Lawrence Berkeley National Laboratory

Recent Work

Title
STUDY OF THE K+p INTERACTION FROM 0.85 TO 1.5 BeV/c

Permalink
https://escholarship.org/uc/item/1fx015d1

Authors
Brown, John L.
Bland, Roger W.
Bowler, Michael G.
et al.

Publication Date
1964-07-22
STUDY OF THE K^+p INTERACTION FROM 0.85 TO 1.5 BeV/c

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
STUDY OF THE $K^+ p$ INTERACTION FROM 0.85 TO 1.5 BEV/C

July 22, 1964
STUDY OF THE K^+p INTERACTION FROM 0.85 TO 1.5 BEV/C

(Presented by Sulamith Goldhaber)

Lawrence Radiation Laboratory
University of California
Berkeley, California

July 22, 1964

In an experiment currently in progress at the Bevatron, K^+p and K^+d reactions in the momentum range $0.86 - 1.58$ BeV/c are being studied in a 25-inch hydrogen/deuterium bubble chamber. Preliminary cross sections for the various K^+p reactions have been obtained and are presented below. The most notable feature is the large increase in the inelastic cross section in the region of the thresholds for production of the $N^*(1238)$ and $K^*(880)$ resonances.

For the purposes of this preliminary investigation, approximately 1500 pictures were double-scanned at each of the following five momenta: 0.86, 0.96, 1.20, 1.36 and 1.58 BeV/c. All events were processed through the PACKAGE space reconstruction and kinematic fitting program. Each event was re-examined at the scan table by a physicist to verify the conclusions of the fitting program, and to resolve identification ambiguities, where possible, on the basis of ionization. Residual ambiguous events comprised less than 3% of the total number, and were assigned in the same proportions as the unambiguous events.

At all but the two highest momenta the pion contamination of the K^+ beam was negligible. To correct for contamination at 1.36 and 1.58 BeV/c, film was also taken with incident positive pions of these momenta. A comparison of the pion and kaon film gave estimates of 7% and 18% respectively for the contamination at the two above momenta. Appropriate corrections have been applied to individual partial cross sections.

The results for the cross sections of the various channels, corrected for pion contamination, are shown in Table I. For all momenta except 1.58 BeV/c the K^+ flux was determined from a count of the observed τ decays in flight combined with the τ branching ratio of Roe et al.\(^1\) At the highest momentum the τ statistics were insufficient to make this determination meaningful. We also list the results obtained with the total cross sections normalized to the measurements of Cook.\(^2\) The results of this experiment together with data from other experiments in the same energy range are shown in Figs. 1 and 2. A preliminary study of the three-particle final states indicates that the initial rise in the inelastic channels is accompanied by substantial formation of the $N^*(1238)$ resonance. At momenta of 1.20 BeV/c and higher there is in addition substantial production of the $K^*(880)$ resonance. The cross section for double pion production remains less than 1/2 mb up to 1600 MeV/c.
REFERENCES

FIGURE CAPTIONS

Fig. 1. K^+p elastic and total cross sections as a function of momentum.
In addition to the results of this experiment, data from references 2, 5, and 6 have been included.

Fig. 2. K^+p inelastic partial cross sections as a function of momentum.
Data from reference 3 through 6 have been included.
Table I. Partial K^p cross sections (mb) as a function of momentum

<table>
<thead>
<tr>
<th>Momentum:</th>
<th>0.86</th>
<th>0.96</th>
<th>1.20</th>
<th>1.36</th>
<th>1.58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
<td>(1)</td>
<td>(2)</td>
<td>(1)</td>
<td>(2)</td>
<td>(1)</td>
</tr>
<tr>
<td>$K^+ p \to K^+ p$</td>
<td>12.0 ± 1.6</td>
<td>12.0 ± 0.7</td>
<td>12.9 ± 2.1</td>
<td>11.5 ± 0.8</td>
<td>12.7 ± 2.1</td>
</tr>
<tr>
<td>$K^+ p \to K^0 p\pi^0$</td>
<td>0.4 ± 0.1</td>
<td>0.4 ± 0.1</td>
<td>0.9 ± 0.3</td>
<td>0.8 ± 0.2</td>
<td>2.4 ± 0.5</td>
</tr>
<tr>
<td>$K^+ p \to K^0 p\pi^+$</td>
<td>0.9 ± 0.2</td>
<td>0.9 ± 0.2</td>
<td>3.1 ± 0.7</td>
<td>2.8 ± 0.4</td>
<td>5.2 ± 0.9</td>
</tr>
<tr>
<td>$K^+ p \to K^+ n\pi^+$</td>
<td>0.1 ± 0.1</td>
<td>0.1 ± 0.1</td>
<td>0.2 ± 0.1</td>
<td>0.2 ± 0.1</td>
<td>0.8 ± 0.2</td>
</tr>
<tr>
<td>Total cross section</td>
<td>13.4 ± 1.8</td>
<td>14.1</td>
<td>17.2 ± 2.9</td>
<td>15.3</td>
<td>21.0 ± 3.4</td>
</tr>
<tr>
<td>Number of K^+ interactions in sample</td>
<td>431</td>
<td>324</td>
<td>496</td>
<td>474</td>
<td>206</td>
</tr>
</tbody>
</table>

(1) Results determined solely from this experiment.
(2) Results normalized to the data of Cook et al. Uncertainties in the total cross sections are not included in the quoted errors.
This experiment
Other bubble chamber data

K^+_p \pi^0
• This experiment
○ Other bubble chamber data

K^0_p \pi^+
■ This experiment
□ Other bubble chamber data

K^+_n \pi^+
▲ This experiment
△ Other bubble chamber data

σ (mb)

0 2 4 6 8 10

800 1000 1200 1400 1600 1800 2000

Momentum (MeV/c)

MUB-3586
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.