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ABSTRACT
Disease risk estimation plays an important role in disease prevention. Many studies have found that the

ability to predict risk improves as the number of risk single-nucleotide polymorphisms (SNPs) in the risk

model increases. However, the width of the confidence interval of the risk estimate is often not considered

in the evaluation of the risk model. Here, we explore how the risk and the confidence interval width change

as more SNPs are added to the model in the order of decreasing effect size, using both simulated data and

real data from studies of abdominal aortic aneurysms and age-related macular degeneration. Our results

show that confidence interval width is positively correlated with model size and the majority of the bigger

models have wider confidence interval widths than smaller models. Once the model size is bigger than

a certain level, the risk does not shift markedly, as 100% of the risk estimates of the one-SNP-bigger

models lie inside the confidence interval of the one-SNP-smaller models. We also created a confidence

interval-augmented reclassification table. It shows that both more effective SNPs with larger odds ratios

and less effective SNPs with smaller odds ratios contribute to the correct decision of whom to screen. The

best screening strategy is selected and evaluated by the net benefit quantity and the reclassification rate.

We suggest that individuals whose upper bound of their risk confidence interval is above the screening

threshold, which corresponds to the population prevalence of the disease, should be screened.

K E Y W O R D S

disease risk estimation, confidence interval, model size, reclassification

1 INTRODUCTION

Personalized genomics is currently a widely discussed

topic (Bloss, Darst, Topol, & Schork, 2011). Personal-

ized genomics companies and many publications (Evans,

Visscher, & Wray, 2009; Morrison et al., 2007; Wray,

Goddard, & Visscher, 2007) have provided disease risk pre-

diction models based on genetic predictors. However, these

risk reports seldom take the confidence interval of the risk

estimate into account (Kalf et al., 2014). For example,

Genet. Epidemiol. 2017; 00: 1–15 © 2017 WILEY PERIODICALS, INC. 1www.geneticepi.org
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23andMe presented to its customers a point estimate of the

risk and the average risk of the disease in the population,

as well as how much higher the estimated risk was than the

average risk. 23andMe did not present confidence intervals of

the provided risk estimates. And in many publications, espe-

cially when risk estimates are based on odds ratios derived by

meta-analysis, the confidence intervals of the risk estimates

are not presented nor considered in the evaluation of the risk

model. Many studies have applied regression models to a set

of risk single-nucleotide polymorphisms (SNPs) to make pre-

dictions. Using the area under the curve (AUC) metric to eval-

uate their risk models, they conclude that the more risk SNPs

in the risk model, the larger the AUC will be, thus, the better

the ability to predict the risk (De Jager et al., 2009; van Dieren

et al., 2012). However, as we illustrate here, as the number

of risk SNPs in the model increases, the confidence interval

of the risk estimate can widen. In fact, a risk estimate with

a larger confidence interval from a larger model with more

SNPs may not be practically better than a similar risk esti-

mate with a smaller confidence interval from a smaller model

based on fewer SNPs. When presenting and evaluating risk

estimates, it is important to consider the level of uncertainty

in the risk estimate.

In this study, we explore the changes of risk estimates and

their 95% confidence interval widths as more SNPs, in the

order of decreasing effect size, are added into the model,

based on both simulated and real data. We also created a

reclassification table to evaluate the effect of the added SNPs

predictors, taking the confidence interval of the risk estimate

into account. Finally, we selected the best screening strategy

based on the net benefit quantity and the reclassification rate.

2 METHODS

2.1 Data description

In this study, we use three data sets to evaluate and compare

our risk models. The first data set is a simulated one. We sim-

ulated a data set of 100,000 people assuming a genetic model

based on 19 independent risk SNPs with odds ratios and allele

frequencies matching those observed in a large meta-analysis

of age-related macular degeneration (AMD; Fritsche et al.,

2013), using the Multiple Gene Risk Prediction Performance

(mgrp) R package (Pepe, Gu, & Morris, 2010). In the large

meta–analysis of AMD, the 19 SNPs were shown to be highly

associated with AMD. AMD is a progressive neurodegener-

ative disease that constitutes one of the primary causes of

visual impairment and irreversible blindness in the elderly of

western countries (Klein et al., 2011). In our simulation, we

assumed that the disease is dichotomous with a prevalence of

0.055, which is similar to the prevalence of AMD.

