early-embryonic transcriptional regulation, and a significant proportion may be 

nonfunctional. Surprisingly, for five of the six factors, their recognition sites are not 

unambiguously more constrained evolutionarily than the immediate flanking DNA, even 

in more highly bound and presumably functional regions, indicating that comparative 
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DNA sequence analysis is limited in its ability to identify functional transcription factor 

targets.  

Citation: Li X, MacArthur S, Bourgon R, Nix D, Pollard DA, et al. (2008) http://biology.plosjms.org/cgi-
bin/main.plex?form_type=amt_task_choice&ms_id=33487&ms_rev_no=1&ms_id_key=840zmvLkvbnOvj
nOfV0Myg&j_id=43&task_choice=Modify_Manuscript_DataTranscription factors bind thousands of 
active and inactive regions in the Drosophila blastoderm. PLoS Biol 6(2): e027. 
doi:10.1371/journal.pbio.0060027 

Author Summary 

One of the largest classes of regulatory proteins in animals, sequence-specific DNA 

binding transcription factors determine in which cells genes will be expressed and so 

control the development of an animal from a single cell to a morphologically complex 

adult. Understanding how this process is coordinated depends on knowing the number 

and types of genes that each transcription factor binds and regulates. Using 

immunoprecipitation of in vivo crosslinked chromatin coupled with DNA microarray 

hybridization (ChIP/chip), we have determined the genomic binding sites in early 

embryos of six transcription factors that play a crucial role in early development of the 

fruit fly Drosophila melanogaster. We find that these proteins bind to several thousand 

genomic regions that lie close to approximately half the protein coding genes. Although 

this is a much larger number of genes than these factors are generally thought to regulate, 

we go on to show that whereas the more highly bound genes generally look to be 

functional targets, many of the genes bound at lower levels do not appear to be regulated 

by these factors. Our conclusions differ from those of other groups who have not 

distinguished between different levels of DNA binding in vivo using similar assays and 

who have generally assumed that all detected binding is functional. 
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Introduction 

Deciphering the transcriptional information contained in the extensive cis-acting 

sequences that direct intricate patterns of gene expression in animals is a major challenge 

in biology. Animal genomes encode several hundred (e.g., Drosophila) to several 

thousand (e.g., human) transcription factors [1-3]. These proteins mediate transcription 

by binding in a sequence-specific manner to cis-regulatory modules (CRMs) found 

throughout the nonprotein coding portions of animal genomes (reviewed in [4-7]). The 

cells in which a CRM will activate or repress transcription of its target gene(s) are 

determined by the number, affinities, and arrangements of the transcription factor 

recognition sequences contained in the CRM, the expression patterns of the regulators 

that bind these sequences, and how the various factors interact. Animal sequence-specific 

regulators, however, generally recognize short, degenerate DNA sequences that occur 

frequently throughout the genome, and only a small subset of these predicted recognition 

sequences are thought to be functional targets of the transcription factor in vivo [4]. 

Because we do not yet understand the rules governing transcription factor binding or 

combinatorial interactions between factors, it is a major challenge to identify animal 

CRMs de novo or to predict how genes will be regulated based on their flanking DNA 

sequences alone. 

Closely linked to this challenge is the problem of understanding the control of 

morphogenesis by developmental regulatory networks. Animals are composed of 

complex three-dimensional arrays of cells whose movements, shape changes, divisions, 

and patterns of determination and differentiation are coordinated by master regulatory 

genes, many of which encode transcription factors. If we knew the range of genes directly 
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controlled by these regulators, it would greatly aid studies of how they coordinate the 

complex processes of morphogenesis.  

To address these twin challenges, we have initiated an interdisciplinary analysis 

of the regulatory network controlling spatial patterning in the Drosophila melanogaster 

blastoderm embryo [8-11]. This network has been studied extensively, and we can be 

fairly confident that most of the major regulators have been identified [12,13]. 

Approximately 50 transcription factors are known to play a role in patterning the 

pregastrula embryo, forming a series of transcriptional cascades that regulate the 

formation of the anterior–posterior (A-P) and dorsal–ventral (D-V) axes. To decipher the 

combinatorial code by which transcription factors interact, it will be essential to have data 

for the great majority of factors in a system, and it should be possible to derive such 

comprehensive data for the early Drosophila network. 

In this system, A-P patterning is initially established by maternally controlled 

activity gradients of two transcription factors: Bicoid (BCD), which has its highest 

activity in the anterior portion of the embryo and decays more posteriorly, and Caudal 

(CAD), which has its highest activity in the posterior portion of the embryo and decays 

anteriorly (Figure 1). Amongst the earliest zygotically transcribed genes are four targets 

of BCD and CAD—hunchback (hb), Krüppel (Kr), knirps (kni), and giant (gt)—the 

“gap” genes (Figure 1). These six genes encode transcription factors that work together to 

segment the A-P axis of the embryonic trunk (a collection of additional regulatory factors 

are involved in patterning the head and tail) [14-16]. For example, the second stripe of 

the pair-rule gene even-skipped (eve) is produced by the action of BCD, HB, KR, and GT 

on a CRM located approximately 1.5 kb upstream of the coding gene. In this case, BCD 
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and HB act coordinately as activators in the same cells, whereas KR and GT each acts to 

repress expression in different parts of the embryo, restricting CRM output to a narrow 

stripe lying between the single band of KR expression and the anterior expression domain 

of GT [17,18]. This same collection of factors when bound to other CRMs produces 

different patterns of gene expression. The different combinations of recognition 

sequences in each CRM dictate the binding of factors in CRM-specific numbers and 

orientations. This binding, in turn, modulates the activity of each factor (in some cases 

changing activators into repressors, in others leading to binding-site competition or 

cooperative interactions) and produces a distinct transcriptional response [19-22]. Thus it 

is essential to study and model the action of these proteins in their native context. 

In this paper, we use chromatin immunoprecipitation (ChIP) and Affymetrix 

whole-genome tiling arrays to map the genomic DNA regions bound by these six factors 

in D. melanogaster embryos. Our results provide the most comprehensive in vivo DNA 

binding data for a set of cooperating transregulators specifying complex spatial patterns 

of expression in an animal. They provide a framework for ongoing efforts to decode 

transcriptional information in the genome and model developmental regulatory networks. 

Results 

Genome-Wide Mapping of Bound Regions 

To identify the genomic regions bound in vivo by the gap and maternal factors 

controlling trunk segmentation, we adapted chromatin immunoprecipitation and 

microarray (ChIP/chip) methods [23,24]. Briefly, intact blastoderm embryos (late stage 4 

through stage 5) were treated with formaldehyde to crosslink proteins and DNA, after 
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which chromatin was isolated, fragmented to an average length of 600 bp, and 

immunoprecipitated with antibodies recognizing the target protein [25]. The recovered 

material was amplified and hybridized to an Affymetrix whole-genome tiling array that 

contains over three million features representing 25-bp sequences spaced on average 35 

bp apart across the unique portion of the D. melanogaster genome [26].  

Our ChIP and DNA amplification protocols were optimized to maximize the 

signal-to-noise ratio, something that is especially critical in this system because these 

factors are only expressed at high levels in approximately 20% to 30% of cells (Figure 1). 

We also developed and optimized computational and statistical methods to provide an 

extensive, and accurate, high-resolution map of regions bound by each factor.  

Data were obtained using affinity-purified antibodies to KNI, KR, HB, GT, BCD, 

and CAD. In addition, to detect genes that are transcribed at this stage of development, 

further immunoprecipitations were performed using a monoclonal antibody recognizing 

the phosphorylated form of the C-terminal heptapeptide repeat of RNA polymerase II 

[27].  

To reduce the possibility that the antibodies against gap and maternal factors 

might cross-react with proteins other than the one against which they were raised, we 

affinity purified all antisera against recombinant proteins engineered to remove amino 

acid sequences found in any other Drosophila proteins. For BCD, HB, KR, and KNI, we 

used two different antibody preparations that were independently purified against 

nonoverlapping epitopes; for CAD and GT, we were only able to obtain one set of 

purified antibodies per protein.  
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For each purified antisera, two independent replicates of three different sample 

types were analyzed on separate arrays: (1) “Factor immunoprecipitates (IPs)” obtained 

by immunoprecipitation using a factor-specific antibody; (2) “immunoglobulin G (IgG) 

control IPs” obtained by immunoprecipitation using a normal IgG antibody; and (3) 

“input DNA” obtained from the chromatin prior to immunoprecipitation, for a total of six 

arrays per antibody (Figure 2A and 2B).  

To correct for the nonuniform hybridization response of the 25-bp 

oligonucleotides [28,29], we divided the mean hybridization signal for each array 

element in the Factor IPs and IgG control IPs by the mean hybridization signal for the 

same feature in the input DNA (Figure 2C). To further reduce noise, logarithms of these 

calculated oligonucleotide ratio scores were averaged (throwing out the highest and 

lowest values to produce a “trimmed mean”) in 675-bp windows (approximately equal to 

the size of the immunoprecipitated fragments) centered around each array element to give 

a hybridization window score (Figure 2D).  

To determine which window scores represent significant enrichment in the Factor 

IP samples, we estimated false-discovery rates (FDR; the fraction of windows with equal 

or greater scores that are not detectable enriched in the IP) using two separate methods 

(Figure 2F and 2G). One method determined empirically the distribution of scores for 

unenriched windows using the distribution of window scores in the IgG control IP 

(Figure 2G; Materials and Methods), the other method estimated this distribution directly 

from the Factor IP using a “symmetric null distribution” method [30] (Figure 2F).  

For each FDR estimation method, all overlapping windows with mean 

hybridization scores whose corresponding FDRs were less than either 0.01 or 0.25 were 
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collapsed into contiguous bound regions. Each bound region was assigned a hybridization 

score and FDR level equal to those of its highest scoring window, and the location of the 

maximum array hybridization within each bound region was determined and defined as 

its “primary peak window” (Figure 2E).  

Our subsequent analyses focus on bound regions with FDRs below 0.01 and 0.25 

(the 1% and 25% sets, respectively). On average, the 25% FDR sets contained three to six 

times the number of genomic regions as their respective 1% FDR sets. Table 1 

summarizes the number of bound regions identified for each factor; Tables S1 and S2 

provide lists of the regions bound by each factor, and the locations of primary peak 

windows, as well as information on genes proximal to the regions for the 1% FDR and 

25% FDR sets, respectively. 

