Title
SLOPE OF THE FORWARD PEAK IN \(pp \) SCATTERING AND THE REGGE-POLE MODEL

Permalink
https://escholarship.org/uc/item/1ds8p9qd

Authors
Austin, Donald M
Rarita, William.

Publication Date
1971-07-01
SLOPE OF THE FORWARD PEAK IN
pp SCATTERING AND THE REGGE-POLE MODEL

Donald M. Austin and William Rarita

July 14, 1971

AEC Contract No. W-7405-eng-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SLOPE OF THE FORWARD PEAK IN \(pp \) SCATTERING AND THE REGGE-POLE MODEL

Donald M. Austin and William Rarita

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

July 14, 1971

ABSTRACT

A recent Regge-pole model based on \(pp \) and \(\bar{p}p \) cross sections and polarizations is extrapolated to determine the slopes of the \(pp \) differential cross section for the energies and momentum transfers just measured at the CERN Intersecting Storage Rings. The slopes thus predicted come close to the published experimental values, and show a strong \(t \) dependence. The average Pomeranchuk slope \((\alpha_p') \) for our several fits was \(0.31 \) \((\text{GeV})^{-2}\).

The new CERN Intersecting Storage Ring (ISR) data on the slope of the \(pp \) differential cross section (DCS) can be compared with the predictions of Regge-pole fits to high energy \(pp \) and \(\bar{p}p \) elastic scattering data available through early 1970.

All of the fits (3-, 4-, and 5-pole) give good representations of all the existing \(pp \) and \(\bar{p}p \) elastic data in the range

\[
0 \leq |t| \leq 0.6 \, (\text{GeV}/c)^2,
\]

\[
6.0 \leq P_{\text{lab}} \leq 70.0 \, \text{GeV}/c.
\]

The constraints placed on the parameters by fitting total cross sections, DCS, polarizations and the ratio of real to imaginary part of the forward amplitude for \(pp \) and \(\bar{p}p \), plus the \(pp \) DCS slope data, were quite severe. In particular, the slope of the Pomeranchuk trajectory, \(\alpha_p' \), was confined to the range

\[
0.25 \leq \alpha_p' \leq 0.38 \, (\text{GeV})^{-2},
\]

regardless of the number of trajectories included in the fit, the type of ghost-eliminating mechanism chosen, or the functional forms of the residue functions investigated.

It seems reasonable to expect that the extrapolation to higher energies (as represented by the ISR data) should be nearly independent of the detailed structure of the terms from the low-lying trajectories.

The DCS slope predictions, given by

\[
b = \frac{\partial}{\partial t} \left(\text{ln} \left(\frac{\partial\sigma}{\partial t} \right) \right),
\]

are similar for all the fits. The curves in Fig. 1 for \(b_{\bar{p}p} \) are an amplification of Fig. 8a of Ref. 2 (for \(t = -0.064 \), -0.125, and -0.27 \((\text{GeV}/c)^2\), extended to \(P_{\text{lab}} = 2000 \, \text{GeV}/c \)). They represent the prediction for the 4-pole fit which had

\[
\alpha_p(t) = 1.0 + 0.31 \, t.
\]

(Note: The data points in Fig. 1 have been lowered by a systematic error of 3\%, as in Ref. 2.) The predictions are within 1 or 2 standard deviations of the ISR points. The strong \(t \)-dependence of the slope is evident. Figure 2 shows the same predictions for \(b_{\bar{p}p} \), with a few data points added for orientation. As expected, the \(t \)-dependence for \(b_{\bar{p}p} \) is much weaker than for \(b_{pp} \).
It would seem that models incorporating a fixed-pole Pomeranchuk singularity (see, for example, Ref. 3) must reproduce the strong t-dependence of b_{pp} through some other mechanism since this feature of Regge-pole fits is determined by the small $|t|$ behavior of the DCS and polarization data. Further, extrapolating DCS data to the optical point to determine total cross sections would seem a rather risky business if, as we surmise, the existing data for these reactions demand this strong t-dependence.

We thank Professor Geoffrey F. Chew and the Lawrence Berkeley Laboratory for their hospitality. We also thank W. Greiman, J. D. Jackson, and M. Suzuki for valuable assistance.

FOOTNOTES AND REFERENCES

* Work supported in part by the U. S. Atomic Energy Commission.
† Visiting scientist.

4. A new 5-pole fit with α_p' fixed at zero was tried, using all the available data. The best fit obtained had $\chi^2 > 2 \times$ number of degrees of freedom, and even then the P' intercept climbed to 0.8.

FIGURE CAPTIONS

Fig. 1. The $p\bar{p}$ differential cross-section slope ($b_{p\bar{p}}$) for the Serpukhov and CERN data. The t values are the midpoint of the range measured at Serpukhov and at CERN.

Fig. 2. The $\bar{p}p$ differential cross-section slope ($b_{\bar{p}p}$) predicted by the 4-pole fit with a few data points. The t values are explained in Fig. 1.
Fig. 1

Fig. 2
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.