The second data set is from a study of abdominal aor-

tic aneurysms (AAA). AAA is the most common form of

aortic aneurysm. In general, the prevalence of AAA (2.9–

4.9 cm in diameter) ranges from 1.3% for men aged 45—

54 to up to 12.5% for men aged 75–84. Comparable preva-

lence figures for women are 0% and 5.2%, respectively (Rooke

et al., 2012). Up to 10% of the male population who are more

than 65 years old has AAA, and 80–90% of ruptures lead to

sudden death (Assar, & Zarins, 2009). Our goal was to clas-

sify the population into high- and low-risk categories, where

“high risk” is defined as having a risk higher than the pop-

ulation prevalence. Our motivation was to identify people

with high AAA risk for targeted ultrasound screening. The

samples were genotyped at 731K SNPs using the Illumina

OmniExpress platform (dbGaP Study Accession numbers:

phs000381.v1.p1, phs000408.v1.p1, and phs000387.v1.p1).

AAA cases and controls were identified by electronic pheno-

typing (Borthwick et al., 2015). After imputation and quality

control (Verma et al., 2014), 2,626 samples (733 cases and

1,893 controls) were available. The imputed data are part of

the eMERGE Network Imputed GWAS data for 41 pheno-

types (the dbGaP eMERGE phase 1 and 2 merged data sub-

mission with accession number phs000888.v1.p1). By mod-

eling in a much larger electronic medical record (EMR)-

based clinical data set, seven easy-to-measure clinical pre-

dictors (age, smoking status, sex, systolic blood pressure,

diastolic blood pressure, height, and weight) were chosen

for use in our risk models (Smelser et al., 2014). Based on

prior literature (Biros et al., 2011; Bown et al., 2011; Elmore

et al., 2009; Galora et al., 2013; Giusti et al., 2008; Harrison

et al., 2013; Helgadottir et al., 2012; Jones et al., 2008,

2013; Saracini, et al., 2012; Thompson, Drenos, Hafez, &

Humphries, 2008), 15 SNPs present in the imputed data were

selected with odds ratios in the literature ranging from 0.41

to 2.16 (Supplementary Table S1).

The third data set is from a study of the genetics of AMD

(Weeks et al., 2000, 2004). In our analysis, for 1,015 unre-

lated individuals (882 cases and 133 controls), high quality

genotypes were available at 14 of the 19 SNPs mentioned

above, and these 14 were used as predictors in the AMD data

analysis. The cases in our study were defined according to

the diagnosis criteria of “Model C” in Weeks et al. (2004).

Under Model C, cases are those who are definitely or proba-

bly affected with AMD or with a related maculopathy. Model

C also included individuals with end-stage disease, in the

absence of any other documentation of macular pathology.

The controls had no AMD symptoms with an age at last eye

examination ≥ 65.

2.2 Data analysis

First, for all the three data sets, we used logistic regression to

fit the risk models. To avoid over fitting, we used four-fifths of

the data as the training data set and the rest of the data as the

testing data set. The training and testing data sets are not only

used to recommend a single best prediction model, but are
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also applied to explore the behavior of models with different

sizes, when each model is built using an ordered set of risk

SNPs. We did not include any covariates besides the SNPs

when analyzing the AMD and simulated data sets (because

the simulated data are set up to be similar to the AMD data,

this makes the results from these more comparable). When

analyzing the AAA data set, we included seven easy-to-

measure clinical predictors (age, smoking status, sex, systolic

blood pressure, diastolic blood pressure, height, and weight).

We let M be the total number of risk SNPs. Using the training

data set, we fit the largest model using logistic regression

with all of the M SNPs to estimate an odds ratio for each SNP.