Data Quality 

There is excellent agreement between technical replicates as well as data from 

immunoprecipitation experiments using antibodies recognizing distinct epitopes on the 

same transcription factor (see Figure 3). There is also good correspondence of the bound 

regions identified for the different antibodies (Table 1). On average, 96% of the 1% FDR 

bound regions detected with one antibody overlap regions that score above the 25% FDR 

threshold for the second (Table 1) (1% FDR regions were compared to 25% FDR regions 

to avoid not counting regions that lay just above the 1% FDR threshold for one antibody 

and just below for the other, which results in a somewhat lower overlap between the 1% 

FDR regions for both antibodies [Table 1]). Scatter plot analyses, presented later, also 

show a strong quantitative correlation between data from experiments using different 

antibodies to the same factor. 
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The two methods for estimating FDRs also broadly agree, especially at the 1% 

FDR level (Table 1 and Materials and Methods). (For simplicity, in the remainder of the 

paper, we use only the symmetric null FDR estimates.) 

To confirm the accuracy of our FDR estimates, we randomly selected 33 regions 

from the KR 1% FDR set and 23 regions from the BCD 1% FDR set, and amplified 

approximately 100-bp fragments close to the hybridization intensity peaks in each region 

by quantitative polymerase chain reaction (Q-PCR) from immunoprecipitated DNA. All 

of the regions tested were enriched in immunoprecipitations using both of the 

independently affinity-purified antibodies used for BCD and KR (Figure S1). In addition, 

11 out of 16 KR bound regions selected from the bottom half of the 25% FDR list were 

enriched by Q-PCR from immunoprecipitated DNA (Figure S1), consistent with there 

being a significant fraction of bona fide bound regions between the 1% and 25% FDR 

thresholds.  

In vitro experiments have previously shown that UV or formaldehyde 

crosslinking correlates with levels of transcription factor occupancy on DNA [25,31,32]. 

To determine whether our experimental processing of immunoprecipitated material was 

distorting the levels of crosslinking, we carried out a series of control experiments. First, 

we applied the same series of amplification, labeling, and hybridization steps used for 

immunoprecipitated DNA to a sample of genomic DNA to which D. melanogaster 

bacterial artificial chromosomes (BACs) were added at known concentrations, and 

compared the data to unspiked genomic DNA. The ratio of signal intensities at oligos 

found in the BACs are lower than expected from the concentration of spiked BACs, but 

this compression is essentially monotonic and preserves the relative ranking of bound 
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regions (Figure S2B). Second, control Q-PCR experiments using immunoprecipitated 

chromatin samples also support the view that amplification and array hybridization do not 

profoundly distort relative DNA concentrations (Figure S2A). Third, the relative primary 

peak window scores for BCD on a small collection of highly, moderately, and poorly 

bound regions are in line with the relative levels of in vivo UV crosslinking determined 

by direct Southern blot analysis of immunoprecipitated DNA [31].  

In addition, the BAC experiments suggest that the great majority of regions 

significantly enriched after immunoprecipitation of chromatin will be detected by our 

array assay. We produced a set of 1% FDR regions for the spiked BAC DNA, and found 

that 100% of the regions present at 10-fold excess, 94% of the regions at 3-fold excess, 

and 51% of regions at 2-fold excess were present in the 1% FDR set. Although these 

model experiments do not precisely replicate the situation in the ChIP/chip experiments, 

they suggest that our amplification, hybridization, and array analysis methods are quite 

sensitive and should result in very few false negatives among moderately and highly 

enriched regions. The high concurrence between independent data from separate 

antibodies to the same factor also argue strongly against a significant false-negative rate 

among the 1% FDR regions.  

Genome-Wide Binding Overview 

The most striking feature of the genome-wide data is the large number of bound 

regions identified for each factor (see Table 1), with most factors having thousands of 

bound regions. A total of 10.8 Mb are covered by 1% FDR bound regions identified for 

one or more of these factors, and a total of 6.6 Mb are within 500 bp of a primary peak 

for at least one of the regions bound above the 1% FDR threshold. These numbers 
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represent 9.1% and 5.6% respectively of the 118.4 Mb euchromatic portion of the 

Release 4 genome sequence. A total of 40.38 Mb are covered by 25% FDR bound 

regions, and 31.2 Mb are within 500 bp of a primary peak of a 25% FDR bound region.  

These bound regions include all of the 43 CRMs known to be targets of one or 

more of these gap and maternal factors [9,33] (see Figures 3 and 4), arguing again the 

false-negative rate in our ChIP/chip assay being very low. The known targets are, on 

average, more highly crosslinked than most of the identified bound regions, although 

some known targets are only poorly crosslinked (Figures 5 and S3), suggesting that lower 

levels of signal on the array may correspond to functional binding. In addition, the array 

hybridization signal frequently extends at low, but significant, levels many kilobases 

beyond the mapped edges of these known CRMs (e.g., Figure 3). Although part of this 

flanking signal close to the CRMs is due to hybridization of immunoprecipitated DNA 

fragments that include the CRMs, because the signal extends well beyond the length of 

the DNAs immunoprecipitated, much of it must be due to crosslinking of the factors to 

sequences outside of the mapped CRMs (for separate in vivo UV crosslinking data 

supporting this, see [32,34]). 

There is considerable overlap of the regions bound by each factor. Collectively, 

82% of 1% FDR bound regions overlap a 25% FDR bound region by at least 500 bp for 

at least one of the other five factors (Table 2).  

Despite this extensive overlap among the regions bound by each factor in vivo, 

each factor binds with quantitatively different preferences. For example, whereas there is 

strong correlation of hybridization intensities between different antibodies for KR, there 

is a lower correlation between the hybridization intensity of KR and the other factors in 
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multiply bound regions (Figure 6). Similar results are seen for the other factors (Figure 

S4).  

The variation in hybridization intensities for factors on the same target likely 

represents differences in the number of molecules of each factor occupying the shared 

target regions, either through differences in the number of recognition sequences bound 

and/or levels of occupancy at these sequences. Since many co-bound regions represent 

CRMs that direct different patterns of transcription, the quantitative differences in degree 

of binding of each factor must play a significant role in determining the unique output of 

these CRMs.  

Characteristics of Genomic Regions Associated with Bound 
Regions 

Given the large number of in vivo binding regions identified in our analysis, the 

six gap and maternal factors may regulate a much broader array of genes and CRMs than 

the small collection of known target elements. To investigate to what extent the observed 

binding is associated with transcriptional regulation, we mapped each bound region to the 

gene transcribed in the blastoderm (based on our RNA polymerase II ChIP/chip data) 

whose 5′ end was closest to the primary peak of the bound region (see Tables S1 and S2). 

This mapping was imperfect due to the close packing of genes in the genome, the 

incomplete annotation of transcription units, and the ability of CRMs to act over large 

distances that sometimes skip intermediate genes; nonetheless, we still expected these 

associations to be broadly accurate. 

The most highly bound regions for each factor were preferentially found near 

genes that are transcribed in the blastoderm (Figures 7 and S5). For example, 49% of the 
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100 regions most highly bound by KR are within 10 kb of a transcribed gene, but at the 

1% FDR threshold, a point at which there are insufficient false positives to significantly 

affect the analysis, only 22% of regions are within that distance of a transcribed gene 

(Figure 7B). There is also a strongly nonrandom association of highly bound regions with 

genes that show patterned expression in the blastoderm (Figures 7A, 7B, and S5) [35].  

To further dissect these associations, we evaluated the enrichment of gene 

ontology (GO) terms of the putative targets of bound regions for each factor as a function 

of their position in the corresponding rank list (Figures 8 and S6). There is a consistent 

enrichment in the most highly bound regions for all factors of GO terms associated with 

A-P patterning, developmental control, and the regulation of RNA polymerase 

transcription.  

We also examined the percent of primary peak windows located in intergenic, 

intronic, 5′ and 3′ untranslated mRNA sequences, and protein coding regions (Figure 9). 

The great majority of the 500 most highly bound regions are found in intronic and 

intergenic sequences, as expected for transcription factor binding associated with gene 

regulation, but only at marginally higher frequencies than they would be found in a 

random selection of genomic regions (Figure 9). Surprisingly, for all factors except KR, 

many of the more poorly bound regions between the 1% and the 25% FDR thresholds are 

preferentially found in protein-coding regions, which are not generally thought to code 

for CRMs (Figure 9).  

Thus it appears that many of the most highly bound regions are involved in 

patterning nearby genes and the set of highly bound regions likely includes many new 

blastoderm CRMs. In contrast, many of the thousands of poorly bound regions seem 



 16 

unlikely to be acting as classical CRMs directing transcription in the early embryo. Some 

may instead be active as CRMs later in development, when they may be more highly-

bound by these same factors; others may have some as yet undetermined function distinct 

from transcriptional regulation. But it is quite possible that a substantial proportion have 

no function at all.  

Novel Targets Bound 

Among the most highly bound regions are four interesting classes of putative 

novel CRMs. (1) The noncoding regions flanking genes already known to be controlled 

by the early A-P regulators contain sequences bound highly by several of these factors 

that are distinct from their known CRMs (e.g., Figure 10A). (2) Many genes not 

previously known to be targets of the A-P regulators, but which are transcribed in spatial 

patterns in the blastoderm [35], are associated with regions bound by these factors (e.g., 

Figure 10B). (3) A large proportion of transcribed microRNA (miRNA) genes are 

flanked by regions bound by A-P regulators (Figure 10C, Table S3), consistent with the 

increasing evidence that miRNAs are spatially patterned and play important roles in 

developmental processes [36,37]. (4) Noncoding sequences near the principle zygotic 

regulators of the D-V axis are highly or moderately bound by many of the A-P regulators 

(e.g., Figure 10D).  

Whereas the first three classes of putative target sequences are consistent with 

previous gene expression analysis, the observation that D-V regulators are bound was 

surprising as it has long been thought that they are not controlled by early A-P regulators. 

To test whether this binding might be functional, and whether previous regulation of D-V 

genes by A-P factors has been overlooked, we measured the mean levels of mRNA 
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expression of four D-V regulators along the A-P axis using high-resolution imaging 

methods developed by the Berkeley Drosophila Transcription Network Project (BDTNP) 

[10,11]. Figure 11 shows that mRNA levels of the D/V regulators rhomboid (rho), 

zerknult (zen), twist (twi), and snail (sna) change significantly along the A-P axis in wild-

type embryos. The larger changes in expression can be readily seen in images of 

individual stained embryos, but smaller or more gradual changes—that can be as large as 

40%—are only reliably detected by quantitative analysis (Figure 11). In mutant embryos 

that lack BCD, the expression of sna mRNA along the A-P axis changes in the manner 

expected in these mutants because the posterior half of the pattern is duplicated as a 

mirror image in the anterior. The BCD mutant data and our binding data suggest that the 

early A-P regulators control expression of D-V genes. This result parallels similar recent 

observations of the binding and regulation of A-P genes by D-V factors. The expression 

of many A-P genes is modulated up to 2-fold along the D-V axis [10,11] and analysis of 

genome-wide binding of the D-V factors Dorsal, Snail, Twist, Medea, and Zerknult show 

that these proteins bind to many A-P genes [38,39] (unpublished data). 

