
UC Berkeley
UC Berkeley Previously Published Works

Title
An Evaluation of One-Sided and Two-Sided Communication Paradigms on Relaxed-Ordering
Interconnect

Permalink
https://escholarship.org/uc/item/1fs2k2dk

ISBN
978-1-4799-3799-8

Authors
Ibrahim, Khaled Z
Hargrove, Paul H
Costin, Iancu
et al.

Publication Date
2014-05-01

DOI
10.1109/ipdps.2014.116

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1fs2k2dk
https://escholarship.org/uc/item/1fs2k2dk#author
https://escholarship.org
http://www.cdlib.org/

An Evaluation of One-Sided and Two-Sided Communication Paradigms on
Relaxed-Ordering Interconnect

Khaled Z. Ibrahim, Paul H. Hargrove, Costin Iancu, and Katherine Yelick
Lawrence Berkeley National Laboratory, Berkeley, USA

Email: {kzibrahim, phhargrove, cciancu, kayelick}@lbl.gov

Abstract—The Cray Gemini interconnect hardware provides
multiple transfer mechanisms and out-of-order message de-
livery to improve communication throughput. In this paper
we quantify the performance of one-sided and two-sided
communication paradigms with respect to: 1) the optimal
available hardware transfer mechanism; 2) message ordering
constraints; 3) per node and per core message concurrency.
In addition to using Cray native communication APIs, we use
UPC and MPI micro-benchmarks to capture one- and two-
sided semantics respectively. Our results indicate that relaxing
the message delivery order can improve performance up to
4.6× when compared with strict ordering. When hardware
allows it, high-level one-sided programming models can al-
ready take advantage of message reordering. Enforcing the
ordering semantics of two-sided communication comes with a
performance penalty. Furthermore, it seems that exposing out-
of-order delivery at the application level is required for the
next generation of programming models. Any ordering con-
straints in the language specifications reduce communication
performance for small messages and increase the number of
active cores required for peak throughput.

I. INTRODUCTION

Hardware vendors traditionally employed a combination
of Remote Direct Memory Access (RDMA) and out-of-
order packet delivery to provide communication throughput
on large scale multicore systems. At the system level API
(Application Programming Interface), messages were usu-
ally ordered to meet the semantic requirements of higher
level abstractions. Recently, the Cray Gemini hardware and
APIs started exposing multiple message ordering modes
to its clients. The main contribution of this work is the
evaluation of how well equipped to take advantage of
hardware out-of-order message delivery are existing one-
sided and two-sided programming models or communication
libraries. To our knowledge, ours is the first study to examine
in detail the usage of this functionality in implementations
of programming model abstractions.

The predominant paradigm for the last twenty years has
been the Message Passing Interface (MPI) with its two-sided
synchronization semantics. The non-blocking Isend/IRecv
communication primitives in MPI can internally take ad-
vantage of un-ordered messaging.

One-sided communication has started to gain popularity
roughly ten years ago, as showcased by the Unified Parallel
C [1] programming language. Until recently, the UPC lan-
guage standard provided only blocking communication and a
relaxed order memory model to allow compiler or runtime
optimizations. In Nov 2012, both the UPC 1.3 (draft) [2]
and the MPI 3.0 specifications [3] introduced user level non-
blocking one-sided communication primitives and brought to

the forefront the question of the efficacy of existing hardware
support for such operations.

RDMA is usually supported by a variety of hardware
and software mechanisms targeting short, medium and large
transfers, while the message ordering is enforced by a
cooperation of node and network hardware protocols, e.g.
memory or PCI controller and Network Interface Card
(NIC). The lowest level Application Programming Interface
(API) exposes fine grained control over hardware function-
ality and runtime implementors face multiple challenges:
1) choosing the optimal hardware transfer mechanism; 2)
enforcing the message ordering required by the high level
protocol using the system level mechanisms and; 3) handling
memory registration.

Our results indicate that out-of-order message delivery
improves native communication performance by as much
as 4×. The one-sided paradigm is able to exploit very well
the available hardware support and provides for any given
transfer the best attainable performance. When the target
memory region is not registered, either usage of bounce
buffers or dynamic memory registration is required in the
runtime implementation. In this case we observe as much
as 10% performance degradation for small messages with
bounce buffers and as much as 7% performance degradation
for large messages with dynamic registration.

The MPI implementation requires message ordering for
message matching, while the actual data transfer may be per-
formed without ordering. Overall, the MPI implementations
examined can lose 30% of the peak sustained bandwidth,
even for large messages. The performance loss is caused
by a combination of not using the best available transfer
protocol, protocol overhead and memory registration. Our
analysis indicates that the impact of protocol overhead,
bounce buffers and dynamic registration accounts only for
5%-10% performance loss, while the inability to exploit out-
of-order message delivery on Gemini accounts for 23%-30%
performance loss.

The rest of the paper is organized as follows. We in-
troduce the study platform and methodology in § II. In
§ III, we analyze the performance of the Cray Gemini
native communication APIs DMAPP and GNI with respect
to message ordering. This provides us with upper bounds
for the performance attainable by the implementation of
high level language or communication runtimes. We present
semantic and performance analysis of the of UPC one-sided
communication in § IV and MPI two-sided communication
in § V. We present related work in § VII and conclude
in § VIII.

II. EXPERIMENTAL PLATFORM

The system used for this evaluation is a Cray XE6
installed at the National Energy Research Scientific Comput-
ing Center (NERSC). As shown in Figure 1, each node con-
tains two 12-core AMD MagnyCours 2.1-GHz processors
and 32GB of DDR3 memory. Cores are grouped into four
NUMA domains and communicate using HyperTransport
3.0 [4]. The nodes are connected using Cray’s Gemini router
ASIC and a 3-D torus network topology. Two nodes are
connected to a Gemini NIC through HyperTransport. Each
Gemini chip has 48 ports, eight internal and 40 external
arranged in ten network connections, two each in +X, -
X, +Z, -Z, and one +Y and -Y . Each of the ten Gemini
torus connections is comprised of 12 lanes with aggregate
bandwidths of 4.68 to 9.375 GBytes/sec per direction. To
support runtime and compiler developers, Cray provides
multiple hardware messaging mechanisms.

Hopper Node

HT3

NIC 1

HT3

NIC 0

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

L3

Cache

6MB

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

L3

Cache

6MB

H
T

3

DDR3

DDR3

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

L3

Cache

6MB

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

L3

Cache

6MB

H
T

3

DDR3

DDR3

HT3

HT3

HT3

H
T

3

Hopper Node

(Cray XE 6)

2 twelve-core AMD 'MagnyCours'

2.1-GHz processors per node.

Four DDR3 1333-MHz memory

channels per twelve-core

'MagnyCours' processor

201.6 Gflops/node

L1: 64 KB, L2 caches::512KB

 6-MB L3 cache shared between 6

cores.

H
T

3

NetLink

Block

48 port YARC Router

DDR3

DDR3

DDR3

DDR3

3D torus

...

Figure 1. Cray XE6 node architecture.

Hardware Transport: Cray exposes two hardware mech-
anisms for remote memory access: Fast Memory Access
(FMA) and Block Transfer Engine (BTE). FMA is intended
for efficient transfer of small messages and uses a set of
memory windows to allow direct data movement of the user-
space data through the ASIC. FMA supports different types
of transactions including short message (SMSG), Shared
Message Queue (MSGQ), FMA DM for Get and Put, and
atomic memory operations (AMO). BTE is implemented on
the ASIC and once started, any communication is completely
managed by the hardware. The cost of starting up this mech-
anism is high, making it more suitable for large memory
transfers. On Gemini, only 4 BTE requests can be active
per node concurrently.