We ordered the M SNPs in decreasing order of effect size

using odds ratios as an estimate of effect size after inverting

any odds ratios < 1. So, SNP 1 has the largest estimated effect

size, SNP 2 has the next largest estimated effect size, etc. After

ordering the SNPs in this manner, starting by fitting a model

of size 1 using SNP 1, we then fit successively larger models

using the training data set, increasing the model size K by

adding in the next SNP from our ordered list (Supplementary

Tables S1 and S2). For each model, all of the effect sizes were

reestimated—these are the natural logarithm of odds ratios:

𝛽 parameters. Then, we estimated risks for each individual in

the testing data set by plugging in the 𝛽’s as estimated from

the training set using K SNPs. When estimating risks from

a case/control sample using logistic regression, the resulting

risk estimate is not the absolute risk, but rather depends on

the case/control ratio in the sample itself. Accordingly, for

the case/control data sets, risk estimates were adjusted using

the methods described in Pyke et al. (1979). For each person

in the testing data set, we recorded the risk estimate, its 95%

confidence interval, the model size, and the SNP genotypes.

We then explored how the risk shifts as the model size

increases using bean plots and risk trajectory plots. To quan-

tify the magnitudes of the risk shifts, we recorded the max-

imum of the absolute risk shifts (MRS) between model k
and all bigger models for each individual. We recorded the

maximum, across all individuals, of the MRS when addi-

tional SNPs were added to the model k that we refer to as the

“maxMRS”; and the 95th percentile of the MRS that we refer

to as the “95PMRS.” To investigate the relationship of the

confidence interval width and the model size, we used Spear-

man’s rank correlation test and bean plots.

For the AAA and AMD data sets, we evaluated the risk

models using reclassification tables, taking the confidence

interval into account, classifying individuals into high- and

low-risk groups based on a threshold T corresponding to the

population prevalence (we assumed the prevalence was 0.033

for AAA and 0.055 for AMD). In the traditional reclassifica-

tion tables (which do not take the confidence intervals into

account), assignment to either the low- or high-risk classes is

defined solely based on the chosen risk threshold T. In order

to take the risk confidence intervals into account, we created

confidence interval augmented (CI-augmented) reclassifica-

F I G U R E 1 Illustration of the risk estimates falling in the four LOW*,

{−T}, {+T}, and HIGH* risk classes, which are defined as a function of the

risk estimate value (gray dot) and its confidence interval. The horizontal line

indicates the threshold T

tion tables where we defined the LOW*/HIGH* risk classes

to contain individuals whose risk estimates were lower/higher

than T and whose confidence interval did not overlap T. Indi-

viduals in these two classes had risk estimates that were

unambiguously either below or above T (Fig. 1). Then, we

added two more classes, denoted as “{−T}” and “{+T},”

which contain individuals with risk estimates with confidence

intervals that overlap the threshold T. The individuals in the

{−T} class had risk estimates < T, while those in the {+T}

class had risk estimates ≥ T. For individuals in these two

classes, it is not clear if their true risk is above or below

T. As the CI-augmented approach classifies the individuals

into four categories (LOW*, {−T}, {+T}, HIGH*), there are

three possible screening strategies: (1) screen the individu-

als in HIGH* risk class only (defined as {T,1]); (2) screen

the individuals in both {+T} class and HIGH* risk class

(defined as {+T,1]); (3) screen the individuals in {−T}, {+T},

and HIGH* risk class (defined as {−T,1]). We calculated the

net benefit (McGeechan, Macaskill, Irwig, & Bossuyt, 2014),

which provides a measure of the number of people correctly

screened as having the outcome, adjusted for the number of

people incorrectly screened as having the outcome. The net

benefit formula is:

Net benef it =
True positives

𝑛
−

False positives
𝑛

(
𝑇

1 − 𝑇

)
,

where n is the sample size, and T is the threshold as indi-

cated above. Then, we calculated the reclassification rate

of [0,−T} ⇔ {+T,1] and the reclassification rate of

LOW* ⇔ {−T,1] according to the screening strategies 2 and

3. The reclassification rate of lower risk group ⇔ higher risk

group means the proportion of individuals reclassified from

the lower risk group to the higher risk group or from the higher

risk group to the lower risk group. We also evaluated the rate

of correct reclassifications for the three screening strategies.

Correct reclassification means reclassifying cases from the

lower risk group to the higher risk group, or reclassifying
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F I G U R E 2 Risk trajectories as categorized by the initial risk for (a) the simulation study, (b) the AAA data set, and (c) the AMD data set. Each part

contains the trajectories of 30 individuals randomly chosen from the testing data set. The odds ratios of the added SNPs are shown on the top of each subfigure.