DNA Recognition Sequences in Bound Regions 

One of our chief motivations for determining the sequences bound by 

transcription factors in vivo is to understand the molecular mechanisms that target factors 

to DNA. To begin this analysis, we examined the distribution of predicted recognition 

sequences for each factor in its bound regions and in regions where we do not detect it 

binding. 

We derived position weight matrices (PWMs) for each of the six factors either 

from DNaseI footprint data of recognition sequences found in known enhancers [40] or 
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from in vitro selection (SELEX) experiments (BDTNP, unpublished data). Two, BCD 

and KR, are shown in Figure 12A. Although such PWMs do not provide a complete 

description of a factor’s binding specificity, they provide a first-order approximation 

[41].  

We used these PWMs to identify all sequences across the genome that match each 

factor’s in vitro binding specificity, and found that recognition sequences for each factor 

are enriched in their respective bound regions, the enrichment being greatest at the peak 

of array intensity hybridization (Figures 12B and S7B).  

Such enrichment demonstrates that a significant fraction of the binding arises 

from the direct, sequence-specific interaction of each factor with its recognition 

sequences. However, bound regions, especially the most highly bound regions, show a 

marked G-C bias relative to their flanking sequences (Figure 13A). This bias could lead 

to the spurious observation of recognition sequence enrichment, especially because many 

transcription factors recognize G-C–rich sequences.  

To ensure that the observed enrichment of recognition sequences for the gap and 

maternal factors in 1% FDR bound regions is not an artifact of general G-C bias, we 

repeated the enrichment analysis with PWMs generated by randomly permuting the order 

of columns within the real PWMs. Matches to these scrambled matrices are not enriched 

in bound regions, except in the case of HB whose homogenous PWM is not significantly 

altered by the permutation (Figure S9). However, a G-C bias would be expected to lead 

to a deficit of A/T-rich HB recognition sequences, and thus the enrichment of HB 

recognition sequences cannot be a result of G-C bias.  
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As a separate control, we examined the enrichment of recognition sequences for 

each factor in regions not bound by the factor, but bound by at least one of the other five. 

These regions are G-C rich, but again, only very modest or no enrichment is observed 

(Figure S10). Thus, the enrichment of recognition sequences is largely specific to regions 

bound by the factor and to the factor’s correct PWM.  

There is a strong positive correlation between the predicted affinity of a 

recognition sequence (estimated here by its score against a factor’s PWM) and its 

enrichment (Figure 12B and S7B). For example, the eight highest-affinity variants of the 

8-bp BCD recognition sequence (defined here as sequences that have log-likelihood 

scores against the BCD PWM of less than 0.0001; smaller log-likelihood values represent 

better matches to the PWM) are enriched over 8-fold in BCD bound regions relative to 

flanking noncoding DNA. In contrast, the 184 medium-affinity variants (those with log-

likelihood scores between 0.001 and 0.003) are enriched only about 1.5 times over 

background. However, the total excess (compared to noncoding sequences in which we 

did not detect binding) of medium-affinity BCD recognition sequences in BCD bound 

regions, 1.3 recognition sequences per 1,000 bp of bound region, is higher than the excess 

of high-affinity recognition sequences, 1.0 per 1,000 bp (unpublished data), suggesting 

that medium-affinity sites likely play a significant role in targeting factors to DNA.  

The enrichment of recognition sequences is greatest for the most highly bound 

regions, and declines with decreasing levels of in vivo binding (Figures 12C and S7C). 

Despite this decrease in enrichment, the high-affinity recognition sequences are enriched 

far down the rank lists.  
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Although recognition sequences are enriched on average in bound regions, 

consistent with previous data [32,34,42], the enrichment is modest and is not uniform 

among bound regions. A significant number of bound regions contain fewer recognition 

sequences for the bound factor than are found in many unbound regions (Figures 12D and 

S7D). For example, 80% of BCD 1% FDR primary peaks contain no predicted high-

affinity BCD recognition sequences (p < 0.0001), and 20% do not contain any 

intermediate-affinity sequences (p < 0.001). Furthermore, there are numerous unbound 

regions that contain intermediate- and high-affinity recognition sequences.  

Excess of G-C Base Pairs in Bound Regions 

The excess of G-C bias in bound regions noted above warranted further analysis. 

We were concerned that the correlation between strength of binding and G-C content 

might reflect a bias for G-C rich sequence to hybridize more strongly to the array. We 

used the BAC data described above to investigate the effect of G-C content on the 

hybridization score in the 675-bp windows we used in our analyses. There is a tendency 

for windows with (on average) low G-C content to have lower mean window scores 

(Figure S8), which could bias the selection of peak hybridization windows within bound 

regions towards those with higher G-C content. However, this effect would likely be 

somewhat countered by the tendency for windows with high G-C content to have lower 

mean window scores (Figure S8). In addition, peak window scores correlate with 

enrichment measured by Q-PCR, which is not subject to G-C bias (Figures S1 and S2). 

Finally, a similar GC bias has been observed in a large collection of enhancers not 

identified by array hybridization [43]. We therefore conclude that bound regions are G-C 

rich relative to other noncoding DNA. 
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Recognition Sequences Enrichment Is Context Dependant 

Many lines of evidence suggest that animal transcription factors act in a context-

dependant, combinatorial manner in which the action of one factor influences the 

behavior of another [44-49]. As a result, it is widely believed that a key to understanding 

how specific CRMs are constructed so that they are correctly bound by a defined set of 

transcription factors and produce specific patterns of expression lies in understanding a 

code that integrates information from multiple recognition sequences. For example, the 

ability to predict the locations of functional CRMs for the six early regulators is greatly 

improved when binding of multiple factors is considered at the same time, rather than 

when binding for factors is considered in isolation [8,9]. These observations suggest that 

the binding of one factor may influence the DNA binding or activity of other factors on 

an element. To begin to search for evidence of such effects in our dataset, we examined 

how the binding of additional factors influenced the frequencies of predicted recognition 

sequences for each factor in its bound regions (Figure 14). For some factors, such as 

BCD, little difference is seen, but for others. substantial, and in some cases 

counterintuitive, changes are seen. Predicted HB recognition sequences are enriched in 

regions bound exclusively by HB and by HB in combination with one or more of GT, 

KR, KNI, and CAD. However, predicted HB recognition sequences are not enriched in 

regions bound by HB and BCD (Figure 14D), even though these regions are crosslinked 

1.3-fold more highly by HB than regions not bound by BCD (unpublished data). Thus 

there appears to be a complex influence of other factors on the manner in which at least 

HB recognizes its target sequences. 

Evolutionary Conservation of DNA Recognition Sequences 
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A critical question unanswered by the above analyses is what fraction of the 

regions bound in vivo are biologically functional, be they involved in transcriptional 

regulation or some other cellular function. Many of the most highly bound regions 

overlap CRMs known to regulate important developmental processes, and it is likely that 

many of the remaining highly bound regions, especially those near important 

developmental control genes, will have regulatory activity in the blastoderm. However, 

these regions represent just a small fraction of the regions bound by these six factors.  

To begin to address the function of the remaining bound regions, we examined the 

evolutionary constraints on predicted recognition sequences in bound regions. We expect 

purifying selection to constrain substitutions at bases involved in protein–DNA 

interactions that mediate important regulatory events. Functional recognition sequences 

have consistently been observed to evolve more slowly than expected under neutral 

models [50], and evolutionary constraint on noncoding DNA is often used as a proxy for 

regulatory function (e.g., [39]).  

The measurement and interpretation of constraint on recognition sequences, 

however, is not straightforward. First, Drosophila noncoding DNA is, in general, highly 

constrained. It has been estimated that over half of the bases in intergenic and intronic 

DNA have evolved under purifying selection [51,52], compared to roughly 5% in 

mammals [53]. Thus, when compared to the presumptive neutral rate of substitution 

(estimated in Drosophila from short introns), virtually any collection of recognition sites 

in Drosophila noncoding DNA will appear to be under evolutionary constraint, whether 

the sites are functionally bound or not.  
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Second, despite this generally high level of noncoding constraint, functional 

recognition sequences are not always conserved. For example, it has been shown that 

several functional recognition sequences from the D. melanogaster eve stripe 2 enhancer 

are absent in other Drosophila species even though the enhancers themselves maintain 

their function [54-56]. Presumably, the loss of these sites is compensated for by the gain 

of sites elsewhere in the enhancer.  

Nonetheless, in most CRMs examined to date, at least a subset of recognition 

sequences are constrained over significant evolutionary distance, and thus it seemed 

reasonable that an analysis of the patterns of binding site constraint within bound regions 

might provide insight into their function.  

We began with two measures of sequence constraint: (1) rates of pairwise 

substitution between D. melanogaster and its sister species D. simulans, and (2) 

PhastCons scores measuring constraint across 12 sequenced, closely and distantly related 

Drosophila species [57,58]. Because D. melanogaster and D. simulans are so closely 

related, there is essentially no ambiguity in alignments of their genomes. However, the 

small number of changes also limits our ability to detect differences in rates of evolution 

between classes of sequences by rates of pairwise substitution. PhastCons scores that 

employ a wider diversity of species, in contrast, have a much greater statistical power, 

but can be confounded by alignment error in those species that are more distantly related 

[59]. 

For each transcription factor, we examined constraint on recognition sequences in 

500-bp primary peaks from 1% FDR regions, unbound regions, and short introns (see 

Table 3). We also examined both measures of constraint down the rank lists of bound 
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regions for each factor (see Figures 15 and S12). In both analyses, we focused 

exclusively on recognition sequences in noncoding DNA (introns and intergenic 

sequences, with RNA coding genes excluded) so as to avoid the confounding effects of 

conservation of coding capacity. 

As shown in Table 3 and Figures 15 and S12, for each of the six factors, there is a 

general trend for recognition sequences in highly bound regions to be under the strongest 

constraint, followed by recognition sequences in poorly bound regions, recognition 

sequences in unbound regions, and recognition sequences in short introns. For example, 

for DNA sequences matching the KR PWM, their PhastCons scores are highest in the 

several hundred most highly bound regions (Figure 15A), and their mean PhastCons 

scores in 1% FDR regions are somewhat higher than those in unbound noncoding DNA 

and much higher than those in short introns (Table 3, PhastCons Scores). A similar trend, 

however, is observed for the remaining parts of the bound regions, outside of the specific 

factor recognition sequences, so the observed effect is at least in part due to overall 

higher levels of constraint in highly bound regions (“non-sites” data in Figures 15 and 

S12, Table 3). 

