Title
CONSERVATION OF PARTICLE NUMBER IN THE NUCLEAR PAIRING MODEL

Permalink
https://escholarship.org/uc/item/1g63s4mh

Authors
Dietrich, Klaus
Mang, Hans J.
Pradal, Jean H.

Publication Date
1963-11-08
CONSERVATION OF PARTICLE NUMBER IN THE NUCLEAR PAIRING MODEL

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California
ABC Contract No. W-7405-eng-48

CONSERVATION OF PARTICLE NUMBER IN THE NUCLEAR PAIRING MODEL
Klaus Dietrich, Hans J. Mang, and Jean H. Pradal

November 8, 1963
CONSERVATION OF PARTICLE NUMBER IN THE NUCLEAR PAIRING MODEL

Klaus Dietrich, Hans J. Mang, and Jean H. Pradal

Lawrence Radiation Laboratory
University of California
Berkeley, California

November 8, 1963

ABSTRACT

The Euler-Lagrange equations corresponding to a Bardeen-Cooper-Schrieffer
state that is/eigenstate of the number operator are derived and solved numerically
for a 8-interaction. The errors due to the nonconservation of particle number in
the usual Bardeen-Cooper-Schrieffer theory are studied as a function of particle
number, level density, and strength of the pairing interaction. A proof is given
that for attractive pairing interactions the lowest-energy solution corresponds
always to real positive probability amplitudes v_ν, u_ν.
I. INTRODUCTION

When the theory of superconductivity had been developed,1,2 it was pointed out very early by Bohr, Mottelson, and Pines, that this theory might also be a useful tool in nuclear physics.3 Several authors have applied the theory to heavy and medium-heavy nuclei and have obtained encouraging results on the basis of a simple constant-pairing interaction.4-8 In both formulations of the theory of superconductivity the particle number is not conserved; only the expectation value of the number operator is kept equal to the required particle number.

One can easily project from the Bardeen-Cooper-Schrieffer (BCS) state an eigen-state of the number operator.9 Bayman showed that starting from such an eigen-state of the number operator, we are led back to the BCS treatment as long as we evaluate the entering expectation values with the saddle-point method.9 A crude estimate shows that the saddle-point method can be trusted as long as the number of levels that are neither empty nor fully occupied is large compared to one.9 For applications of the theory in nuclear physics this condition is generally poorly fulfilled. Besides Bayman, Blatt considered trial wave functions of the BCS type that conserve the particle number.10

Kerman, Lawson, and Macfarlane compared the results of the superconductivity model with the results of an exact diagonalization assuming again a constant-pairing interaction.11 This investigation showed the results of the superconductivity model to be in remarkably good agreement with the results obtained by an exact diagonalization, even for small particle numbers. Several papers related to our topic have been published this year and have just become known to us.12-15

In a recent paper Hogaasen-Feldman investigated the components in the ground and first excited states of the pairing model that correspond to different numbers of particles.16 Meanwhile, various pairing-model calculations have been
performed with more realistic forces such as 8-forces,17 8-plus quadrupole forces,17 and finite range forces,18,19 also taking into account the effect of the residual interactions on the Hartree-Fock field. In view of this increasing number of applications, it seemed worthwhile to study more widely the errors expected as a result of the nonconservation of particle number, formulating the pairing model consistently with conservation of particle number and comparing the final results with those of the BCS method.

In Sec. II, we derive the variational equations corresponding to a BCS state that conserves particle number.

In Sec. III, we generalize this treatment to odd numbers of nucleons, and in Sec. IV to neutrons and protons. In Sec. V we show that use of the saddle-point method for the evaluation of the contour integrals leads us back to the usual superconductivity treatment. This, of course, can already be found in Bayman's paper.9 We include the proof for the sake of completeness.

Sec. VI we present results obtained from a numerical solution of our variational equations and compare them with the corresponding results of the BCS treatment.

The appendix contains proof that we can restrict the variational parameters of the BCS state to real positive quantities without loss of generality.
II. The Euler-Lagrange Equations Corresponding to a BCS State That Conserves Particle Number

In occupation number representation, the Hamiltonian for one sort of interacting nucleons has the form

\[H = \sum_{\pm \nu} \epsilon_{\nu} a_{\nu}^+ a_{\nu} + \sum_{\pm (v_1, v_2, v_3, v_4)} v_{v_1 v_2 v_3 v_4} a_{v_1}^+ a_{v_2}^+ a_{v_3} a_{v_4}, \] (2-1)

in which \(a_{\nu}^+ \) and \(a_{\nu} \) are creation and annihilation operators, respectively, of particles in state \(\nu \); \(\epsilon_{\nu} \) are single-particle energies that should contain a part of the real nucleon-nucleon (N-N) interaction; and

\[v_{v_1 v_2 v_3 v_4} = 1/4 \langle v_1 v_2 | v_3 v_4 \rangle, \]

where \(\langle v_1 v_2 | v_3 v_4 \rangle \) is the matrix-element of the N-N interaction between antisymmetrized and normalized products of single-particle wave functions; and \(\nu \) stands for the set of quantum numbers that define a single-particle state in the chosen representation. Using the \(j \)-coupling scheme we have:

\[\nu = (\sigma, j, m \geq 0), \]

\[-\nu = (\sigma, j, m < 0), \]

where \(j \) = total angular momentum,

\(m \) = magnetic quantum number,

\(\sigma \) = any additional quantum numbers that characterize the state.