The horizontal black line is the disease prevalence (0.055 for the simulated data set and the AMD data set; 0.033 for the AAA data set). The maxMRSmi

and 95PMRS.mi are based on the model with i SNPs, where MRS = max(absolute risk shifts between the current model and all bigger models for a given

individual); maxMRS = max(MRS) across all individuals; and 95PMRS = the 95th percentile of the MRS

controls from the higher risk group to the lower risk group.

We used the net benefit and the rates of correct reclassifica-

tion to select the best screening strategy. Furthermore, in order

to explore the influence of model size on the confidence inter-

val width, we recorded how many confidence interval widths

increased and decreased when more SNPs were added to the

initial model.

3 RESULTS

First, in each data set, we examined how much the risk shifted

when one more SNP with the next largest odds ratio (after all

odds ratios were inverted to be >1) was added to the model.

To explore the risk shift at the individual level, we plotted rep-

resentative risk trajectories as SNPs were added to the model

in the order of decreasing effect sizes (Fig. 2). As expected,

the risks shift less when SNPs with the smaller odds ratios are

added. Figure 2 shows, at the individual level, movement in

risk among the smaller models has a marked flattening of the

risk trajectories as the models get larger. We also found that

individuals with higher initial risks tend to have their risks

shift more than those with lower initial risks as the model

size increases. In the simulated data set (Fig. 2A), when the

three initial risk are 0.027, 0.068, and 0.161, the maxMRS’s

based on the smallest model are 0.15, 0.27, and 0.39, and the

95PMRS’s based on the smallest model are 0.05, 0.11, and

0.21, respectively. In AAA and AMD data sets, the 95PMRS’s

based on the smallest model are also bigger when the initial

risks are bigger (Fig. 2B and C).

We then explored the risk shift at the population level, as

more SNPs are added into the risk model. Table 1 shows that

the risks do not shift markedly once the model size is bigger

than a certain level. For example, if we let the “maxMRS-

selected model” be the smallest model with a maxMRS <

0.06, then in all the three data sets, the 95PMRS of the mod-

els bigger than the maxMRS-selected model were all smaller

than 0.025. Furthermore, if we let Mi represent the model

with i SNPs, in all the three data sets, when the model size

is bigger than the maxMRS-selected model, 100% of the

Mi + 1 risk estimates lay inside the corresponding Mi con-

fidence interval (Fig. 3A–C) and 100% of the Mi + 1 confi-

dence intervals overlap with the corresponding Mi confidence

interval (Fig. 3D–E). In addition, when the model size is big-

ger than the maxMRS-selected model, all the Mi + 1 confi-

dence intervals overlapped more than 50%, 90%, and 95%

with the corresponding Mi confidence intervals, in the sim-

ulation data set, AAA data set, and AMD data set, respec-

tively (data not shown). Consistent with these observations,

Figure 4 shows that when the model size was greater than the

maxMRS-selected model, the risk shift distributions did not

change markedly as the model sizes grew.

We then explored the influence of the model size on the

confidence interval width. Figure 5 shows that the confi-

dence interval width was positively correlated with model

size in all the three data sets. For all the three data sets, the
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T A B L E 1 The maxMRS and 95PMRS measuresa in the simulation data set, the AAA data set and the AMD data set