To evaluate the extent to which these patterns of constraint were specific to 

recognition sequences for the factor, we therefore examined constraint on recognition 

sequences predicted after randomly permuting the order of columns of the specificity 

matrix for each factor.  

For regions highly bound by BCD, CAD, and GT, none of the scrambled 

permutations produced recognition sequences that were as highly constrained as those 

from the real specificity matrix, and the average derived using many permutated PWMs 
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was significantly lower than from the real PWM (Figure 15, Table 3). In fact, the average 

of the scrambled PWMs was similar to that of the remaining parts of the bound regions, 

outside of the specific factor recognition sequences (Figures 15 and S12, Table 3). Only 

in the case of BCD, however, did the patterns of constraint correlate with the in vivo 

DNA binding data because the additional constraint on recognition sequences, above the 

local background, dropped down the rank list, disappearing at around the 1% FDR 

threshold. For CAD and GT, the difference in conservation was consistent across the rank 

list all the way to the 25% FDR threshold, suggesting that the excess conservation may 

not be specific for bound recognition sequences.  

For HB, KNI, and KR, there is even less evidence for specific conservation of 

recognition sequences because many of the permutations produced recognition sequences 

that were more conserved than the real sites, and the average score of these permutated 

PWMs were not significantly different from those of the real matrix at either highly or 

poorly bound regions (Table 3; Figure 15). 

Overall, the comparative analysis adds further evidence that highly bound regions 

differ in character from poorly bound regions, but, with the exception of BCD, does not 

provide compelling evidence that the binding we observe contributes to organismal 

fitness.  

Discovery of Recognition Sequences for Additional Factors 

Although the six factors studied here are the initiating regulators of A-P 

expression in the embryonic trunk, it is likely that other factors are involved in activating 

or otherwise regulating their targets. For example, several known targets of maternal and 
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gap factors are also regulated by genes in the terminal system that controls expression in 

the head and tail [60-62].  

To investigate whether other factors may be binding to the regions bound by the 

maternal and gap transcription factors, we systematically searched for sequences enriched 

in the regions surrounding the primary peaks for each of the six factors. As shown above, 

the recognition sequences of each factor are enriched in their respective bound regions, 

and these sequences are routinely recovered in de novo searches for enriched sequences 

in bound regions. However, for each of the six factors the most strongly enriched 

sequence was the heptamer CAGGTAG/CTACCTG. This “TAGteam” sequence has 

been previously reported to control the timing of preblastoderm transcription [63,64]. 

Although its precise role in activating transcription is only beginning to be understood 

[63,65], it is found in roughly 30% of bound regions and is concentrated in the most 

highly bound regions, emphasizing the broad role that it plays in early embryonic 

transcription. Furthermore, of all heptamers, CAGGTAG shows the greatest increase in 

interspecies conservation in bound regions relative to non-bound intergenic sequences. 

Discussion 

The most striking feature of our in vivo binding data is that the maternal and gap 

transcription factors that regulate A-P patterning in D. melanogaster embryos bind to 

thousands of highly overlapping regions across the genome. We have rigorously 

established that the array hybridizations represent bona fide, sequence-specific binding of 

these transcription factors to DNA. For example, there is a high correlation between data 

derived using independent antibodies against the same factor; Q PCR analysis validates 
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the FDR estimates; and there is on average a strong enrichment of the recognition 

sequences for each factor in its bound regions. The extent of the binding is also consistent 

with earlier in vivo UV crosslinking experiments on a sample of known targets, 

unexpected targets, and transcriptionally inactive genes, which first predicted widespread, 

overlapping DNA binding by BCD and other early regulators [32,34].  

Determining the Functional Significance of Widespread Binding 

Given that our ChIP/chip data identifies several orders of magnitude more bound 

regions than the number of previously identified targets of these factors, the most 

immediate question is whether these bound regions are all functional. Several lines of 

evidence suggest that the bulk of the several hundred most highly bound regions are 

directly involved in regulating the transcription of neighboring genes. In particular, these 

most highly bound regions are preferentially found near genes transcribed in the 

blastoderm, these putative targets are enriched for patterned genes and genes with known 

roles in patterning and early development, and the most highly bound regions are 

preferentially conserved relative to other noncoding sequences (Figures 3–5, 7–8, 10–11, 

15, S12, and Table 3). The highly bound regions also tend to be located within intergenic 

and intronic sequences (Figure 9), as expected for regulatory sequences.  

All of these associations, however, dissipate down the rank lists for each factor, 

with an increasing percentage of more poorly bound regions mapping to genes that are 

not transcribed at this early stage of development and/or to protein coding regions or to 

noncoding regions that are less well conserved (Figures 3–5, 7–11, 15, S11, S12, and 

Table 3). This suggests that the poorly bound regions have different, or perhaps even no, 

function. 
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One possibility is that poorly bound regions regulate the transcription of adjacent 

genes, but more subtly than highly-bound regions as it has been shown that many genes 

not directly involved in A-P patterning (e.g. housekeeping genes) show weak A-P 

patterns at stage 5 [35,66,67]. 

Another possibility is that the low levels of binding seen at stage 5 may presage 

stronger binding and transcriptional regulation of adjacent genes later in development. In 

support of this, binding of HB increases in the neuroectoderm of stage 9 embryos at a 

subset of regions bound at low levels at stage 5 (unpublished data), which, as genes 

become transcribed, likely results at least in part from a change in chromatin structure 

increasing access of factors to their recognition sequences [68-73]. 

A third possibility is that the observed binding is not involved in transcriptional 

regulation, but instead plays a role in regulating processes such as chromosome structure, 

DNA replication, or DNA repair. However, these six transcription factors have not been 

implicated in other cellular functions to date.  

Finally, and in many ways most tantalizingly, some lower-level binding may be 

truly nonfunctional and simply result from transcription factors binding to randomly 

occurring target sequences that, precisely because they do not significantly affect gene 

expression, are not selected against. Indeed, it has long been proposed on thermodynamic 

grounds that transcription factors would bind at low, nonfunctional levels throughout the 

genome either via sequence-independent [74-76] or sequence-specific DNA binding [32]. 

However, even with these factors bound poorly to many thousands of regions across the 

genome, at any instant they could only bind to a small fraction of their recognition 
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sequences within the genome, and they would still inevitably have an indirect function in 

the system by buffering the molecules available for binding within CRMs.  

Determining which regions bound in vivo are functional and in what way(s) they 

function will be challenging. Our most reliable assay for sequences that regulate 

transcription—the construction of transgenic D. melanogaster embryos in which the 

sequence to be assayed is juxtaposed with a basal promoter and reporter gene—has 

several limitations. The assay only detects sequences that act independently of other 

sequences, whereas many bound regions are likely to augment the activity of other 

sequences or act redundantly [77,78]. Subtle or redundant regulatory activity is often 

difficult to detect in transgenes that use nonnative promoters and reporter genes. Finally, 

repressor, insulator, and other transcriptional regulatory activities require separate assays.  

Comparative sequence analysis also has the potential to contribute to the 

dissection of the function of bound regions and the recognition sites within them. These 

analyses, however, can be extremely complex and occasionally misleading. It is common 

in published analyses of regulatory sequence conservation to assume that recognition 

sequences occur in a homogenous background of nonconserved sequences. But neither 

the assumption of neutrality nor that of homogeneity is appropriate. A substantial fraction 

of Drosophila noncoding DNA is under selective constraint—and presumably involved 

in some function [51] (Table 3). Thus simply observing that a collection of recognition 

sequences is conserved (i.e., evolves slower than the presumptive neutral rate), as has 

frequently been done in the literature, does not reliably establish that transcription factor 

binding to these sequences contributes to fitness. It is necessary instead to use methods 

that attempt to detect conservation of binding potential of particular recognition 
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sequences [50,79]. Even this is complicated, however, by variation in rates of constraint 

that are correlated with genomic features that are in turn related to transcription. For 

example, noncoding sequences flanking genes transcribed in the embryo are more 

conserved than randomly selected noncoding sequences. Since highly bound sequences 

are also associated with genes transcribed in the embryo, it appears, often incorrectly, that 

recognition sequences in highly bound regions are preferentially conserved. We have 

used several methods to control for these effects, but they may still be susceptible to other 

confounding factors. Our analysis to date has only been able to establish for one of the 

six factors (BCD) that its recognition sequences are constrained above the background in 

the flanking DNA, even within the most highly bound regions (Figure 15, Table 3). For 

the other five factors, the results are ambiguous or not apparent (Figures 15 and S12, 

Table 3). This raises the unpleasant possibility that evolutionary constraint may not be as 

useful as generally believed for distinguishing functional targets of transcription factors.  

Targeting Transcription Factors to DNA 

Our data suggest that the rules governing factor targeting in vivo are likely to be 

subtle and complex. Consistent with in vivo crosslinking analyses of other animal 

transcription factors [39,42,80-84], the more highly crosslinked regions in vivo do, on 

average, show greater enrichment of factor recognition sequences than poorly bound or 

unbound regions (Figures 12B, 12C, and S7), indicating that these factors’ intrinsic DNA 

binding specificities play a role in determining the pattern of binding in vivo. Not only 

high-affinity recognition sequences, but also low-affinity sequences are enriched, 

suggesting that weaker sites help mediate binding (Figure 12B and S7). 
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As shown previously [32,34,42], however, in vitro DNA specificity alone cannot 

fully account for the distribution in vivo because many nonbound genomic regions 

contain higher densities of high-affinity recognition sequences than bound regions 

(Figures 12D and S7). Additional analyses indicate that factor targeting also depends on a 

local context established by other transcription factors: the degree of in vivo binding of a 

factor per number of specific recognition sequences at a given location is dependent on 

which other factors also bind the region in vivo (Figure 14). We do not know which 

factors are mechanistically responsible for establishing this context. The context could 

either be established by some of the A-P regulators themselves, or by one or more of the 

other factors whose recognition sequences are enriched in the bound regions (Table S4). 

In either case, the context establishing factors could act by cooperative interactions to 

increase A-P regulator DNA occupancy [85], or by increasing accessibility to factor 

recognition sequences locally via an effect on chromatin structure [70,86].  

The idea that chromatin structure plays a dominant role is appealing as it provides 

a ready explanation for why we observe multiple factors being targeted to the same 

highly overlapping set of regions (Figures 6 and S4, Table 2). Each open chromatin 

region is expected to contain recognition sequences for many transcription factors 

because of the high frequency of such sequences throughout the genome. The factors 

would then be forced to bind the recognition sequences in open regions because regions 

elsewhere would not be available [70,86].  

