Title
THE THICKNESS DISTORTION OF 57Fe BACKSCATTER MOSSBAUER SPECTRA: II. EFFECTS
OF SECONDARY RESONANT ABSORPTIONS

Permalink
https://escholarship.org/uc/item/1g6219t3

Author
Morris, J.W.

Publication Date
1982-12-01
THE THICKNESS DISTORTION OF 57Fe BACKSCATTER MOSSBAUER SPECTRA: II. EFFECTS OF SECONDARY RESONANT ABSORPTIONS

B. Fultz and J.W. Morris, Jr.

December 1982
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE THICKNESS DISTORTION OF 57Fe BACKSCATTER MöSSBAUER SPECTRA: II.
Effects of Secondary Resonant Absorptions

B. Fultz and J. W. Morris, Jr.

Materials and Molecular Research Division, Lawrence Berkeley Laboratory, and the Department of Materials Science and Mineral Engineering, University of California, Berkeley, California, 94720.

Abstract

The result given in a previous paper [1] for the effect of thickness distortion on backscatter 57Fe Mössbauer spectra is extended to include resonant absorptions of re-emitted 14.41 keV γ-rays.

Our backscatter geometry consists of an incident γ-ray beam normal to the surface of a thick specimen, and the collection of all radiations re-emitted into the 2π steradians over the specimen surface. We retain the notation of the previous paper [1]. The contribution from re-emitted radiations originating at each depth, t, and traveling back each distance to the specimen surface, z, is a product of three important factors:

$$f_A n_A \sigma_A(E) \, dt,$$

which is the probability that a 14.41 keV γ-ray will be absorbed in the depth interval dt,

$$P_{\mu z} = e^{-[\mu_1 + f_A n_A \sigma_A(E)]z},$$

which is the probability that an incident γ-ray will have propagated to the depth, t, given x-ray and nuclear scatterings over this distance, and

$$P_{\mu z} = e^{-[\mu_1 + f_A n_A \sigma_A(E)]z},$$
for the probability that a re-emitted γ-ray will propagate to the surface of the specimen*. The observed 14.41 keV backscatter spectrum obtained from all isotropically emitting 57Fe nuclei is:

$$I(s) = \frac{1}{1 + \alpha} \frac{1}{2} \int_{0}^{\infty} \int_{E}^{\infty} S(E+\epsilon+s) P_{\mu_{14}n_{A}\sigma_{A}}(E) P_{\mu_{14}\sigma}(z) \frac{1}{z^{2}} dE \, dz \, dt \quad (4)$$

Included in eqn. 4 is an energy distribution, $S(E+\epsilon+s)$, of the incident γ-rays. The geometrical integrations can be performed (see formulae 3.3514 and 6.2282 of ref. [2]) to give:

$$I(s) = \frac{f}{2(1 + \alpha)} \int_{-\infty}^{\infty} S(E+\epsilon+s) \frac{f_{A}n_{A}\sigma_{A}(E)}{2[\mu_{14} + f_{A}n_{A}\sigma_{A}(E)]} \, dE$$

$$- \frac{f}{2(1 + \alpha)} \int_{-\infty}^{\infty} S(E+\epsilon+s) \frac{f_{A}n_{A}\sigma_{A}(E)[\mu_{14} + f_{A}n_{A}\sigma_{A}(E)]}{8[\mu_{14} + f_{A}n_{A}\sigma_{A}(E)]^{2}}$$

$$\times \left\{ \frac{\mu_{14} + f_{A}n_{A}\sigma_{A}(E)}{2[\mu_{14} + f_{A}n_{A}\sigma_{A}(E)]} \right\} dE \quad (5)$$

Eqn. 5 is very similar to eqn. 2 of ref. [1], but because of the inclusion of secondary resonant absorptions in eqn. 3, the hypergeometric function, $_{2}F_{1}$, now becomes:

$$_{2}F_{1}(1,2;3;\frac{1}{2}) = 8 \ln 2 - 4$$

The two integrals in eqn. 5 can now be added together to give our final result:

$$I(s) = \frac{f(1 - \ln 2)}{2(1 + \alpha)} \int_{-\infty}^{\infty} \frac{S(E+\epsilon+s) f_{A}n_{A}\sigma_{A}(E)}{\mu_{14} + f_{A}n_{A}\sigma_{A}(E)} \, dE \quad (6)$$

The symmetry of incident and re-emitted γ-ray propagation leads to this very simple expression for the effect of thickness distortion on backscatter 14.41 keV Mössbauer spectra that was missed in ref. [1]. This exact analytic result is more tractable than its analog for transmission geometry experiments [3]. If the energy distribution of the

* For 6.3 keV x-ray re-emission this factor will be: $P_{\mu_{6}}(z) = e^{-\mu_{6}z}$ and the similarity between eqns. 2 and 3 is lost.
incident γ-rays is deconvolved, \(\sigma_A(E) \) may be recovered by a trivial algebraic manipulation.

The thickness distortion for backscatter 6.3 keV Mössbauer spectra requires the full scheme of ref. [1], with the modification of the formulae: \(2\mu \rightarrow \mu_6 + \mu_{14} \). Fig. 2 of ref. [1] is overcorrected for the effects of thickness distortion. This is clear from the ratio of intensities of peaks nos. 1 and 3, which is greater than its theoretically predicted value of 3.

With magnetically textured absorber materials (i.e. absorbers with non-random magnetic domains), not all re-emitted γ-ray trajectories along the cone with slant height, \(z \), will be subject to the same secondary resonant absorptions. In this case, eqn. 3 is an oversimplification, and eqn. 6 will be an approximation. The importance of this effect could be determined experimentally by comparing backscatter 14.41 keV γ-ray spectra with backscatter 6.3 keV x-ray spectra, for which there will be no resonant absorption of the backscattered radiation. Effects of magnetic texture on the primary resonant absorption will of course be the same for both 6.3 and 14.41 keV spectra.

Prof. L. H. Schwartz brought to the authors' attention the problem of secondary resonant absorptions, as well as previous attempts to calculate the thickness distortion of backscatter Mössbauer spectra [4,5]. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Science, Materials Science Division of the U. S. Department of Energy under Contract #DE-AC03-76SF00098.

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.