Simulation data set AAA data set AMD data set

# of SNPs in Model maxMRS 95PMRS maxMRS 95PMRS maxMRS 95PMRS

0 - - 0.221 0.075 - -

1 0.395 0.113 0.222 0.070 0.381 0.227

2 0.311 0.076 0.182 0.063 0.322 0.158

3 0.286 0.067 0.133 0.051 0.307 0.136

4 0.214 0.060 0.147 0.041 0.297 0.128

5 0.209 0.053 0.098 0.038 0.222 0.104

6 0.185 0.050 0.070 0.027 0.164 0.079

7 0.176 0.046 0.058 0.022 0.142 0.066

8 0.163 0.041 0.042 0.016 0.096 0.050

9 0.150 0.036 0.039 0.014 0.064 0.035

10 0.119 0.032 0.030 0.011 0.032 0.021

11 0.103 0.029 0.021 0.009 0.022 0.010

12 0.099 0.025 0.020 0.006 0.007 0.004

13 0.087 0.022 0.017 0.005 0.002 0.001

14 0.069 0.019 0.002 0.001

15 0.060 0.016

16 0.043 0.012

17 0.025 0.007

18 0.011 0.003

The bold values indicate the “maxMRS-selected model” which is the smallest model with maxMRS less than 0.06.
aMRS = max(absolute risk shifts between the current model and all bigger models for a given individual); maxMRS = max(MRS) across all individuals;

95PMRS = the 95th percentile of the MRS.

Spearman’s rank correlation test gives P values smaller than

0.001, indicating positive correlation between the confidence

interval width and model size. Table 2 also shows the influ-

ence of the model size on the confidence interval width.

More estimates have wider confidence intervals in the updated

model than in the initial model. For the AAA data set, com-

paring M0 with M7, 84.8% of the estimates have wider confi-

dence intervals in the updated model compared to the initial

model; while comparing the M7 with M15, 96.0% of the esti-

mates have wider confidence intervals in the updated model

compared to the initial model. For the AMD data set, com-

paring M1 to M10, 90.0% of the estimates have wider confi-

dence intervals in the updated model compared to the initial

model; while comparing M10 to M14, 100% of the estimates

have wider confidence intervals in the updated model com-

pared to the initial model.

Furthermore, we determined the reclassification rates

based on the screening strategies 2 and 3. The reclassifica-

tion rates with bigger-effect SNPs in Table 2a and c are higher

than that with smaller-effect SNPs in Table 2b and d. But the

small-effect SNPs can still affect the reclassifications. Table

2b shows that in the AAA data set, adding eight less effec-

tive SNPs to the maxMRS-selected model, 19.0% of cases and

0.6% controls were correctly reclassified; while 0% of cases

and 3.5% of controls were mistakenly reclassified. Table 2d

shows that in the AMD data set, adding four less effective

SNPs to the maxMRS-selected model, 21.1% of the cases and

0% of the controls were correctly reclassified; while 0% of

the cases and 13.0% of the controls were mistakenly reclassi-

fied. We also found the correctly reclassified rate of LOW* ⇔
{−T,1] is much higher than [0,−T} ⇔ {+T,1] for cases, and

the correctly reclassified rate of LOW* ⇔ {−T,1] is lower

than [0,−T} ⇔ {+T,1] for controls, in both AAA and AMD

data sets.

Finally, we evaluated the net benefit quantities of the three

screening strategies. Table 3 shows that in both of the two

data sets, the screening strategy of screening the individuals

in the {−T,1] category provides the biggest net benefit quan-

tity among the three strategies. The full models of both AAA

and AMD data sets with {−T,1] screening strategy have the

biggest net benefit quantity.

4 DISCUSSION

Due to rapid progress and advancements in sequencing tech-

nology, it is now feasible, yet still expensive, to accurately

type all genetic variants for an individual. To construct a

risk estimate from these variants, we could attempt to use

all of them or we could order them by estimated effect size,

and use only the strongest predictors. But then the question

is how many of these should be used. Clearly, as the effect
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F I G U R E 3 Percentages of Mi + 1 risks inside the Mi confidence intervals (a–c), and percentages of Mi + 1 confidence intervals that overlap with the Mi

confidence intervals (d–f), where model Mi + 1 is one SNP larger than model Mi. The gray bar shows the maxMRS-selected models

size shrinks, adding a single small effect predictor to the

risk model will not shift the risk by much. We explored here

how the risk estimate and its certainty change as variants of

decreasing effect size are added into the risk model, using

simulated data and real data of two different complex diseases

(AAA and AMD).