Other Interpretations of In Vivo DNA Binding in Animals 

Some of our conclusions agree with those of other recent studies of in vivo DNA 

binding by sequence-specific transcription factors in animals. For example, some of these 
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other proteins are also observed to bind extensively to a large number of genomic regions 

[38,42,80,83,87,88]. But in some important regards, our analyses and conclusions differ. 

Given that the earliest in vivo crosslinking studies of sequence-specific 

transcription factors established that, at least for some factors, genes are bound over a 

quantitative range that correlates with gene type, degree of gene regulation, and 

transcriptional state [34,78], it is very surprising that all recent analyses have ignored this 

quantitative information and instead classified genomic regions as either bound or not 

bound [38,39,42,80,82-84,87,88]. A range of experiments suggest that crosslinking and 

ChIP/chip signals broadly correlate with different levels of transcription factor occupancy 

[32,34] (Figures S1 and S2). The analyses presented in this paper clearly reinforce how 

useful it is to consider the relative level of transcription factor occupancy in studying the 

complex range of genomic regions bound by animal transcription factors in vivo. 

Most analyses have either assumed that all regions bound in vivo must be 

functional targets or not actively considered whether a substantial fraction of bound 

regions may be nonfunctional [38,39,42,80,82-84,87,88]. Only a recent paper from the 

ENCODE Consortium [81] has seriously considered the possibility that a significant 

percent of in vivo binding may be nonfunctional, based on the lack of evolutionary 

constraint in bound sequences. However, the absence of constraint does not establish the 

absence of function, as it is well established that regulatory sequences can maintain their 

function in the absence of primary sequence conservation. We have shown that poorly 

bound regions lack many of the hallmarks of regulatory sequences.  

Another recent study of in vivo binding by sequence-specific transcription factors 

in Drosophila measured DNA methylation patterns of transcription factor/DNA adenine 
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methyltransferase (Dam) fusion proteins. Binding was assayed over a 2.9-Mb region of 

the genome in tissue culture cells for seven ectopically expressed factors, including BCD 

[89]. These fusion proteins were strongly targeted to a common set of “hot spots.” 

Because the factors have unrelated functions, it was proposed that hot spots are not 

classical cis-regulatory elements, but instead act either as sinks to sequester molecules, as 

mediators of interactions between distant genomic loci, or as unconventional enhancers at 

which many factors play only a minor role. The pattern of binding of endogenous BCD 

we observe in embryos, however, differs dramatically from that predicted by the 

methylation patterns in tissue culture cells. Within the 2.9-Mb region, only 16 1% FDR 

BCD bound regions are present. Of these, only five overlap the top 50 regions detected in 

the methylation assay, suggesting that the distributions mapped in tissue culture cells do 

not reflect binding by regulators normally expressed in other cells. In addition, we have 

mapped the binding of an additional 12 endogenous sequence-specific transcription 

factors in the early embryo that control D-V axis patterning and pair rule segmentation 

and which represent a broad range of transcription factor families (unpublished data). 

Together with the six maternal and gap A-P regulators studied in this paper, these 

endogenous factors do in fact frequently target the same short genomic regions, though 

they bind these regions at very different relative levels. These commonly bound regions, 

however, include most of the well-known CRMs active in the early embryo. We suspect 

that many animal CRMs are bound by a much larger number of factors than currently 

realized, though it remains to be determined what fraction of this binding is functional.  

Materials and Methods 
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Antibodies. 

Rabbit antisera were kindly provided by Sean Carroll (HB), Gary Struhl (BCD 

and CAD), Herbert Jackle, Ralf Pflanz and Pilar Carrera (KR). Rabbit antisera for KNI 

was raised from a 6xHIS tagged full length KNI protein expressed in Escherichia coli. 

For each of the six transcription factors, two sets of antibodies that recognize 

nonoverlapping portions of the protein were affinity purified from rabbit antisera. The 

Gateway cloning and expression system (Invitrogen) was used to generate parts of each 

protein for affinity purification. Each affinity reagent consists of at least 100 amino acids 

that do not contain any significant similarity with any other protein in the D. 

melanogaster genome (no segment was used if it had greater than 20% identity to any 

other D. melanogaster protein, or perfect identity of ten amino acids or greater, as 

assessed by BLASTP [90]). To generate recombinant proteins, we cloned PCR-amplified 

fragments corresponding to the selected amino acid regions (below) using BP Clonase 

and the pDONR221 vector (Invitrogen). After sequence verification of the entire 

amplified product, the fragments were transferred to the 6xHis-tagged bacterial 

expression vector pDest17 using the LR-Clonase and subsequently verified by PCR. 

Anti-HB (HB1) and anti-HB (HB2) were purified against HB amino acids 1–305 and 

amino acids 306–758, respectively; anti-GT was purified using GT amino acids 182–353; 

anti-KR (KR1) and anti-KR (KR2) were purified against KR amino acids 1–230 and 

amino acids 351–502, respectively; anti-CAD was purified against CAD amino acids 1–

240; and anti-KNI (KNI1) and anti-KNI (KNI2) were purified against KNI amino acids 

130–280 and amino acids 281–425, respectively. The two affinity-purified sets of anti-

BCD antibodies (BCD1 and BCD2) were purified against BCD amino acids 56–330 and 
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330–439, respectively, as described previously [34]. The monoclonal antibody H14, 

which recognizes RNA polymerase II CTD repeats phosphorylated at Ser 5, was obtained 

from CRP Inc. Further details on BDTNP antibodies and protein expression vectors are at 

http://bdtnp.lbl.gov/Fly-Net/.  

Crosslinking, chromatin isolation, and ChIP/chip. 

The detailed protocol provided in the Supplementary Materials was used. Briefly, 

2–3-h-old embryos (late stage 4 and early stage 5) were formaldehyde crosslinked, and 

chromatin was isolation by CsCl gradient ultracentrifugation as described previously 

[25,31,78,91]. The isolated chromatin was sonicated to an average size of about 600 bp 

prior to ChIP and dialyzed.  

Protein A–Sephacryl 1000 beads were prepared based on a method described 

previously [92]. The larger pore size was found to give at least a 3-fold higher yield of 

crosslinked chromatin after immunoprecipitation. The chromatin solution was precleared 

by incubating with normal rabbit IgG and the protein A–Sephacryl 1000 beads. Factor IP 

reactions were carried out in duplicate by incubating 100 µg of chromatin with 0.5–3 µg 

of the appropriate antibody for 3 h or overnight at 4 °C; parallel control IgG IP reactions, 

also in duplicate, were carried out with normal rabbit IgG. The immunoprotein–

chromatin complexes were captured by incubating with protein A–Sephacryl 1000 beads, 

followed by consecutive washes and then eluted with a buffer containing 1% SDS and 

0.1 M NaHCO3 (pH 10.0). In each ChIP experiment, a portion of the chromatin solution 

corresponding to 1% of that used in the ChIP reaction was used as input DNA control. 

The DNA from this sample, along with the Factor IP  and IgG control IP samples, was 
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purified by phenol/chloroform extraction and ethanol precipitation after the protein/DNA 

crosslinks had been reversed by incubation at 65 °C.  

Duplicate Factor IP, IgG control IP, and input DNA samples were amplified using 

a modified random primer-based DNA amplification protocol that gives significantly 

improved amplification consistency, particularly when the small quantities of genomic 

DNA recovered in our ChIP reactions (<0.5 ng) are amplified. After amplification, each 

DNA sample was fragmented with DNase I, biotinylated, and hybridized to Affymetrix 

Drosophila genomic tiling arrays [26]. Each array contains over 3 million oligo probes 

that cover the euchromatic portion of the genome at a resolution of about one per 36 bp 

on average. 

Primary array analysis. 

ChIP/chip array data were processed using TiMAT, a Java- and R-based open-

source software package developed by the BDTNP 

(http://bdtnp.lbl.gov/TiMAT/TiMAT2/). Array images were visually inspected for 

blemishes and artifactual bright spots, which were then masked to the array’s median 

probe intensity value in the few cases necessary. Only oligonucleotides present exactly 

once in the D. melanogaster genome (release 4.0) were used for subsequence analysis. 

The complete set of six arrays from an experiment—Factor IP replicates, IgG control-IP 

replicates, and input DNA replicates (Figure 2A and 2B)—were scaled to a common 

median value and then quantile normalized against each other [93]. Replicates were 

averaged and log (base 2) ratio scores were calculated for Factor IP and IgG control IP 

arrays: log(mean Factor IP//mean input DNA) and log(mean IgG control IP/mean input 
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DNA) (Figure 2C) [94]. These scores were then smoothed using a sliding window of 

trimmed means 675 bp in length (Figure 2D). 

Next, FDR estimates were calculated by two methods. The first used an 

assumption of a symmetric window scores null distribution to compute p-values, then 

applied a multiple testing correction [95] to control the FDR. More specifically, the 

symmetric null method constructed a null distribution estimate by using window scores to 

the left of the mode of the full distribution and then reflecting these scores over the mode 

(Figure 2F). This approach is justified by the presumed relative scarcity of genomic 

regions enriched in the immunoprecipitation, and is a nonparametric variant on the 

approach of [30]. The second method simply computed the ratio of the number of 

windows scoring above a given cutoff in the IgG control IP data to the number in the 

Factor IP data—the assumption being that there are no true positives in the negative 

control data (Figure 2G).  

Bound regions (called “intervals” in TiMAT) were then defined by first filtering 

out all windows with scores above the given FDR threshold, then collecting these into 

contiguous stretches of windows containing a minimum of ten windows, with a 

maximum allowable gap of 200 bp between any two adjacent windows (Figure 2E). Both 

1% and 25% FDR thresholds were considered. The location of the maximum array 

hybridization within each bound region was determined and defined as its “peak 

window,” with the oligo having maximum intensity within each bound region defined as 

the “primary peak.” Local peaks of array intensity were identified within each bound 

region using a recursive algorithm that considers peak shape, height, and period. In this 

paper, for simplicity, only the largest (primary) peak in each bound region has been used 
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in subsequent analyses, which in some cases removed secondary and tertiary peaks that 

show characteristics of CRMs.  

Results, including oligonucleotide probe intensities, trimmed mean window 

scores, bound region locations, peak magnitudes and locations, and nearby genes are 

reported in .sgr and .gff file formats as well as TiMAT's own text-based report files.  

Q-PCR validation of binding regions detected by ChIP/chip. 