Message Ordering: The Cray Gemini interconnect provides
multiple ordering modes for outstanding transactions for
the FMA and BTE mechanisms. As the Gemini chip uses
HyperTransport to communicate with the memory and CPUs
within a node, these modes reflect both HT and Gemini
capabilities. HT supports posted and non-posted requests.

Posted requests do not expect a response for completion, e.g.
memory writes and messages. Non-posted requests expect
responses, such as memory reads and write operations that
request acknowledgement.

At the Gemini level, three message ordering modes are
exposed by the API. With strict ordering, all local memory
and network operations are completed in the order they are
issued by the processors or by the Gemini chip, without
overtaking. The second mode is the default setting for the
Cray APIs and it allows for ordering where non-posted
requests (Gemini-level Gets in particular) may pass posted
writes. The third mode, labeled relaxed ordering in Gemini,
allows for reordering of non-posted and posted requests in
addition to the passing allowed by the default setting. As
shown later, the three modes can have a significant impact
on the observed performance.

System APIs: On Gemini, the Generic Network Interface
(GNI) exposes FMA and BTE control, message ordering
and support for implementing Active Messages [5]. GNI is
thus well suited for runtime implementations of one-sided
or two-sided communication paradigms. The Distributed
Shared Memory Application interface (DMAPP) supports
Partitioned Global Address Space languages using one-
sided communication, and also provides collective opera-
tions. DMAPP hides the FMA and BTE support and selects
internally the best mechanism for a transfer. The Cray UPC
compiler is implemented using DMAPP. The follow-on Cray
Aries [6] network also supports both GNI and DMAPP.

A. Experimental Methodology

To study communication performance we extend the
OSU MBW MR benchmark [7], [8] to support bidirectional
bandwidth measurements1, as shown in Figure 2. To under-
stand the attainable native performance, we implement GNI
FMA, GNI BTE and DMAPP versions and experiment with
message ordering. We use the Cray Programming Environ-
ment 4.1.40. For UPC one-sided communication we use a
version implementing the new non-blocking communication
support introduced in the UPC 1.3 (draft) [2] language
specification. We have evaluated both Cray and Berkeley
UPC.

The microbenchmark in Figure 2 issues a window of
non-blocking messages before checking for their comple-
tions. For single-sided communication, we post the memory
requests depending on the underlying library: GNI postFma
for FMA, GNI postRdma for BTE, dmap get nb/dmapp-
put nb for DMAPP, upc memput nb/upc memget nb for

Cray UPC2. We then use a corresponding wait for com-
pletion based on the posted requests. For two-sided com-
munication, we post non-blocking receives before posting
non-blocking sends. We then wait for completion of all
posted requests. We made sure all timing measurements
are consistent across all microbenchmark implementations.

1For one-sided version of the microbechmark, no buffer is reused within
a window of request. This is not requirement for the two-sided version.

2Berkeley UPC provides similar non-blocking interfaces
bupc memget async and bupc memput async

Most of the experiments done on this paper use a 4-node
configuration, i.e. up to 96 cores.

1: procedure POINT TO POINT MESSAGES(s)
2: for i = 1→ window size do
3: issue a non-blocking receive request with buffer size s
4: end for
5: for i = 1→ window size do
6: issue a non-blocking send request with a buffer size s
7: end for
8: Wait all requests completion
9: end procedure

10:
11: procedure SINGLE SIDED MESSAGES(s)
12: for i = 1→ window size do
13: Create a request of size s
14: Post Get/Put between local and remote memories
15: end for
16: Wait all requests completion
17: end procedure
18:
19: function MAIN
20: num pairs← ranks/2
21: target← (my rank + num pairs)%ranks
22: for s = 1→ msg size count do
23: size← msg size[s]
24: for i = 1→ repeat+ skip do
25: if i = skip then
26: stime = time()
27: Barrier
28: end if
29: Call POINT TO POINT MESSAGES(size)
30: or SINGLE SIDED MESSAGES(size)
31: end for
32: Barrier . or calculate max transfer time
33: etime← time()
34: if my rank = 0 then
35: bandwidth[s] ← size ∗ loop ∗ ranks/(etime −

stime)
36: end if
37: end for
38: end function

Figure 2. Microbenchmark for measuring bidirectional bandwidth on
two-sided and single-sided communication paradigms.

III. ANALYSIS OF LOW-LEVEL TRANSPORT PROTOCOLS
ON THE CRAY XE6 SYSTEM

Figure 3 shows the performance of different message
ordering modes for DMAPP, FMA, and BTE. We plot the
aggregate bandwidth for 48 pairs of communicating cores3,
each having one outstanding get transfer at any given time.
For brevity we present data only relaxed ordering. Default
ordering yields performance never better than relaxed or
worse than strict, and is generally closer to strict. The put
operations shows similar performance trends in responding
to ordering relaxation. Surprisingly, the peak performance of
put operations is about 20% lower than the get operations.

As expected, FMA provides the best performance for
small messages and BTE is best for messages larger than
4K. DMAPP hides the hardware complexity and follows
the same trends as FMA for small messages and as BTE for

3We used four hopper nodes to make traffic traverse the network. Two-
node traffic goes through the NIC bypass.

8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 K 2 K 4 K 8 K 1 6 K

1 0 0

1 0 0 0

1 0 0 0 0

2 K 4 K 8 K 1 6 K 3 2 K 6 4 K 1 2 8
K

2 5 6
K

5 1 2
K 1 M 2 M 4 M

4 0 0 0

8 0 0 0

1 2 0 0 0

1 6 0 0 0

Ba
nd

wi
dth

 (M
B/

s)

Ba
nd

wi
dth

 (M
B/

s)

M s g S i z e

 D M A P P r e l a x e d F M A r e l a x e d B T E r e l a x e d

Figure 3. Performance of DMAPP and low-level GNI communication
protocols for relaxed ordering. Forty-eight communication pairs, each
issuing a single get operation.

large messages by automatically switching protocol based on
the message size. However, DMAPP also allows the library
user to control the switching between the two protocols if
desired. Generally, DMAPP achieves the same performance
as a well tuned GNI based implementation.

Switching between the FMA and BTE protocols has
a typical default value of 4KB on most runtimes. The
best switching point typically depends on multiple factors
including the level of concurrency within the node, the
number of outstanding requests per processor, and the size
of the job (number of nodes).

A. Concurrent Communication and Ordering
The impact of relaxed ordering becomes more apparent

when examining bandwidth in conjunction with the number
of active cores per node. This is typically the case when
applications use multiple ranks per node for MPI, or multiple
threads for UPC.

As shown in Figure 4(right), the best performance of
BTE with strict ordering is obtained when using only four
cores per node. We typically expect that increased concur-
rency should improve performance by mitigating the cost
of transfer setup. Surprisingly, not only does the bandwidth
saturate before the number of threads is equal to the 24
cores on each node, but substantial slowdowns of 2-5×
are observed when using too much concurrency. This has
important implication for flat (non-hybrid) programming
models, either MPI or UPC, which would have at least
one thread per core communicating with the network. While
one thread per core may be sub-optimal for other reasons
having to do with the local memory system, we show in this
section that it also has a negative effect on communication
performance with strict ordering.

The aggregate bandwidth when using 24 cores per node
and strict ordering is as much as 4.6× lower than the best
attainable bandwidth using BTE, which occurs when using
just 4 cores per node. As will be shown next, this drop-
off does not occur with relaxed ordering. Therefore, we
conjecture that because strict ordering at the HT level cannot
distinguish transfers from independent ranks, the increased
concurrently is producing interference rather than providing
an opportunity for overlapping independent Get operations.