If we order SNPs by decreasing effect sizes and build risk

models of increasing size by adding in the next SNP, we

first observe that the risk shifts between successive models

become more and more modest (Figs. 2 and 4, Table 1) and

the confidence intervals of the risk estimates tend to become

larger (Fig. 5, Table 2). Then, we observe that when the model

size is large enough, if one more variant is added, the major-

ity of the updated risk estimates will lie within the confidence

interval of the preceding estimate and the confidence inter-

vals of the new and old estimates will overlap substantially

(Fig. 3). However, as we add multiple small-effect SNPs to the

model simultaneously, these SNPs can still affect the reclas-

sifications (Tables 2 and 3).

Our data also suggest that models with slightly larger

AUCs are not necessarily better than those with smaller

AUCs, if one takes into consideration risk shifts and confi-

dence interval widths. Tables 1, 2b, and 2d show that when

the model size is bigger than “MaxMRS-selected model,”

the risks shifts become modest and the confidence intervals

become wider. Thus, with similar risk estimates and wider

confidence interval widths, full models are not necessar-

ily superior to maxMRS-selected models. However, Table 4

shows that the AUCs of the full models are only slightly larger

than the AUCs of the maxMRS-selected models. This sug-

gests that only considering the AUC but ignoring risk shifts

and confidence intervals may not be adequate.

We recommend that all individuals with risk estimates

above the threshold T or who have risk estimates with con-

fidence intervals that overlap T (e.g., those in the {−T,1] cat-

egory) should be screened. There are two reasons for this.

First, the strategy of screening the individuals in the {−T,1]

category gives the biggest net benefit among all three screen-

ing strategies. Second, for the cases, the correctly reclassi-

fied rate of LOW* ⇔ {−T,1] is much higher than [0,−T}

⇔ {+T,1], although for the controls, the correctly reclas-

sified rate of LOW* ⇔ {−T,1] is lower than [0, −T} ⇔
{+T,1], in both AAA and AMD data sets. Where screening

costs much less compared to failing to detect the disease,
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F I G U R E 4 The distribution of risk shifts as a function of the number of SNPs in the updated model. The plots were generated by the beanplot command in

the R package of the same name (Kampstra, 2008). The dark horizontal lines show individual observations, and the red line indicates the mean. The label above

the plot is the added SNP’s odds ratio in the model. The red circle indicates the risk shift distribution where the updated model is the maxMRS-selected model

screening the individuals in {−T,1] is the most appropriate

strategy. However, it is important to remember that clinical

cost-benefit analyses are complex and the assumption here is

that screening is beneficial, although it is not necessarily so

(for various diseases) if the “cost” of intervention risks are

taken into account.

The results (Table 3) are based on setting the threshold (T)

to the population disease prevalence. The purpose of setting T
to the population disease prevalence is to recommend screen-

ing for anyone whose risk was higher than what it would be

if they were sampled from the general population. However,

for many diseases, people may not undergo screening unless

their estimated risk is relatively high. So we reevaluated the

net benefit, setting T to higher values of 10% and 20%. Sup-

plementary Table S3 shows that when the thresholds are 10%

and 20%, for both AAA and AMD data sets, the strategy of

screening individuals in the {−T,1] category still provides the

biggest net benefit quantity among the three strategies, and
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F I G U R E 5 The distribution of the confidence interval widths by model size. The confidence interval width axis uses the log scale. The label above the

bean plot is the added SNP’s odds ratio in the model. The horizontal line in the middle of each bean plot shows the mean value

the full models with {−T,1] screening strategy still have the

biggest net benefit quantity.

In our study, all the results were generated by one single

split with 80% individuals in the training data set and 20%

individuals in the testing data set. We then generated five

more 80/20 random splits of the training and testing data sets

to illustrate the results change. Table 5 shows the maxMRS-

selected models of each split. In the simulation data set, the

maxMRS-selected models in the five testing data sets are sim-

ilar; while in the AAA and AMD data sets, the maxMRS-

selected models in the five testing data sets are variant. This

is because the sample size in the simulation data set is large

(100,000), while the sample sizes in the AAA and AMD data

sets are small (2,626 and 1,015, respectively). Therefore, the

max-MRS selected models should be built using data sets

with large sample sizes. Otherwise, the max-MRS selected

models may be greatly affected by the splitting of the training

and testing data sets. When the sample size is small and the

maxMRS-selected model sizes are variant, we would recom-

mend using the median value of the maxMRS-selected model

sizes as the final model.