The bound regions analyzed by Q-PCR were selected arbitrarily throughout the 

symmetric null 1% FDR rank list for BCD and KR. KR bound regions between the 

symmetric null FDR score 1% and 25% thresholds were chosen with a bias towards the 

more poorly bound regions. The oligonucleotide primers and probes were designed to be 

as close as possible to the peak of each binding region, the majority falling within 200 bp 

of the peak. Q-PCR reactions were carried either using the random prime amplified input 

DNA and Factor IP DNA samples or the original Factor IP and IgG control IP samples, 

i.e. without random prime amplification.  

BAC spike-in analysis. 

Eight BAC plasmids, each containing about 170 kb of Drosophila genomic 

sequence were used. The BAC DNAs were mixed together at a relative molar 

concentration of one, four, ten, and 20, with two BACS at each concentration. The BAC 

DNA cocktail was then mixed with Drosophila whole-genomic DNA to generate two 

samples, one containing BACs at one, four, ten, and 20 times the molar concentration of 

genomic DNA, and the other at two, eight, 20, and 40 times. A total of 20 ng of each 

genomic DNA/BAC cocktail were random-prime amplified, and the resulting DNA 
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samples were fragmented, biotinylated, and hybridized to chips following our protocol 

(above). 

Association of bound regions with target genes. 

Bound regions were associated with the gene (from release 4.3 of the D. 

melanogaster genome) whose 5′ end was closest to the primary peak in the bound region. 

To identify the closest transcribed gene, the subset of release 4.3 annotations that 

completely overlap regions bound by RNA PolII in our ChIP-chip experiments was used.  

PWM construction. 

For BCD, HB, GT, CAD, and KR, PWMs were constructed from unpublished 

SELEX data using MEME [96]. KNI was constructed from DNase I footprint data 

contained in [40].  

Analysis of binding site enrichment. 

Binding site positions were predicted using PATSER [97] with the indicated p-

value cutoffs. Binding site enrichment was measured by dividing the density of sites in 

the bound regions by the density of sites in a control set of unbound sequences. The 

control set consisted of randomly selected noncoding sequences that did not overlap with 

1% FDR regions for any factor.  

Evolutionary conservation of binding sites. 

Evolutionary constraint on recognition sequences and bound regions was 

computed using 15 species (12 sequenced Drosophila species plus Anopheles gambiae, 

Apis mellifera, and Tribolium castaneum) PhastCons scores obtained from the Univeristy 
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of California Santa Cruz Genome Browser (http://genome-

test.cse.ucsc.edu/goldenPath/dm2/multiz15way/) and the pairwise D. melanogaster–D. 

simulans divergence was computed from LAGAN alignment of orthologous noncoding 

regions identified by a combination of BLAST and synteny. Mean constraints of 

recognition sequences in bound regions was compared to the same for recognition 

sequences in short (less than 100 bp) introns and in unbound noncoding regions. In 

addition, mean constraint was computed for recognition sequences predicted using 

randomly permuted PWMs for each factor in which the order of the matrix columns had 

been scrambled (permutations whose recognition sequences were enriched in bound 

regions were excluded to avoid permuted matrixes that were too similar to the 

unpermuted matrix). For the pairwise D. melanogaster–D. simulans comparisons, only 

substitutions, and not insertions or deletions, were considered. 

Supporting Information 

Figure S1. 

Q-PCR Analysis Supports the FDR Estimates 

Regions of approximately 100 bp in size were Q-PCR amplified from crosslinked 

chromatin that had first been immunoprecipitated with anti-KR (A) antibodies or anti-

BCD antibody (B) and then random-prime amplified. The immunoprecipitated DNAs 

analyzed were the same as those hybridized to the tiling arrays used to generate the 

ChIP/chip data in this paper. Q-PCR–amplified regions were selected from KR and BCD 

bound regions or from arbitrarily selected regions of the genome outside of the 25% FDR 

bound regions, which are expected to be either unbound or very poorly bound. Bound 
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regions from the 1% FDR set were selected at random; KR bound regions between the 

1% and 25% FDR threshold were selected based on being identified by both KR 

antibodies and intentionally biased to include regions scoring close to the 25% FDR 

threshold. The bound regions are ordered by rank of the peak window score, and the 

presumed unbound/poorly bound regions are shown to the right (x-axis). The enrichment 

of the amplicons in the immunoprecipitated DNA has been normalized by the enrichment 

of the same region from an equal amount of input DNA (y-axis). A fragment enriched by 

1-fold (red line) is thus present at the equal concentrations in the treatment IP and input 

DNAs. Each vertical bar shows the mean of two independent immunoprecipitations, with 

the standard deviation indicated as well. All bound regions above the 1% FDR were 

enriched more than 1-fold and virtually all by more that 2-fold. For the KR bound regions 

between the 1% and 25% FDR threshold, 11 out of 16 showed enrichment greater than 

one (those enriched by less are indicated with an asterisk [*]). In contrast, only one 

region scoring below the 25% FDR was enriched by more than 1-fold (#), and that only 

in an immunoprecipitation by one of the two antibodies used. Thus the Q-PCR analysis is 

consistent with the FDR estimates.  

Found at doi:10.1371/journal.pbio.0060027.sg001 (1.4 MB PDF). 

Figure S2. 

ChIP/Chip Array Intensity Correlates with Relative Enrichment in Immunoprecipitated 
DNA 

(A) ChIP/chip peak window scores of selected bound regions were compared to the 

regions enrichment in immunoprecipitated DNA as determined by Q-PCR. Q-PCR was 

conducted on samples either before (red points) or after (blue points) immunoprecipitated 

DNA had been random prime amplified. The Q-PCR measured enrichment of random 
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prime-amplified DNA was calculated by normalizing against input DNA (see Figure S1). 

The enrichment of bound regions in unamplified immunoprecipitated DNA was 

calculated by normalizing against the enrichment of the same regions in IgG control 

immunoprecipitated DNA. The fold difference in enrichment between highly and poorly 

bound regions is larger in immunoprecipitated DNA before random prime amplification 

than after. The fold difference as determined by array intensity is lower still, but cannot 

be directly compared to the Q-PCR data because it is averaged over a larger 675-bp 

window, which may reduce the enrichment measured. Nevertheless, the data indicate that 

there is a good correlation between enrichment detected by Q-PCR and the ChIP/chip 

array intensity scores for both the original immunoprecipitated samples (r = 0.94) and the 

random-prime amplified sample (r = 0.71). 

(B) Correlation between known concentrations of DNA and array window score. BAC 

DNAs from different genomic regions were combined at a molar ratio of one (light and 

dark green), four (light and dark blue), ten (light and dark yellow), and 20 (light and dark 

red), two BACs for each concentration (See Materials and Methods for details). The BAC 

DNA cocktail was then added to two separate genomic DNA samples, one aliquot of the 

cocktail being added such that the lowest concentration BAC was present at the same 

molar concentration as genomic DNA and the other aliquot at twice that concentration. 

These mixtures of genomic DNA and spiked-in BACs were random-prime amplified and 

hybridized to tiling arrays. The trimmed mean window score for all windows spanning 

each BAC is plotted, as is the standard deviation of the trimmed mean window scores. 

There is a good correlation between relative DNA concentration and mean window score 

(r = 0.84) despite likely errors in correctly determining the concentrations of BAC DNA. 
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A 100% increase in the relative concentration of a BAC led to only an average only 31% 

increase in mean window score, again indicating that random prime amplification and the 

array-based assay compress relative differences in DNA amount. The standard deviation 

of window scores are on average 16% of the mean for each BAC, indicating that the 

assay can correctly distinguish the majority of DNAs present at concentrations that differ 

by more than a factor of four. 

Found at doi:10.1371/journal.pbio.0060027.sg002 (231 KB PDF). 

Figure S3. 

Known cis-Regulatory Modules Tend to Be among the Regions More Highly Bound In 
Vivo 

The 1% FDR bound regions for each factor were each divided into cohorts based on 

primary peak window score (x-axis). For each cohort, the fraction of bound regions out of 

the total number of 1% FDR regions (red vertical bars) and fraction of bound regions in 

which the primary peak is contained within a CRM known to be regulated by the A-P 

factors (blue vertical bars) are shown. The number of bound regions in each cohort is 

given above the vertical bars.  

Found at doi:10.1371/journal.pbio.0060027.sg003 (450 KB PDF). 

Figure S4. 

Factors Bind with Quantitatively Different Specificities to Shared Target Regions 

Correlation of primary peak score between overlapping (within 500 bp) primary peaks for 

BCD1, CAD, GT, KNI2, and HB1. See Figure 6 for further details. 

Found at doi:10.1371/journal.pbio.0060027.sg004 (3.9 MB PDF). 

Figure S5. 
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Highly Bound Genes Are Associated with Genes Transcribed and Patterned in the Early 
Embryo 

The percentage of 1% FDR primary peaks that are within 10 kb of the 5' end of a gene. 

Genes are divided into three categories: all genes (from genome release 4.3, March 

2006), genes with known patterned expression (hand annotated based on Berkeley 

Drosophila Genome Project [BDGP] in situ images [35]), and transcribed genes (defined 

by our RNA Polymerase II ChIP/chip binding data, see Materials and Methods). 

Percentages are calculated in nonoverlapping windows of 100 peaks down the rank list to 

the 80% FDR threshold. The position of the 1% and 25% FDR cutoffs are indicated with 

vertical dotted lines. (A) shows the results for the CAD antibody, (B) for the GT 

antibody, (C) for the HB1 antibody and (D) for the KNI2 antibody.  

Found at doi:10.1371/journal.pbio.0060027.sg005 (1.9 MB PDF). 

Figure S6. 

Genes That Control Development Are Highly Bound In Vivo 

The five most-enriched GO ([98]) terms in the 1% FDR bound regions for each factor 

were identified (enrichment measured by a hypergeometric test). The significance of the 

enrichment (−log(p-value)) of these five terms plus those for two negative controls 

(protein metabolism and mitosis) in nonoverlapping windows of 250 peaks are shown 

down to the rank list for CAD (A), GT (B), HB1 (C), and KNI2 (D) as far as the 80% 

FDR cutoff. The 1% and 25% FDR cutoffs are indicated by vertical dotted lines. 

Found at doi:10.1371/journal.pbio.0060027.sg006 (534 KB PDF). 

Figure S7. 

Recognition Sequences Are Modestly Enriched in Bound Regions 
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(A) Sequence logo representing the PWMs derived from SELEX data (made with 

seqlogo [99]). 

(B) Fold enrichment of matches to the PWM from (A) in nonoverlapping windows of 100 

bp across the 1% FDR primary peaks, with the peaks located at position zero on the x-

axis. PWM matches shown are divided in subsets based on the p-value of their match to 

the matrix.  