For BTE with relaxed ordering, shown in Figure 5(right),
the performance improves monotonically with the increase

8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 K 2 K 4 K 8 K 1 6 K
1 0

1 0 0

1 0 0 0

1 0 0 0 0

2 K 4 K 8 K 1 6 K 3 2 K 6 4 K 1 2 8
K

2 5 6
K

5 1 2
K 1 M 2 M 4 M

4 0 0 0

8 0 0 0

1 2 0 0 0

B T E t r a n s p o r tF M A t r a n s p o r t

Ba
nd

wi
dth

 (M
B/

s)

M s g S i z e

C o n c u r r e n c y (p r o c / n o d e) : 1 2 4 8 1 6 2 4

Ba
nd

wi
dth

 (M
B/

s)

Figure 4. Interaction between strict ordering and concurrency for
FMA and BTE get operation (48 pairs).

8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 K 2 K 4 K 8 K 1 6 K
1 0

1 0 0

1 0 0 0

1 0 0 0 0

2 K 4 K 8 K 1 6 K 3 2 K 6 4 K 1 2 8
K

2 5 6
K

5 1 2
K 1 M 2 M 4 M

4 0 0 0

8 0 0 0

1 2 0 0 0

Ba
nd

wi
dth

 (M
B/

s)

Ba
nd

wi
dth

 (M
B/

s)

M s g S i z e

C o n c u r r e n c y (p r o c / n o d e) : 1 2 4 8 1 6 2 4

F M A t r a n s p o r t B T E t r a n s p o r t

Figure 5. Interaction between relaxed ordering and concurrency for
FMA and BTE get operation (48 pairs).

in the number of active cores, until it saturates. Moreover,
for medium size messages (between 4KB and 16KB) the
performance with low concurrency is better than that with
strict ordering, by up to 20%.

For FMA, increasing the concurrency with strict ordering
also hurts the performance. As shown in Figure 4(left), the
best bandwidth is achieved with four cores per node for
small and large messages. With relaxed ordering, shown
in Figure 5(left), the performance improves with increased
concurrency of injection. This trends continue for messages
less than a page size (4KB). For large messages, FMA
is significantly slowed down with concurrency, even with
relaxed ordering due to exhausting the FMA resources, not
shown in Figure. In fact, we are surprised that FMA can even
deliver a large percentage of the peak sustained bandwidth
under low concurrency for large messages.

The presented data show the importance of exploiting
relaxed ordering by the high-level programming paradigms,
whether it is one- or two-sided.

B. Concurrency and Memory Registration

Memory registration is typically needed when offloading
communication to the RDMA interconnect hardware. For
the Get operations used in our study, the source and desti-
nation message buffers must be known to the interconnect
(registered), regardless of the choice of message ordering.
All experiments shown earlier were done using buffers
pre-registered prior to the timing loops, thus the costs of
registration were not considered.

Registration of the memory with the NIC prevents the
physical memory from being swapped by the OS, and
enables the NIC to access the memory without interrupting
the CPU. Memory registration resources are typically limited
shared resources. On Gemini NIC the number of pages
that can be registered is typically fixed among all running
processes (or threads). If 4K page size is used, only a
fraction of the total physical memory can be registered
(<800MB) per node.

As shown in Figure 6, the memory registration cost
typically increases with the number of concurrent requests as
it requires serialization of access to the shared registration
resources. For instance, registering a single 4KB page(or
less) takes about 0.9 µsec. With 24 concurrent requests, the
same operation takes about 30 µsec. Memory de-registration

latency shows similar trends in performance in terms of the
cost of operation and being affected by concurrency.

Handling memory registration is an important design
choice in the implementations of high-level communication
runtimes. Typical choices include the maximum registration
segment size, the page granularity, the use of registration
cache, etc. Concurrent registration has a negative impact on
performance independent from message ordering relaxation.
Most runtimes try to remove registration operations from the
critical path of execution.

2 K 4 K 8 K 1 6 K 3 2 K 6 4 K 1 2 8 K 2 5 6 K 5 1 2 K 1 M 2 M 4 M 8 M

1

1 0

1 0 0

1 0 0 0

2 K 4 K 8 K 1 6 K 3 2 K 6 4 K 1 2 8 K 2 5 6 K 5 1 2 K 1 M 2 M 4 M 8 M

1

1 0

1 0 0

1 0 0 0 1 p r o c (4 K p a g e)
 4 p r o c (4 K p a g e)
 2 4 p r o c (4 K p a g e)
 2 4 p r o c (2 M p a g e)

b) U n r e g i s t r a t i o n
u s

ec

M e m o r y s e g m e n t s i z e

a) R e g i s t r a t i o n

 1 p r o c (4 K p a g e)
 4 p r o c (4 K p a g e)
 2 4 p r o c (4 K p a g e)
 2 4 p r o c (2 M p a g e)

Figure 6. Memory registration overhead for different segment granularities
and page sizes (µsec=2100 cycles).

C. High-Level Abstractions
When implementing higher level communication proto-

cols, developers have to choose the best performing hard-
ware transport mechanism. On Cray Gemini, this translates
into choice of DMAPP, FMA or BTE and how to handle
registration. In all cases the developer also has to select a
message ordering that allows for efficient implementation
of the semantics of the higher level protocol. To illustrate
these choices we choose two representative communication
paradigms, one-sided as illustrated by UPC and two-sided
as illustrated by MPI.

MPI represents the de-facto standard for distributed mem-
ory programming and it exposes a two-sided protocol. MPI
provides for non-blocking communication and not fully
specified message orderings, but it also provides determin-
istic execution guarantees in most cases.

In the rest of this study we focus on the the usage
of ordering relaxation with both one-sided and two-sided

communication models. It is not our intention to perform
a full performance comparison between MPI and UPC.
We aim to identify parts of their respective specifications
that enable or preclude optimizations. We use UPC as the
proxy for one-sided, primarily because its implementations
attain performance identical to native. Meanwhile, MPI’s
send/receive operations are used to represent two-sided
communication.

We have also performed the experiments described in this
paper with MPI-2 one-sided, using Cray and Open MPI
implementations, and observed lower performance than MPI
two-sided, roughly 10% to 25% of the two-sided per-
formance. As the one-sided features in MPI-3.0 become
more widely available and fully optimized, we expect their
performance to be similar to UPC or GASNet.

IV. ANALYSIS OF UPC ONE-SIDED COMMUNICATION

UPC provides an abstraction of Partitioned Global Ad-
dress Space (PGAS) models that use one-sided commu-
nication primitives. Its memory model exposes strict and
relaxed memory orderings, similar to the GNI level notions.
With strict ordering, operations issued by one thread are
observed in order, while relaxed allows message reordering.
A compiler or runtime can exploit reordering to improve
performance only when single rank dependencies cannot be
violated and no aliasing ambiguity obstructs such depen-
dency checks.

A. One-sided Communication and Transport Ordering

One-sided communication in the PGAS models views
distributed memory as a natural extension to the memory.
As such, operations targeting the memory of the issuing
thread are mapped to loads/stores while those targeting
memory of other threads are mapped to Get/Put opera-
tions (though some implementations may use loads/stores
to access all memory within the same compute node). In
UPC, the ordering of these operations can be either strict
or relaxed as specified by the program and the runtime
needs to provide consistency across intra- and inter-node
memory accesses. Relaxed ordering allows the compiler
to reorder memory operations to improve performance. It
also allows the compiler to know when intra-node memory
fences are needed to guarantee the ordering intended by
the application developer. Intra-node ordering is enforced
using memory fences, while system networking APIs usually
guarantee strict ordering of transfers and with respect to
in-node operations. To our knowledge control over relaxed
versus strict ordering of Get/Put operations is available only
on Gemini (and it’s successor, Aries), which opens new
possibilities for improving performance.