In our results, the relationship of the risks and the confi-

dence interval widths is consistent with the binomial distribu-

tion property that the confidence interval width increases as

the risk estimate rises to 0.50 and decreases as the risk esti-

mate increases beyond 0.5. Because the disease prevalence
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T A B L E 3 Net benefit of the classification of each model in the AAA data set and the AMD data set for the three screening strategies

AAA AMD

Screening strategies Model 0 Model 7 Model 15 Model 1 Model 10 Model 14

Screen individuals in {T,1] 0.201 0.191 0.180 0.601 0.386 0.318

Screen individuals in {+T,1] 0.220 0.218 0.216 0.601 0.587 0.590

Screen individuals in {−T,1] 0.236 0.238 0.242 0.601 0.730 0.753

The threshold T is the population disease prevalence.

T A B L E 4 AUCs (Area Under the Curve) of the maxMRS-selected

model and the full model in the simulation data set, AAA data set, and

AMD data set

Simulation AAA AMD

MaxMRS-selected

model

0.758 (0.006) 0.871 (0.017) 0.741 (0.021)

Full model 0.760 (0.006) 0.873 (0.016) 0.742 (0.022)

The numbers in each cell are the mean value and the standard deviation

(shown in the parenthesis) of the AUCs in the 10 replicates.

T A B L E 5 The number of SNPs in the maxMRS-selected models of

five times 80/20 random splits in simulation data set, AAA data set, and

AMD data set

Cross-Validation Simulation AAA AMD

1 16 7 10

2 16 7 11

3 17 8 12

4 17 12 –

5 17 13 –

The “–” symbol indicates that the maxMRS based on the full model is bigger

than 0.06. The numbers of SNPs in the maxMRS-selected model of the five

splits are sorted by an increasing order in each data set.

in the simulation study, AAA study, and AMD study were

0.055, 0.033, and 0.055, respectively, most of the risk esti-

mates were much lower than 0.5 in all three data sets. In the

simulation, AAA, and AMD data sets, only three, one, and

eight individuals had risk estimates bigger than 0.5, respec-

tively. In all the three data sets, most of the confidence inter-

vals increased as the risk increased, or decreased as the risk

decreased, when one more SNP with the next largest effect

size was added to the model. But there were still some con-

fidence intervals that increased as the risks decreased in the

three data sets and some confidence intervals that decreased

as the risks increased in the AAA data set only. These two

scenarios are because of two reasons. The first one is that the

confidence interval widths are not only related to the risk size,

but are also related to the model size. Even though the risks

estimated by larger models are smaller, the confidence inter-

vals can still become bigger if the model sizes are bigger. The

second reason is that when the risk estimate exceeds 0.50, the

confidence interval width decreases as the risk increases, and

vice versa.

The risk trajectory plot (Fig. 2) shows that the higher-

initial-risk individuals have their risks shifted more than the

lower-initial-risk individuals as more SNPs are added to the

model. This observation is mainly because of two reasons.

First, the risk trajectories that start with a low initial risk suf-

fer from a lower bound effect—they cannot move very far in

the downward direction. Second, because the disease preva-

lence in the three data sets is as low as 0.055, 0.033, and 0.055,

respectively, the majority of people must be in the low risk

category.

Other previous studies classified individuals using both

the risks and the confidence intervals. Goddard and

Lewis (2010) developed a strategy, which has been imple-

mented in the R package REGENT (Crouch, Goddard,

& Lewis, 2013), to classify individuals into risk classes

using the risk and the confidence interval of an average

individual to anchor the classification. With N SNPs, there

are 3N genotypes. The “average individual” is the individ-

ual with a genotype relative risk closest to the average risk,

which is the sum across all the 3N genotypes of the prod-

ucts of their frequencies and relative risks of disease. An

estimate with confidence interval overlapping the confidence

interval of the “average individual” is classified as “Average”