(C) Fold enrichment of matches to the PWM from (A) in the 500-bp regions around 

(±250 bp) primary peaks in nonoverlapping windows of 250 peaks down to the 25% FDR 

cutoff. The 1% FDR cutoff is indicated as a vertical dotted line. As in (B), matches are 

divided based on the significance of their match to the matrix.  

(D) shows the distribution of the number of sites in the 500-bp regions (±250bp) around 

1% FDR primary peaks and, for comparison, randomly selected noncoding genomic 

sequence. A match to the matrix in this panel is defined here as a p-value of ≤0.001. 

Found at doi:10.1371/journal.pbio.0060027.sg007 (1.1 MB PDF). 

Figure S8. 

GC Bias Not Due to Hybridization 

For all windows in BAC regions, the mean window score is shown against the window 

GC content as vertical bars (error bars show the standard error of the mean). The number 

of windows in each GC bin is shown as a blue line.  

Found at doi:10.1371/journal.pbio.0060027.sg008 (275 KB PDF). 

Figure S9. 

Enrichment of Randomly Permuted PWMs in Bound Regions 
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Enrichment of matches to a randomly permuted version of the PWM (p ≤ 0.001), in 100-

bp nonoverlapping windows across 10 kb (±5 kb) around 1% FDR primary peaks, for 

each factor. Enrichment calculated as described in Materials and Methods. 

Found at doi:10.1371/journal.pbio.0060027.sg009 (520 KB PDF). 

Figure S10. 

Enrichment of Recognition Sequences in Regions Bound by Other Factors 

Enrichment of matches to each PWM (p ≥ 0.001) in 500 bp (±250 bp) around 1% FDR 

primary peaks for each factor, after removing any peaks within 250 bp of a 25% FDR 

primary peak for the factor relating to each PWM, with the exception of enrichment for a 

PWM for a factor in bound regions for the same factor. Enrichment is displayed as a –

log(p-value) from the binomial test as a grey scale, with white being the most enriched. 

Found at doi:10.1371/journal.pbio.0060027.sg010 (270 KB PDF). 

Figure S11. 

Enrichment of Recognition Sequences in Protein Coding Regions 

Enrichment of matches to a PWM (p ≤ 0.001) for each factor in 250-bp nonoverlapping 

windows across 10 kb (±5 kb) around 1% FDR primary peaks. Four collections of peaks 

are shown: those in all 1% FDR bound regions, those in coding regions, those in a 

noncoding sequence, and those in the most poorly bound quartile of noncoding regions.  

Found at doi:10.1371/journal.pbio.0060027.sg011 (507 KB PDF). 

Figure S12. 

Recognition Sequence Conservation as a Function of Peak Intensity 
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Conservation scores in predicted factor recognition sequences (p-value ≤ 0.001) (red 

lines), all remaining sequences (blue lines), and in sequences matching scrambled 

variants of the factors’ recognition sequences (p-value ≤ 0.001) (green lines) in the 500-

bp regions (±250 bp) around CAD, GT, HB1, and KNI2 1% FDR peaks, in 

nonoverlapping windows of 250 peaks down the rank list to the 25% FDR cutoff. Panels 

in rows (A) and (C) show the mean PhastCons scores, and in rows (B) and (D), the 

average pairwise differences per base pair between D. melanogaster and D. simulans. 

Gaps are ignored in the pairwise analysis. The 1% FDR cutoff is indicated by a vertical 

dotted line. 

Found at doi:10.1371/journal.pbio.0060027.sg012 (775 KB PDF). 

Table S1. 

The 1% FDR Bound Regions 

Found at doi:10.1371/journal.pbio.0060027.st001 (2.8 MB XLS). 

Table S2. 

The 25% FDR Bound Regions. 

Found at doi:10.1371/journal.pbio.0060027.st002 (12.0 MB XLS). 

Table S3. 

Number of Bound Regions within 10 kb of the 5′ End of Genes That Gives Rise to 
miRNAs 

Found at doi:10.1371/journal.pbio.0060027.st003 (37 KB XLS). 

Table S4. 

De Novo Motifs Identified in Bound Regions 
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Found at doi:10.1371/journal.pbio.0060027.st004 (48 KB XLS). 
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Figure 1. Patterns of mRNA Expression of the Six Maternal and Gap Genes Controlling 

Trunk Segmentation along the Anterior-Posterior Axis 
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Expression (protein for BCD and mRNA for the other factors) is shown in orthographic 

projections using PointCloudXplore [100] to display data from the BDTNP’s 

VirtualEmbryo [11] (BDTNP; unpublished data). The embryos are shown with anterior to 

the left, posterior right, dorsal at the top, and ventral at the bottom.  

doi:10.1371/journal.pbio.0060027.g001 

Figure 2. Overview of ChIP/Chip Data Analysis Methods 

(A–C) Mean hybridization intensities (A) for Factor IP replicates (left) and IgG control 

IP replicates (IgG) (right) are divided by the mean probe intensity in the input DNA 

samples (B) to produce oligonucleotide ratio values (C).  

(D–G) The logarithms of the ratios in (C) are averaged in windows (D) of 675 bp 

centered around each probe (after discarding the highest and lowest values, to produce a 

“trimmed mean”) to produce window scores (E). Bound regions (E) were identified by 

comparing window scores to expected score distributions computed from a symmetric 

null distribution (F) or from IgG controls (G). The symmetric null method assumes that 

the background window score distribution is symmetric about its mean, and estimates the 

distribution from values less than the observed mode ([F] light-blue line). This estimated 

null distribution was used to assign p-values to each window score, and these were 

corrected for multiple testing to control the FDR, using the method of ([95] and 

http://faculty.washington.edu/~jstorey/qvalue/). The IgG control is similar except that the 

empirical distribution of window scores from the IgG immunoprecipitations ([G] light-

green line) is used as the estimated null distribution.  

doi:10.1371/journal.pbio.0060027.g002 
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Figure 3. In Vivo Binding to the even skipped Locus 

Oligonucleotide ratio scores for all ChIP/chip experiments across the well-characterized 

even skipped locus. Data are shown for RNA PolII and all six factors. Note the agreement 

of the independently purified antibody for BCD, HB, KR, and KNI. The light-blue boxes 

mark the positions of experimentally characterized A-P enhancers regulating stripe 1 

[21], stripe 2 [18], stripes 3 and 7 [101], stripes 4 and 6 [21], and stripe 5 [21]. For 

comparison, the grey boxes mark the positions of two enhancers that do not respond to 

these factors in the blastoderm, the ftz-like enhancer [21] and the muscle and heart 

enhancer (MHE) [102]. 

doi:10.1371/journal.pbio.0060027.g003 

Figure 4. Known cis-Regulatory Modules Involved in Anterior-Posterior Patterning Are 

Highly Bound by Multiple Factors 

Oligonucleotide ratio scores for BCD1, HB1, KR1, GT, KNI2, and CAD for all cis-

regulatory modules known to, or strongly believed to, be targeted by one or more of these 

factors prior to this study [8,9,33,103]. Only oligos within the region tested to 

demonstrate enhancer activity are shown. Red lines mark 1% FDR regions.  

doi:10.1371/journal.pbio.0060027.g004 

Figure 5. Known cis-Regulatory Modules Tend to Be among the Regions More Highly 

Bound In Vivo 

The 1% FDR bound regions for BCD1 (A) and KR1 (B) were each divided into cohorts 

based on primary peak window score (x-axis). The fraction of all bound regions in each 
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cohort (red bars) and fraction of bound regions in each cohort in which the primary peak 

is contained within a CRM known to be regulated by the A-P factors (blue bars) are 

shown. The number of bound regions in each cohort is given above the bars.  

doi:10.1371/journal.pbio.0060027.g005 

Figure 6. Factors Bind with Quantitatively Different Specificities to Shared Target 

Regions 

Correlation of primary peak score between overlapping (within 500 bp) primary peaks. 

(A) shows the correlation of KR1 1% FDR peaks versus KR2 25% FDR peaks; (B–F) 

show KR1 1% FDR against BCD1, CAD, GT, HB1, and KNI2 25% FDR primary peaks, 

respectively. The Pearson correlation coefficients (r) for each comparison are shown in 

the top right of each panel. 

doi:10.1371/journal.pbio.0060027.g006 

Figure 7. Highly Bound Regions Are Associated with Genes Transcribed and Patterned 

in the Blastoderm 

Analyzed are the percentage of primary peaks that are within 10 kb of the 5' end of a 

gene. Genes are divided into three categories, all genes (from genome release 4.3, March 

2006), genes with known patterned expression (hand annotated based on Berkeley 

Drosophila Genome Project [BDGP] in situ images [35]) and transcribed genes (defined 

by our RNA Polymerase II ChIP/chip binding, see Materials and Methods). Percentages 

are calculated in nonoverlapping windows of 100 peaks down the rank list to the 80% 

FDR threshold. The position of the 1% and 25% FDR cutoffs are indicated with vertical 



 64 

dotted lines. (A) shows the results for the BCD1 antisera and (B) the results for the KR1 

antisera. 

doi:10.1371/journal.pbio.0060027.g007 

Figure 8. Genes That Control Development Are Highly Bound In Vivo 

The five most enriched GO ([98]) terms in the 1% FDR bound regions for each factor 

were identified (enrichment measured by a hypergeometric test). The significance of the 

enrichment (−log(p-value)) of these five terms plus those for two negative controls 

(protein metabolism and mitosis) in nonoverlapping windows of 250 peaks are shown 

down to the rank list for BCD1 (A) and KR1 (B) as far as the 80% FDR cutoff. The 1% 

and 25% FDR cutoffs are indicated by vertical dotted lines. 

doi:10.1371/journal.pbio.0060027.g008 

Figure 9. For Some Factors, Poorly Bound Regions Are Preferentially Found in Protein 

Coding Sequences 

Percentage of primary peaks in nonoverlapping windows of 500 peaks that are in protein 

coding (red), intronic (blue), and intergenic (green) sequence. Results are shown for 

windows down the rank lists to the 80% FDR cutoff. The percentages for each class of 

genomic feature are indicated as horizontal dotted lines in corresponding colors to the 

solid data lines. The 1% and 25% FDR cutoffs are indicated by vertical dotted lines. The 

panels show results for peak windows for BCD1, CAD, GT, HB1, KNI2, and KR1. 

doi:10.1371/journal.pbio.0060027.g009 

Figure 10. New Targets of Maternal and Gap Transcription Factors 
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ChIP/chip oligonucleotide ratio scores for selected new targets.  

(A) Bound regions found near well-characterized A-P target genes hb and h, but which 

do not overlap known CRMs (shown in grey). For example, the binding 22 kb upstream 

of h is likely to be a novel h CRM because the other genes in proximity are not 

transcribed in the early embryo.  