Relaxed ordering violates the intuitive “sequential con-
sistency” (SC) model because operations executed by one
process may appear out-of-order by another. Figure 7 shows
an example of SC violation. The process (P0) Gets a remote
datum and then Puts a new value to the same location. Then
P0 informs process P1, on the same node, of this update. If
P1 Gets this remote datum while relaxed ordering is enabled,
the resulting non-posted read may pass the posted write of

the Put by P0. This reordering allows a race in which P1

retrieves a stale datum from the remote node4.

3D torusHT3
Gemini

NIC

P0

P1

HT3
Gemini

NIC

P2

P3

A0,2

A0,1

A0,0

...
A1,2

A1,1

A1,0

...

Globally address Memory

Memory Address: Anode,offset

All initialized to zeros

P0:

01: Get (m(A0,0) ¬m(A1,0))

02: m(A0,0)¬m(A0,0)+1

03: Put(m(A0,0)®m(A1,0))

04: m(A0,1)¬1

P1:

11: Wait until m(A0,1) = 1

12: Get (m(A0,2) ¬m(A1,0))

13: Print m(A0,2)

01

03

12

Figure 7. A UPC ordering challenge on relaxed ordering interconnect.
Can the interconnect reorder operations 03 and 12?

This example illustrates the interplay between the message
ordering models and the completion semantics of one-sided
communication operations. Local completion semantics en-
sure that it is safe to reuse the initiator’s buffer. Strict
ordering by hardware typically requires two conditions:
program order in issuing requests and write (or Put) atom-
icity. In UPC, program order is typically guaranteed by the
compiler when variables are declared strict. Atomicity of
write (or Put) can be either achieved by global visibility
by ensuring the operation is committed at the destination,
or global completion by ensuring that the Put operation
is received by a serialization agent at the receiver. This
agent is responsible for creating a global order. Library
based approaches such as MPI-3 provide local completion
as default while global completion requires use of explicit
synchronization primitives at the application level. While
GASNet and the UPC language provide the option of relaxed
semantic at the application level and exploit that to improve
performance [9], for operations on strict UPC variables they
provide global completion semantics. On Gemini, the hard-
ware provides global completion by default when enabling
the strict message order, but this is expensive as discussed
in Section III-A. When enabling relaxed message ordering,
the GNI interface provides only local completion semantics
for Put operations and the runtime needs to perform addi-
tional work to make sure that message is delivered to the
destination. Unlike GNI, this completion semantic issue is
handled transparently by the DMAPP interface.

B. One-Sided Communication and Memory Registration

In MPI-2 one-sided, regions of remotely accessible mem-
ory are identified only at runtime through window creation
operations, and memory registration must be performed
dynamically. However, most one-sided programming mod-
els either make explicit which memory may be accessed
remotely (as with the shared type qualifier in UPC) or are
amenable to compiler analysis to make this identification.
This can enable the allocation of remotely accessible objects
in regions of memory which are registered statically, at
program start-up.

4This kind of race condition prevented GASNet from adopting relaxed
ordering in earlier releases

Only when the local buffer does not reside in pre-
registered memory does dynamic registration become a
concern in a one-sided model. For small transfers a typical
implementation uses pre-registered “bounce buffers”5, and
performs dynamic registration only for large transfers.

8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 K 2 K 4 K 8 K 1 6 K
1 0 0

1 0 0 0

1 0 0 0 0

2 K 4 K 8 K 1 6 K 3 2 K 6 4 K 1 2 8
K

2 5 6
K

5 1 2
K 1 M 2 M 4 M

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

1 6 0 0 0

Ba
nd

wi
dth

 (M
B/

s)

Ba
nd

wi
dth

 (M
B/

s)

M s g S i z e

 C r a y U P C B e r k e l e y U P C M a x i m u m M e a s u r e d

Figure 8. Cray and Berkeley UPC performance implemented on DMAPP
and GNI interfaces respectively. Performance is compared with best ob-
served performance on each message size.

C. Performance Analysis of One-sided Communication
In Figure 8 we present the micro-benchmark performance

for the Cray and Berkeley UPC runtimes. The “Maximum
Measured” series reports the best performance attained by
any combination of FMA-vs-BTE, number of cores active,
and message ordering. However, in all cases the maximum
performance comes from relaxed ordering. Cray UPC is
implemented on top of DMAPP, while Berkeley UPC is im-
plemented on top of GASNet which uses GNI and switches
between FMA and BTE based on transfer size. Thus we
compare DMAPP with hand tuned GNI. For brevity, we
include results for 24 active cores and window size of 1.

Comparing the BUPC with CUPC performance illustrates
that DMAPP is successful at hiding the machine complexity
as it produces performance comparable with tuned GNI
code. The difference relative to the maximum is typically
largest for small messages, because of the ability of the
interconnect to carry more messages. While local completion
can reduce the perceived latency of a Put operation at the
sender, it does not affect the throughput of the network for
Get operations. As such, we have not noticed in our Get
benchmarks any sizable degradation in throughput for using
global completion instead of local completion. This also
shows that the observed performance of a communication
library on GNI or DMAPP should match for the same com-
munication semantics. Any difference should be attributed
to either tuning (or exploitation) of the underlying primitive
or the communication paradigm’s constraints and semantics.

For the rest of this paper, we limit our discussion to
Cray UPC, while noting that similar trends are observed
by Berkeley UPC. Thus, contrasted results for UPC one-
sided and MPI two-sided implementations are from the same
vendor, Cray.

In Figure 9, we show the variation of the bandwidth with
concurrency and window size for four message sizes. These

5FMA put operations are an exception: they do not require registration
of the source buffer.

2 5 . 0 %

5 0 . 0 %

8 7 . 5 %

2 5 . 0 %
5 0 . 0 %

7 5 . 0 %

7 9 . 5 %

9 3 . 2 %

6 5 . 9 %

7 9 . 5 %

8 6 . 4 %

9 6 . 8 % 9 0 . 5 %

9 6 . 8 %

9 6 . 8 % 9 0 . 5 %

1 2 4 8 1 6 2 41

4

1 6

wi
nd

ow
 si

ze

8 B

1 2 4 8 1 6 2 41

4

1 6

0 . 0 0 %
1 2 . 5 %
2 5 . 0 %
3 7 . 5 %
5 0 . 0 %
6 2 . 5 %
7 5 . 0 %
8 7 . 5 %
1 0 0 %

1 2 4 8 1 6 2 41

4

1 6 8 K B

2 5 6 K B

wi
nd

ow
 si

ze

1 2 4 8 1 6 2 41

4

1 6

2 M B

2 5 6 K B

8 K B

U P C n o n - s h a r e d d e s t

4 5 . 5 %
5 2 . 3 %
5 9 . 1 %
6 5 . 9 %
7 2 . 7 %
7 9 . 5 %
8 6 . 4 %
9 3 . 2 %
1 0 0 %

U P C s h a r e d d e s t

1 2 4 8 1 6 2 41

4

1 6

2 M B

wi
nd

ow
 si

ze

1 2 4 8 1 6 2 41

4

1 6

7 4 . 7 %
7 7 . 8 %
8 1 . 0 %
8 4 . 2 %
8 7 . 3 %
9 0 . 5 %
9 3 . 7 %
9 6 . 8 %
1 0 0 %