risk. An estimate with confidence interval below the confi-

dence interval of the “average individual” is categorized as

“low” risk. In a similar manner, they also define “moder-

ate” and “high” risk categories. Scott et al. (2013) applied

the reclassification method and the REGENT R package to

predict the risk of rheumatoid arthritis and its age of onset

with smoking. In Goddard and Lewis (2010), they observed

that when one uses confidence interval-based risk classifica-

tion, one can run into the situation where an individual with

a lower risk is classified into the high risk group because

their confidence interval was larger than an individual with

a slightly higher risk who had a narrower confidence inter-

val. This phenomenon also happens in our AAA and AMD

data sets. We recorded the smallest risk estimate among those

whose upper bounds of the confidence intervals are higher

than the threshold. Then, we counted the number of estimates

that are higher than this smallest risk estimate, but with con-

fidence intervals that do not cross the threshold. Using the

smallest model (model 0) and the biggest model (model 15)

of the AAA data set, models 1, 11, and 14 of the AMD data

set, there are 12, 24, 0, 19, and 9 estimates that meet these

criteria, respectively.

Hart et al. (2013) also built a logistic regression model for

risk estimation and took confidence intervals into account.
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They used logistic regression to create a new actuarial

risk assessment instrument (ARAI). They categorized the

individuals to two groups based on the ARAI score. They

evaluate the ARAI at both group and the individual levels.

Their results at the individual level are similar to our results.

The mean width of the 95% confidence intervals for individual

risk estimates in the high risk score category was much big-

ger than that of subjects in the low risk category. Confidence

intervals for individual risk estimates overlapped completely

within groups, and almost completely across groups.

In our study, the numbers of SNPs used in the simula-

tion data set, AAA data set, and AMD data set are small

(19, 14, and 15 risk SNPs, respectively), based on using the

subset of significantly associated risk SNPs. Of course, in

genome-wide studies, it might be of interest to use more or

all of the available SNPs. In such a case, statistical methods,

such as penalized regression equipped with variable selection

(Austin, Pan, & Shen, 2013) and Bayesian Alphabet methods

(Gianola, 2013), can be applied to the SNP-selection; pre-

diction is then based on the selected SNPs. Wimmer et al.

(2013) compared methods performing variable selection to

methods that retain all predictors in the model, for example,

ridge regression best linear unbiased prediction (RR-BLUP).

They concluded that when the sample size is much larger than

the number of causal mutations contributing to the trait, SNP

selection based prediction outperforms RR-BLUP. However,

when the number of SNPs is big compared to sample size,

each of small to modest effect size, such as in many complex

disease scenarios, RR-BLUP is superior to the SNP selec-

tion based prediction. Thus, under the situation where the

sample size is smaller than the number of causal mutations

contributing to the traits, methods distributing effects across

the genome would provide more precise predictions than

those that perform model selection, and our proposed SNP-

selection based prediction according to width of confidence

intervals might be less than optimal. It would be of interest to

extend this work to the context of penalized shrinkage models

and traits with larger numbers of established risk SNPs.

Consideration of risk estimate uncertainty is important

because if the disease risk estimates, as well as the confi-

dence intervals are provided, people can make more informed

decisions regarding their screening decisions (Weeks, &

Ott, 1990). For example, suppose an individual has a risk

estimate below the threshold, but the upper bound of the

confidence interval is much higher than the threshold. If only

the risk estimate is provided, there will be an unfounded

confidence in the estimate and the individual may feel safe,

and therefore may choose to not undergo screening. But

if both the risk estimate and its confidence interval are

provided, the individual may no longer feel safe, and prob-

ably will undergo screening. For another example, consider

an individual with a risk estimate slightly higher than the

threshold and the lower bound of the confidence interval also

above the threshold. If only the risk estimate is provided,

this individual may not undergo screening, because the risk

estimate is only slightly higher than the threshold. However,

if the confidence interval shows that it has 95% certainty that

the individual has high risk of getting the disease, then this

individual may decide to undergo screening. On the other

hand, because it is difficult to clearly convey risk estimates in

such a way that they are understood and interpreted correctly,

it may be even more difficult to clearly communicate the

information embodied in the confidence intervals around

those risk estimates (Lautenbach, Christensen, Sparks, &

Green, 2013). Careful consideration of how to best com-

municate these measures of risk estimate uncertainty is

merited, lest such communications lead to increased disease-

related anxieties and poorer risk perceptions (Han, 2013;

Han et al., 2011).
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