(B) Genes transcribed in the early embryo that have no known function but are bound at 

moderate to high levels by multiple gap factors. In the left panel, CG13333/CG13334 

loci, and the right, CG15876/CG13713 loci are shown.  

(C) miRNA genes that are actively transcribed in early embryos such as the gene that 

produces mir3, 4, 5, 6-1, 6-2, 6-3, 286, and 309 (left) and the mir-10 gene (right). See 

Table S3 for more details on binding to miRNA genes.  

(D) Binding in the region of D-V genes rho, twi, zen, and sna.  

doi:10.1371/journal.pbio.0060027.g010 

Figure 11. The mRNA Expression Patterns of Dorsal–Ventral Regulatory Factors Are 

Controlled by Anterior–Posterior Factors 

Data for wild-type embryos (top four rows) and embryos derived from bcd heterozygous 

and homozygous mothers (bottom row) are shown. Left panels show the mRNA 

expression patterns of representative embryos stained for rho, twi, zen, and sna. Dorsal 

views are shown for sna and twi and ventral views for zen and rho. Right panels show the 

mean mRNA expression for each gene along the A-P axis for a narrow strip of cells on 

either the dorsal or ventral midline. The error bars give the 95% confidence intervals for 



 66 

the means. The data for rho expression were derived from n = 22 wild-type (wt) embryos, 

twist from n = 14 wild-type embryos, zen from n = 10 wild-type embryos, and sna from n 

= 45 wild-type embryos, n = 24 embryos derived from bcd heterozygous mothers, and n 

= 24 embryos derived from bcd homozygous mothers.  

doi:10.1371/journal.pbio.0060027.g011 

Figure 12. Recognition Sequences Are Modestly Enriched in Bound Regions 

(A) Sequence logo representing the BCD and KR PWMs derived from SELEX data 

(made with seqlogo [99]). 

(B) Fold enrichment of matches to the PWM from (A) in 100-bp nonoverlapping 

windows across the 1% FDR primary peaks, with the peaks at position zero on the x-axis. 

PWM matches shown are divided in subsets based on the p-value of their match to the 

matrix.  

(C) Fold enrichment of matches to the PWM from (A) in the 500 bp around (±250 bp) 

regions around primary peaks, in nonoverlapping windows of 250 peaks down the 

ChIP/chip rank list to the 25% FDR cutoff. The 1% FDR cutoff is indicated as a vertical 

dotted line. As in (B), matches are divided based on the significance of their match to the 

matrix.  

(D) shows the distribution of the number of sites in the 500-bp (±250 bp) regions around 

1% FDR primary peaks and, for comparison, randomly selected noncoding genomic 

sequence. In this panel, a match to the matrix is defined as having a PATSER p-value of 

≤0.001. 
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doi:10.1371/journal.pbio.0060027.g012 

Figure 13. Bound Regions in Noncoding DNA Display a GC Bias 

(A) Average base composition (as represented by percentage GC) in nonoverlapping 

windows of 100 bp across the 10-kb regions (±5 kb) around 1% FDR primary peaks.  

(B) Base composition of the 500 bp (±250 bp) around peaks down the ChIP/chip rank list 

to the 80% FDR cutoff in nonoverlapping windows of 250 peaks. For both panels, only 

noncoding sequence was used in the analysis. The mean percentage GC content in 

noncoding DNA is indicated by the horizontal black line. 

doi:10.1371/journal.pbio.0060027.g0013 

Figure 14. In Vivo Binding Is Influenced by a Context Determined by Other Factors 

(A) and (B) show the fold enrichment of BCD and HB PWMs in nonoverlapping 

windows of 100 bp across the 10-kb regions (±5 kb) around 1% FDR BCD1 peaks, 

divided into those less than and greater than 400 bp from HB 1% FDR peaks.  

(C) and (D) show the same analysis for 1% FDR HB1 peaks divided into those less than 

or greater than 400 bp from BCD1 1% FDR peaks. As (D) shows, HB recognition 

sequences are not enriched in regions bound by both HB and BCD, but are enriched in 

regions bound by HB and not by BCD. 

doi:10.1371/journal.pbio.0060027.g014 

Figure 15. Recognition Sequence Conservation as a Function of Peak Intensity 
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Conservation scores in predicted factor recognition sequences (p-value ≤ 0.001) (red 

lines), all remaining sequences (blue lines), and in sequences matching scrambled 

variants of the factors’ recognition sequences (p-value ≤ 0.001) (green lines) in the 500-

bp regions (±250bp) around BCD1 and KR1 1% FDR peaks, in nonoverlapping windows 

of 250 peaks down the rank list to the 25% FDR cutoff. Panels in row (A) shows the 

mean PhastCons scores, and panels in row (B) the average pairwise differences per base 

pair between D. melanogaster and D. simulans. Gaps are ignored in the pairwise analysis. 

The 1% FDR cutoff is indicated by a vertical dotted line.  

doi:10.1371/journal.pbio.0060027.g015 

Table 1. Number of Regions Bound by Transcription Factors  

Symmetric-Null Test IgG Control Test 
Number of Bound 
Regions 

Overlap Between 
Bound Regionsa 

Number of Bound 
Regions 

Overlap Between 
Bound Regionsa 

Transcription 
Factor Type Antibody 

1%FDR 25%FDR 1% - 1%  1% - 25% 1%FDR 25%FDR 1% - 1% 1% - 25%  
Anti-BCD1 692 5,312 72% 97% 514 1,130 81% 94% 

BCD Maternal 
Anti-BCD2 578 3,833 86% 99% 524 1,039 80% 96% 

CAD Maternal Anti-CAD 1,392 6,484 NA N/A 1,013 5,109 NA N/A 
Anti-HB1 1,789 5,899 75% 94% 1,650 3,592 62% 84% 

HB Gap 
Anti-HB2 1,726 8,865 80% 96% 1,174 2,400 91% 98% 
Anti-KR1 3,072 11,140 89% 99% 2,255 4,775 88% 99% 

KR Gap 
Anti-KR2 3,415 10,774 80% 98% 2,274 4,440 87% 99% 

GT Gap Anti-GT 966 3,958 NA N/A 898 3,973 NA N/A 
Anti-KNI1 37 338 100 100% 117 530 90 98% 

KNI Gap 
Anti-KNI2 199 4,998 18% 87% 199 792 52% 94% 

RNA Pol II General 8WG16 2,742 12,485 NA N/A 2,734 4,867 NA N/A 
aPercentage of 1% FDR bound regions for one antisera that overlap at least 500 bp with a 1% or 25% FDR 

bound region for the other antisera for the same factor. 

doi:10.1371/journal.pbio.0060027.t001 

Table 2. Overlap between Bound Regions for Different Factors 

   25 % FDR 

 

Transcription 
Factor 

BCD1 CAD GT HB1 KNI2 KR1 

BCD1 100 84 85 85 77 88 1% 
FDR CAD 62 100 82 84 69 93 
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GT 70 94 100 87 79 96 
HB1 55 85 66 100 56 87 
KNI2 90 100 99 98 100 99 

 

KR1 40 71 57 62 43 100 
Overlap is defined as percentage of 1% FDR bound regions for one factor that overlap by at least 500 bp a 

25% FDR bound region for the other factor. 

doi:10.1371/journal.pbio.0060027.t002 

Table 3. Conservation of Recognition Sequences 

 1 % FDR Peaks ± 250 bpa Noncodingb Short Intronsc 
 Real Matrix Scrambled Matrix Real Matrix Scrambled Matrix Real Matrix Scrambled Matrix 
Measurement 

 
Transcription 
Factor 

Sitesd 
Non-
Sitese Sitesf 

Non-
Sitesg Sitesd 

Non-
Sitese Sitesf 

Non-
Sitesg Sitesd 

Non-
Sitese Sitesf 

Non-
Sitesg 

PhastCons 
Scores BCD1 0.6221 0.4663 0.4509 0.4709 0.4047 0.4161 0.3945 0.4161 0.0771 0.1544 0.0900 0.1539 
 CAD 0.5528 0.4250 0.3830 0.4314 0.4487 0.4150 0.3803 0.4169 0.0730 0.1554 0.0693 0.1559 
 GT 0.6366 0.4699 0.4802 0.4736 0.5648 0.4139 0.4256 0.4158 0.1037 0.1536 0.0916 0.1538 
 HB1 0.4184 0.4421 0.4097 0.4422 0.3461 0.4181 0.3865 0.4169 0.0682 0.1553 0.0766 0.1554 
 KNI2 0.5741 0.5639 0.5542 0.5643 0.4289 0.4157 0.4430 0.4153 0.0812 0.1542 0.0960 0.1539 
 KR1 0.4018 0.4070 0.3563 0.4079 0.3336 0.4176 0.3375 0.4174 0.0682 0.1550 0.0871 0.1544 
    
       
 

 

            
Pairwise 
Substitution 
Rates BCD1 0.0118  0.0283 0.0280 0.0279 0.0301 0.0428 0.0390 0.0427 0.0539 0.0627 0.0613 0.0626 
 CAD 0.0205 0.0326 0.0322 0.0322 0.0330 0.0429 0.0381 0.0428 0.0637 0.0625 0.0599 0.0626 
 GT 0.0197 0.0283 0.0259 0.0281 0.0411 0.0427 0.0369 0.0428 0.0620 0.0626 0.0612 0.0626 
 HB1 0.0297 0.0315 0.0311 0.0315 0.0460 0.0426 0.0402 0.0427 0.0643 0.0625 0.0627 0.0626 
 KNI2 0.0144 0.0222 0.0184 0.0221 0.0328 0.0429 0.0337 0.0429 0.0636 0.0625 0.0595 0.0626 
 KR1 0.0288 0.0351 0.0316 0.0350 0.0418 0.0427 0.0384 0.0428 0.0600 0.0626 0.0598 0.0626 

aMean values for specified sequences within the 500-bp peaks of factor binding in vivo. 
bMean values for specified sequences within randomly selected noncoding genomic regions not bound by 

the six factors above the 1% FDR cutoff. 
cMean values for specified sequences within introns shorter than 100 bp. 
dMean values for sequences matching the PWM for the factor (p < 0.001). 
eMean values for the remaining sequences in the defined region that do not match the PWM for the factor 

(p < 0.001) 
fMean values for sequences matching approximately 100–200 scrambled permutations of the factors’ real 

PWM (p < 0.001)  
gMean values for the remaining sequences in the defined region that do not match the scrambled PWMs 

used in the previous column (p < 0.001)  
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doi:10.1371/journal.pbio.0060027.t003 
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