1 2 4 8 1 6 2 41

4

1 6

8 K B

C o n c u r r e n c y

wi
nd

ow
 si

ze

1 2 4 8 1 6 2 41

4

1 6

8 B

C o n c u r r e n c y

7 4 . 7 %
7 7 . 8 %
8 1 . 0 %
8 4 . 2 %
8 7 . 3 %
9 0 . 5 %
9 3 . 7 %
9 6 . 8 %
1 0 0 %

Figure 9. Concurrency vs. window size impact on bandwidth performance
(MB/s) of single-sided UPC get for shared vs. non-shared data.

four sizes correspond to those needed to sample the four
protocols that Cray’s MPICH-based MPI uses for message
transfers, as explained in Section V. We present results for
a target of a Get operation either in the registered memory
space (shared) or not (non-shared). For small messages, the
aggregate bandwidth increases with the number of messages
in flight, regardless of whether the increase comes from
window size or core count. As FMA exhibits a large injec-
tion overhead, performance benefits more from concurrent
injection and increasing the number of cores active per node.

Comparing between the shared and non-shared data cases,
the behavior for small transfers does not differ much because
the typical practice of copying via bounce-buffers has a
relatively small overhead compared to the network latency.
For large transfers, operations on shared destination memory
are nearly all within 5% of the peak sustained bandwidth and
little variation is seen with varied concurrency or window
size. For non-shared destination, however, we lose about 7%
of the performance versus transfers to shared regions. For
256KB and 2MB operations, we notice that only non-shared

performance degrades at high concurrency and large out-
standing requests per core, which we attribute to the memory
registration overhead which increases with the concurrency
level, shown in Figure 6 and discussed in Section III-B.

V. ANALYSIS OF TWO-SIDED COMMUNICATION

In order to provide the semantic guarantees prescribed
by the standard, MPI implementations are subject to sev-
eral practical constraints. The Send/Recv matching order
and message cancellation semantics restrict the choice of
hardware message ordering. Support for message probing
and message size ambiguity at the receiver side can delay the
choice of a transfer protocol and any corresponding memory
registration or buffer allocation.

A. Ordering Constraints in MPI
The two-sided ordering constraints in MPI apply mostly to

operations issued by a given origin process to the same target
process. The goal of the specification is to ensure platform-
independent deterministic program execution between pairs
of ranks even if the programmer does not fully constrain
message matching, for instance by the use of unique tags.

B. MPI Message Matching
The MPI standard includes the following non-overtake

rule [3] that facilitates matching of sends to receives. A) If
a sender sends two messages (Message 1 and Message 2) in
succession to the same destination, and both match the same
receive, the receive operation will receive Message 1 before
Message 2. B) If a receiver posts two receives (Receive 1
and Receive 2), in succession, and both are looking for the
same message, Receive 1 will receive the message before
Receive 2. MPI guarantees that message-passing code is
deterministic between a pair of processes, if processes are
single-threaded, even if wildcard MPI ANY SOURCE is
used in receives [3]. The same ordering guarantees should
be in place if the same tag is reused for successive messages
from the same source to the same destination. This means
that ordering is required in message matching, requiring
either use of strictly ordered delivery or a mechanism (such
as sequence numbers) to reconstruct the sender’s order.
However, the progress of the transfers can be relaxed, if
runtime can satisfy all other constraints.

Figure 10 shows an example where a process P1 issues
two MPI Isend operations to P2, which uses wildcard
receives. In this case the messages must be matched in
order, but the data transfers can proceed concurrently using
relaxed order, without care about possible race conditions.
Moreover, the two non-blocking receives posted by P4 need
to processed by the order of posting the receives not the
order of message arrivals. As such processing the message
P2→P4 cannot proceed before the arrival of the message
P0→P4.

We have examined two MPI implementations for Gemini.
Cray MPI implements message matching using strictly or-
dered mailboxes (or FMA) to guarantee ordering constraints.
Open MPI [10] typically uses ID sequence numbers for
matching, but this translates at the RMA level again into
using mailboxes and strict ordering. As for small to medium

messages, message matching is as expensive as the data
transfer itself, MPI is unlikely to benefit from the presence
of relaxed ordering at the hardware level. Furthermore,
on the Cray XE6 Gemini implementation, hardware strict
ordering does not scale with the number of cores per node,
as indicated in Section III. Thus, the implementation choice
to use strict ordering with FMA is likely to lead to severe
performance degradation when increasing the number of
cores per node.

3D torusHT3
Gemini

NIC

S
2
0®2 S

1
0®4 S

0
0®2

P0

P1

HT3
Gemini

NIC

P2

P3

HT3
Gemini

NIC

P4

P5

R
0
ANY S

1
2®4 R

2
ANY

R
0
0 R

1
2

Send: S
order

source rank®dest rank

Receive: R
order

source rank

2 1

Figure 10. MPI message ordering constraints for deterministic execution.

C. Transfer Size Ambiguity at the Receiver for MPI
The MPI standard allows Send and Recv operations to

specify non matching buffer sizes. In this case the sender
knows the actual message size, while the receiver provides
a buffer at least large enough to receive the message.
Alternately, message probing allows the receiver to allocate a
buffer with the actual transfer size. In either case, this creates
a delay at the receiver side in determining what protocol
should be used, for instance the choices between FMA or
BTE, and whether or not memory registration or bounce
buffer allocation is required.

D. Memory Registration and Two-sided Messages
Handling memory registration for two-sided communica-

tion buffers is more challenging. The programming model
designates the whole memory as private and programmer
does not specify any memory region for communication,
in contrast with memory declared as shared in PGAS
languages. Offloading communication to the hardware can
require registration of both the source and the destination
buffers. Because of the high cost of this operation, a small
amount of memory is preregistered by most MPI imple-
mentations and used for eager transfer of small messages.
This registered memory is not exposed to the program-
mer, but is rather transparently used by the runtime. For
large messages, memory registration happens on demand,
i.e., for application-level supplied memory. Because not all
memory can be registered and because failure in memory
registration can lead to significant performance loss, many
MPI implementations use a registration cache. This cache
maintains a subset of recently registered memory segments.
A hit in the cache allow earlier initiation of the memory
transfer, otherwise memory needs to be registered. The
registration decision is more challenging at the receiver
side because of message size ambiguity. Researchers have

tried to optimize [11] message matching and provide early
registration at the receiver when possible.

For example, Cray MPI exposes two control variables for
this registration cache, the first controls the number of entries
in the cache and the second controls the maximum size of
a registered segment.

E. Performance Analysis of Cray MPICH
The Cray Gemini MPI implementation [12] provides

two eager modes and two rendezvous modes for message
transfers, switching among them based on message size
thresholds, controlled by environment variables. The first
eager mode is for very small messages, typically less than
512B, where this threshold depends on the number of
ranks. The implementation uses GNI mailbox messages. The
second eager mode is for messages that do not fit a mailbox
message, but smaller than 8KB. It uses pre-registered MPI
buffers and does the transfers using FMA RDMA operations.

For large messages, our measurements tell that Cray MPI
delays any memory registration decision until after message
matching. The first rendezvous protocol starts with messages
greater than 8KB and less than 512KB and it uses receiver
end Get-based BTE RDMA. Memory registration, or lookup
in the registration cache, is needed for both the sender and
the receiver buffers at the beginning of these transfers.

The second rendezvous is used for very large (>=512KB)
messages and uses sender Put-based RDMA BTE opera-
tions. Memory registration is done in chunks of a maximum
size controlled by an environment variable. The implemen-
tation strategy obstructs the usage of relaxed ordering or
benefiting from having multiple concurrent requests per
process. Communication pipelining is also precluded as only
registration is overlapped with the transfer.

Furthermore, as discussed in Section III on Cray Gemini
Put operations typically achieve only 80% of the bandwidth
attained by Get operations. The perceived advantage of this
approach for large messages is that it guarantees success-
ful transmission and prevents starvation even with limited
memory registration resources.

Figure 11 presents the bandwidth for multiple concurrency
levels within the node and also multiple outstanding requests
per process (window). We selected four message sizes cor-
responding roughly to the four protocols used in Cray MPI.
The performance trends vary greatly with the message size.
In the left side of Figure 11, 8B message performance im-
proves with concurrency up to 8 processes. The performance
starts degrading afterwards. The reason for that is due to the
use of strictly ordered mailbox messages. We additionally
notice that the performance for small messages can be 2×
to 4× slower than one-sided communication using relaxed
ordering. The performance differences are smaller for 8KB
messages,when strictly ordered mailbox messages are used
for send/receive matching but relaxed RDMA is used for the
data transfer. This leads to mostly monotonically improving
performance with concurrency.

Increasing message size to 256KB, we see that perfor-
mance improves with increased core concurrency. Little
improvement can be observed with increasing the number
of outstanding requests per rank, which argues its relation

with the MPI ordering constraints that obstruct reordering,
especially with rendezvous protocols. The performance of
MPI is between 33% to 3% below the maximum measured
by the interconnect. For UPC, the worst performance is 7%
below the peak, but in most cases it is 3% from the peak.
Increasing message size further to 2MB, we notice degra-
dation in the performance compared with 256KB because
of switching to the Put-based rendezvous protocol. The
performance ranges between 33% to 23% below the peak. In
this setting, increasing concurrency cannot use the network
bandwidth slack because the chunk-based transfer forces
registration serialization and little communication pipelining.

In the right hand side of Figure 11 we explore the
use of MPI internal buffers for communication and pre-
vent switching to rendezvous protocols6. As expected the
performance is lower for large messages, but we notice
that performance can improve only by increasing message
injection concurrency. Having multiple outstanding requests
per rank does not help performance.

Notice that the first large message protocol achieves
best performance when using 24 cores, while the second
rendezvous saturates with one or two cores active.

In the microbenchmark presented in Figure 2 one MPI
rank communicates only with one other rank using pipelined
ISend/Irecv. Due to the non-overtake rule, message matching
cannot be reordered in this case. To allow the implemen-
tation more opportunity for reordering we have repeated
the experiment having each rank switch communication
partners after each message. The performance improves
with multiple messages, but this requires multiple ranks per
node at the destination. Overall we cannot achieve high
percentage of the performance with few ranks per node.
Furthermore, given that Cray MPI uses strict ordering for
message matching, we have experimented with Open MPI,
which uses ID sequence numbers for matching and could
possibly use hardware relaxed ordering for tag transmission.
Open MPI achieves lower performance than Cray MPI and
uses internally FMA mailboxes for matching.

When examining in conjunction the maximum attained
bandwidth by one-sided communication in Figure 9 and by
two-sided MPI communication in Figures 11, it becomes
evident that across all message sizes one-sided can saturate
the network using as few as four cores per node, while two
sided requires up to 24 cores per node for saturation. This
behavior has implication not only in inter-node performance,
but also to the intra-node performance. Shared memory
programming models, such as OpenMP, achieve better in-
node performance by avoiding redundant copying. Using
OpenMP reduces the amount of concurrency in accessing
the interconnect, thus leading to a tension in using both
programming models.

Overall, the Cray MPI implementation achieves lower
peak bandwidth than one-sided communication on the Gem-
ini network. A common belief is that most of this perfor-
mance difference is due to the inability in some cases of the
MPI implementation to use RDMA internally. Our results

6Setting environment variable MPICH GNI LMT PATH to disabled
prevents the use of rendezvous protocols.

show that one-sided communication using non-registered
buffers (off-segment) suffers a small performance loss, at
most a 6% performance penalty. This one-sided scenario
approximates well7 the runtime behavior of the Cray MPI
implementation: either bounce buffers, pre-registered mem-
ory due to registration cache hits or pipelined dynamic
registration. When examining the performance of MPI in
conjunction with in-segment one-sided we observe at most
23% performance penalty in the MPI case. These considera-
tions make us conjecture that the inability to exploit relaxed
message reordering in MPI introduces a higher performance
penalty than any possibly sub-optimal usage of RDMA and
registered memory.

2 5 . 0 %
1 2 . 5 %

2 5 . 0 %

5 3 . 1 % 7 1 . 9 %
8 1 . 3 %

3 4 . 4 %
4 3 . 8 %

8 1 . 3 % 4 3 . 8 %

6 2 . 5 %

7 1 . 9 %

7 1 . 9 %
3 4 . 4 % 5 3 . 1 % 7 1 . 9 %

1 2 4 8 1 6 2 41

4

1 6

wi
nd

ow
 si

ze

8 B

1 2 4 8 1 6 2 41

4

1 6

0 . 0 0 %
1 2 . 5 %
2 5 . 0 %
3 7 . 5 %
5 0 . 0 %
6 2 . 5 %
7 5 . 0 %
8 7 . 5 %
1 0 0 %

1 2 4 8 1 6 2 41

4

1 6 8 K B

2 5 6 K B

wi
nd

ow
 si

ze

1 2 4 8 1 6 2 41

4

1 6

2 M B

2 5 6 K B

8 K B

M P I b u f f e r s (n o B T E)

2 5 . 0 %
3 4 . 4 %
4 3 . 8 %
5 3 . 1 %
6 2 . 5 %
7 1 . 9 %
8 1 . 3 %
9 0 . 6 %
1 0 0 %

M P I d e f a u l t

1 2 4 8 1 6 2 41

4

1 6

2 M B

wi
nd

ow
 si

ze

1 2 4 8 1 6 2 41

4

1 6

2 5 . 0 %
3 4 . 4 %
4 3 . 8 %
5 3 . 1 %
6 2 . 5 %
7 1 . 9 %
8 1 . 3 %
9 0 . 6 %
1 0 0 %

1 2 4 8 1 6 2 41

4

1 6

8 K B

C o n c u r r e n c y

wi
nd

ow
 si

ze

1 2 4 8 1 6 2 41

4

1 6

8 B

C o n c u r r e n c y

2 5 . 0 %
3 4 . 4 %
4 3 . 8 %
5 3 . 1 %
6 2 . 5 %
7 1 . 9 %
8 1 . 3 %
9 0 . 6 %
1 0 0 %

Figure 11. Concurrency vs. window size impact on bandwidth performance
(MB/s) of two-sided MPI for default and buffer-based executions.

VI. DISCUSSION

This study is a result of our work tuning the performance
of the Berkeley UPC/GASNet runtimes on the Cray and IBM
architectures. While we provide quantitative information

7For large messages we can ignore the latency of posting a receive.

about two particular implementations of UPC and MPI, the
question still remains whether the observed trends are caused
by a “poor” implementation or by the particularities of the
Cray XE6 architecture.

A. MPI Two-sided Implementations and Ordering Relax-
ation

We surveyed multiple MPI implementations, including
IBM mpich on IBM BG/Q using PAMI8, OpenMPI on
Cray systems using GNI, Cray mpich on Gemini/Aries using
GNI/DMAPP, etc. All these implementations face the choice
of providing the semantic orderings through either hardware
or software mechanisms. In general, when the interconnect
provides both relaxed and strict orderings (through memory
consistency or message routing), all MPI implementations
use strict RDMA ordering (or deterministic routing9) for
small messages and during matching send/receive for large
messages.

We believe in the optimality of this strategy. The in-
terconnect hardware can sustain high injection rates for
small messages using relaxed ordering: we measured 4.3
and 12.5 mega messages/sec for 8 byte transfers on IBM
BG/Q and Cray Gemini, respectively. This translates to 368
and 168 CPU cycles for inter-arrival time between incoming
messages. The MPI per core message reception rate is
determined by the software overhead, which is around 3672
cycles on IBM BG/Q and 1933 cycles on Cray XE6. This
already amounts to roughly a 10× slower rate than that
delivered by the hardware. At the same time, our results
indicate that hardware strict ordering reduces the arrival rate
by at most 4× for native communication. Enforcing ordering
in software while using hardware relaxed ordering increases
the software overhead of processing messages, thus likely
to lead to a lower performance.

B. Architectures and Relaxed Ordering
Adaptive routing and relaxed ordering can yield improved

performance because it helps in managing contention; they
also improve resilience of the system to handle faults.
The performance impact reflects in a good measure the
architectural system balance.

We experimented with three architectures that support
relaxed ordering, Cray Gemini (XE6) and Aries (XC30),
and IBM BlueGene/Q interconnects. Of the three architec-
tures, although the oldest, Cray Gemini provides the highest
“small message” throughput, about 100 MB/s for 8 byte
messages per node. Only Cray Gemini exhibits a significant
performance difference when using ordering relaxation even
“on few nodes.” The other two architectures, IBM BG/Q and
Cray Aries, do not exhibit noticeable performance difference
except at large scale. BG/Q and Aries interconnects behave
similar to Gemini strict ordering, where the performance
drops with increased concurrency, but by a smaller margin
(at most 10%).

8PAMI (Parallel Active Messaging Interface) is a portable communica-
tion interface introduced by IBM.

9IBM MPICH on BG/Q uses deterministic routing for immediate, short,
and eager protocols, while allowing relaxed transport of the second phase
of rendezvous protocol (after send/recv matching).

These systems represent different points in the architec-
tural design space. They all have a number of cores per node
in the low tens but Cray Gemini corresponds to a “resource
constrained” network design. The other two systems have
better provisioned networks.

The need for relaxed ordering is related to resource
allocation in the design. For instance, adaptive routing is not
needed for a fully-connected fail-proof crossbar. Likewise,
relaxed memory access is not needed on systems that have a
high-bandwidth low-latency sequentially-accessed memory.
For power-efficiency, hardware designers try to use paral-
lelism and avoid designing for worst-case workload stress,
leading to the need for relaxed ordering.

Obviously, systems can be designed to make relaxed
ordering not needed, but this is not necessarily the most
efficient choice. As the number of cores per node and node
performance in High Performance Systems is expected to
increase at a higher rate than the network performance, we
expect that exploiting relaxed ordering is likely to increase
in importance.

VII. RELATED WORK

Optimizing MPI performance using RDMA support has
received a large share of attention. Implementation of MPI
over InfiniBand is discussed by Sur et al [13] which show
how to exploit RDMA for small Send/Recv and protocol
messages in addition to large Send/Recv operations. One
of their techniques is persistent memory pre-registration for
bounce buffers. Woodall et al [14] also describe RDMA
optimizations for MPI such as registration caches and
pipelining of registration with the data transmission for large
messages. Optimizing memory registration is also discussed
by Marathe et al [11] which propose an early registration
strategy with an associated performance model. Based on
our measurements, Cray MPI does not use this approach.

The performance and semantics of MPI-2 one-sided com-
munication has been extensively studied [15], [16], [17]
and shown to be restrictive due to implicit inter-process
synchronization for Put/Get operations. Potluri et al. [18]
show the advantage of one-sided communication for MPI if
the implementation is well tuned because of the avoidance
of tag matching and sender receiver interactions.

Recently, Dinan et al [17] discuss the performance of
the Global Arrays PGAS implemented using MPI-2 one-
sided and motivate well the features introduced in the MPI-
3 one-sided support. Dinan et al [19] also present and
evaluate the MPI-3 one-sided interface on an Intel Xeon
cluster connected with the 10 Gb/s Myricom CX4 network.
Although not yet well optimized, the semantics of MPI-3
one-sided allow the implementation to take advantage of
hardware support for relaxed message order.

Accommodating out-of-order delivery in implementations
has been studied for both one-sided and two-sided communi-
cation. For MPI, Almasi et al [20] describe handling out-of-
order packets on the IBM BG/L network and show better
scalability than an implementation with ordered delivery.
They evaluate reordering of packets within one message and
not message reordering. Handling out of order packets in
MPI has also been studied by Balaji et al [21] for the Internet

Wide-Area RDMA Protocol (iWARP) over 10-Gigabit Eth-
ernet. Sur et al [13] discuss how to provide message ordering
within the MPI two-sided implementation on InfiniBand
using sequence numbers. Benefits of message ordering in
one-sided MPI-2 are discussed by Vishnu et al [16] for dual
rail InfiniBand networks. They evaluate performance on a
dual-core cluster and report modest benefits from message
reordering. Our results indicate very significant gains are
possible for manycores when exploiting hardware support.

Message ordering has started to gather more attention
recently, in particular on accelerator based systems. Aji
et al [22] examine GPU integrated MPI frameworks and
discuss alternatives for buffer synchronization and ordering
semantics. In particular, they discuss using MPI communi-
cator or datatype attributes to pass semantic information to
the runtime implementation. A similar approach is likely
to work when extending MPI implementations with better
support for hardware relaxed message order.

The performance on the Cray XE6 system has been eval-
uated using both micro-benchmarks and whole applications.
Vishnu et al [23], [24] present the implementation of the
Aggregate Remote Memory Copy Interface (ARMCI) on
Cray XE6 using DMAPP with relaxed ordering. Shan
et al [25] present a performance evaluation of UPC and
MPI benchmarks on Gemini and show applications using
single-sided communication outperform those using two-
sided paradigm. They evaluate the performance with the
default system settings and without evaluating the effect of
message ordering.

VIII. CONCLUSION

Relaxed ordering interconnect exhibits both an opportu-
nity for performance and a complexity for communications
library implementers to achieve correctness and to guarantee
protocol semantics. In this work, we study the impact of
relaxed ordering on Cray XE6 Gemini interconnect. We
show that relaxed ordering delivers up to 4.6× performance
advantage over strict ordering.

We argue that to fully exploit relaxed ordering the receiver
side of a transfer operation should be minimally involved
and all target buffers need to be ready for communication
early in the transfer (or registered with the interconnect).
The semantic of one-sided communication (programming)
paradigms can facilitate for the runtime to handle these is-
sues, while two-sided paradigms usually impose restrictions
in order to guarantee deterministic execution. The impact
of ordering constraints on performance can provide up to
3× advantage for single-sided UPC compared with MPI,
for small messages. For Large messages, the difference is
up to 30%. More importantly, single-sided UPC can attain a
large percentage of the peak performance for most message
sizes and concurrency levels. In contrast, two-sided MPI
can achieve the same performance only under large message
sizes and high concurrency, a configuration that can increase
the cost of intra-node communication.

One-sided communication naturally exposes the relaxed
ordering power to the application layer leaving the need
for strict ordering to special cases. In contrast, two-sided
communication tries to exploit the relaxed ordering without

exposing it. This leads to a sophisticated multiprotocol
design of the runtime with sub-optimal performance in some
instances.

We believe that the findings in this paper can influence
how runtime can be optimized to handle relaxed ordering,
and how application tuning should be carried out given the
understanding of the communication paradigm limits.

ACKNOWLEDGMENTS

All authors from Lawrence Berkeley National Laboratory
were supported by the DOE Office of Advanced Scien-
tific Computing Research under contract number DE-AC02-
05CH11231. This research used resources of the National
Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] UPC Consortium, http://upc.lbl.gov/docs/user/upc spec 1.2.pdf.

[2] ——, “UPC Optional Library Specifications- version
1.3,” http://upc-specification.googlecode.com/files/upc-lib-
optional-spec-1.3-draft-3.pdf, Nov. 2012.

[3] Message Passing Interface Forum, “MPI: A message-
passing interface standard version 3.0,” www.mpi-
forum.org/docs/mpi-3.0/mpi30-report.pdf, Sept 2012.

[4] Hyper transport Consortium, “Hyper transport 3 Specifica-
tions,” http://www.hypertransport.org.

[5] A. M. Mainwaring and D. E. Culler, “Active
message applications programming interface
and communication subsystem organization,”
http://www.eecs.berkeley.edu/Pubs/TechRpts/1996/5768.html,
Oct 1996.

[6] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese,
B. Alverson, T. Johnson, J. Kopnick, M. Higgins, and J. Rein-
hard, “Cray Cascade: a scalable hpc system based on a
dragonfly network,” The International Conference on High
Performance Computing, Networking, Storage and Analysis,
pp. 103:1–103:9, 2012.

[7] OSU benchmarks OMB 3.8, Network-Based Computing
Laboratory, Ohio State University, http://mvapich.cse.ohio-
state.edu/benchmarks/.

[8] J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini,
D. K. Panda, and P. Wyckoff, “Microbenchmark performance
comparison of high-speed cluster interconnects,” IEEE Micro,
vol. 24, no. 1, pp. 42–51, 2004.

[9] W.-Y. Chen, D. Bonachea, C. Iancu, and K. Yelick, “Au-
tomatic nonblocking communication for partitioned global
address space programs,” The 21st annual international con-
ference on Supercomputing, pp. 158–167, 2007.

[10] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Don-
garra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,
A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,
and T. S. Woodall, “Open MPI: Goals, concept, and design of
a next generation MPI implementation,” The 11th European
PVM/MPI Users’ Group Meeting, pp. 97–104, Sep. 2004.

[11] A. Marathe, D. Lowenthal, Z. Gu, M. Small, and X. Yuan,
“Profile guided MPI protocol selection for point-to-point
communication calls,” The IEEE International Symposium
on Parallel and Distributed Processing Workshops and Phd
Forum (IPDPSW), pp. 733–739, 2011.

[12] Cray Centre of Excellence, “Optimizing communication for
the Cray XE6,” Cray XE6 Performance Workshop-University
of Edinburgh, June 2012.

[13] S. Sur, M. Koop, and D. Panda, “High-performance and
scalable MPI over InfiniBand with reduced memory usage:
An in-depth performance analysis,” The ACM/IEEE SC 2006
Conference, pp. 13–13, Nov.

[14] T. S. Woodall, G. M. Shipman, G. Bosilca, and A. B.
Maccabe, “High performance RDMA protocols in HPC,” The
EuroPVM-MPI 2006, pp. 76–85, 2006.

[15] W. Jiang, J. Liu, H.-W. Jin, D. K. Panda, W. Gropp, and
R. Thakur, “High performance MPI-2 one-sided communi-
cation over InfiniBand,” The 2004 IEEE International Sym-
posium on Cluster Computing and the Grid, pp. 531–538,
2004.

[16] A. Vishnu, G. Santhanaraman, W. Huang, H.-W. Jin, and
D. K. Panda, “Supporting MPI-2 one sided communication
on multi-rail Infiniband clusters: design challenges and perfor-
mance benefits,” The 12th international conference on High
Performance Computing, pp. 137–147, 2005.

[17] J. Dinan, P. Balaji, J. R. Hammond, S. Krishnamoorthy, and
V. Tipparaju, “Supporting the global arrays PGAS model
using MPI one-sided communication,” IPDPS, pp. 739–750,
2012.

[18] S. Potluri, H. Wang, V. Dhanraj, S. Sur, and D. K. Panda,
“Optimizing MPI one-sided communication on multi-core
infiniband clusters using shared memory backed windows,”
The 18th European MPI Users’ Group conference on Recent
advances in the message passing interface, pp. 99–109, 2011.

[19] J. Dinan, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and
R. Thakur, “An implementation and evaluation of the MPI 3.0
one-sided communication,” Preprint ANL/MCS-P4014-0113,
2013.

[20] G. Almasi, C. Archer, J. G. Castanos, C. C. Erway, X. Mar-
torell, J. E. Moreira, K. Pinnow, J. Ratterman, N. Smeds,
B. Steinmacher-burow, and B. Toonen, “Implementing MPI
on the Bluegene/L supercomputer,” Euro-Par Parallel Pro-
cessing, pp. 833–845, 2004.

[21] P. Balaji, W. Feng, S. Bhagvat, D. Panda, R. Thakur, and
W. Gropp, “Analyzing the impact of supporting out-of-order
communication on in-order performance with iWARP,” The
2007 ACM/IEEE Conference on Supercomputing, pp. 1–12,
2007.

[22] A. Aji, P. Balaji, J. Dinan, W.-C. Feng, , and R. Thakur, “Syn-
chronization and ordering semantics in hybrid MPI+GPU
programming,” The 3rd Intl. Workshop on Accelerators and
Hybrid Exascale Systems (ASHES)., 2013.

[23] A. Vishnu, J. Daily, and B. Palmer, “Designing scalable
PGAS communication subsystems on Cray Gemini inter-
connect,” International Conference on High Performance
Computing, 2012.

[24] A. Vishnu, M. ten Bruggencate, and R. Olson, “Evaluating
the potential of Cray Gemini interconnect for PGAS commu-
nication runtime systems,” High-Performance Interconnects,
Symposium on, vol. 0, pp. 70–77, 2011.

[25] H. Shan, N. J. Wright, J. Shalf, K. Yelick, M. Wagner, and
N. Wichmann, “A preliminary evaluation of the hardware
acceleration of the Cray Gemini interconnect for PGAS
languages and comparison with MPI,” SIGMETRICS Perform.
Eval. Rev., vol. 40, no. 2, pp. 92–98, Oct. 2012.

	I Introduction
	II Experimental Platform
	II-A Experimental Methodology

	III Analysis of Low-level Transport Protocols on the Cray XE6 System
	III-A Concurrent Communication and Ordering
	III-B Concurrency and Memory Registration
	III-C High-Level Abstractions

	IV Analysis of UPC One-Sided Communication
	IV-A One-sided Communication and Transport Ordering
	IV-B One-Sided Communication and Memory Registration
	IV-C Performance Analysis of One-sided Communication

	V Analysis of Two-Sided Communication
	V-A Ordering Constraints in MPI
	V-B MPI Message Matching
	V-C Transfer Size Ambiguity at the Receiver for MPI
	V-D Memory Registration and Two-sided Messages
	V-E Performance Analysis of Cray MPICH

	VI Discussion
	VI-A MPI Two-sided Implementations and Ordering Relaxation
	VI-B Architectures and Relaxed Ordering

	VII Related Work
	VIII Conclusion
	References