The distinction between states with positive and negative magnetic quantum numbers is, of course, merely a matter of convenience. We choose a representation in which the Hamiltonian without interaction is diagonal. We may think of the
single-particle energies ϵ_ν as discrete energy levels of either a harmonic oscillator or a more realistic single-particle potential.

Furthermore we use a phase convention that is particularly convenient in the BCS-theory.\(^8\) It can be related to the usual phase convention of Condon and Shortley\(^20\) in the following way: All single-particle states with negative magnetic quantum number, $m < 0$, differ from the corresponding states in the Condon-Shortley (CS) convention by a factor $(-)^{j+l+\frac{1}{2}}$ ($l =$ orbital angular momentum),

$$|j \ell m\rangle = (-1)^{j+l+\frac{1}{2}} |j \ell m\rangle_{\text{CS}} \quad \text{for } m < 0,$$ \hfill (2.1')

$$|j \ell m\rangle = |j \ell m\rangle_{\text{CS}} \quad \text{for } m > 0.$$ \hfill (2.1'')

We describe the system by a trial state Ψ that we obtain by projecting from the BCS state an eigenstate of the number operator \hat{N},

$$\hat{N} = \sum_j \sum_\nu \hat{a}_\nu^+ \hat{a}_\nu \cdot$$ \hfill (2.2)

This state Ψ can be written in the form\(^9,21\)

$$\Psi = C \cdot \Phi \cdot e^{-\frac{1}{2} \sum_j \sum_\nu (u_\nu + v_\nu (\hat{a}_\nu^+ \hat{a}_\nu^+)) \Phi_0},$$ \hfill (2.3)

where Φ_0 is the vacuum state,

n_0 is the number of nucleon pairs,

and C is a normalization constant that we define by requiring

$$\langle \Psi | \Psi \rangle = 1$$ \hfill (2.4)

or

$$|C|^2 = 1/(\pi n^2 n_0^0).$$

[For the definition of n_0^0 see Eq. (2.3)]
For interactions that exhibit negative pairing-type matrix elements we obtain the lowest-energy solution for real positive \(u_v \) and \(v_v \). (For proof see Appendix A). Furthermore we may require

\[
u_v^2 + v_v^2 = 1 \quad (2.5)
\]

(see Appendix A). Henceforth, we will therefore consider the \(u_v \) and \(v_v \) as real positive quantities, subject to condition (2.5). We wish to remark at this point that the total energy

\[
E = \langle \mathcal{F} | \mathcal{H} | \mathcal{F} \rangle \quad (2.6)
\]

remains unchanged if we multiply all the quotients \(v_v / u_v \) by a common factor \(x \). Thus, even with (2.5) holding, the set of parameters \(u_v, v_v \) is not uniquely defined by the variational problem (see Appendix A).

Next we ask for the Euler-Lagrange equations that must be fulfilled as a necessary condition for \(\langle \mathcal{F} | \mathcal{H} | \mathcal{F} \rangle \) to be stationary. The variations of \(\mathcal{F} \) are restricted by subsidiary conditions (2-4) and (2-5). Disposing of the restrictive condition (2-4) by the use of a Lagrangean multiplier, we have to deal with the variational problem,

\[
\delta (\langle \mathcal{F} | \mathcal{H} | \mathcal{F} \rangle - E(\mathcal{F} | \mathcal{F} \rangle) = 0 \quad (2.7)
\]

We define the following functions as residues of simple contour integrals in the complex plane,

\[
\mathcal{R}_n (v_1, \ldots, v_N) = \frac{1}{2 \pi i} \int ds \cdot \frac{-\rho (a_0 \cdot a)}{(a_0 \cdot a) - 1} \prod_{v} v - v_1 \ldots v_N (u_v^2 + v_v^2) \quad (2.8)
\]

In this paper we shall sometimes refer to these functions as "residuum integrals." The \(N \) states listed in parentheses are those that are to be excluded from the
product \(\prod (u^2_v + v^2_v s) \). For \(N \geq 0 \), the product contains \(N_0 \) different factors \((u^2_v + sv^2_v)\). Physically, \(N_0 \) is the finite number of pair states \((v, -v)\) that we take into consideration in a given problem. In Appendix B, we have put together some useful mathematical properties of the functions \(R_n(v_1, \ldots, v_n) \).

By definition we put residuum integrals that contain any pair of equal arguments equal to zero. Using the residuum integrals (2.8), we can write the total energy \(E \) as

\[
E = 2 \sum_v e_v v^2_v \frac{R^2_1(v)}{R_0^0} + 4 \sum_{v,v=-v} v^2_v \frac{R^2_1(v)}{R_0^0} \\
+ 4 \sum_{v_1v_2} (v_{1v_2} + v_{1v_2}) \frac{R^2_2(v_1v_2)}{R_0^0} \\
+ 4 \sum_{v_1v_2} v_{1v_2} \frac{R^2_2(v_1v_2)}{R_0^0}.
\]

(2.9)

In this formulation we have assumed

\[
e_v = e_{-v},
\]

(2.10)

i.e., that the nucleus is at least axially symmetric.

The integrals are extended only over states with positive magnetic quantum numbers. Variation of (2.9) with respect to \(v_v \) and \(u_v \), with condition (2.5) holding, leads to the set of equations

\[
(\hat{\alpha_v} + \Gamma_v + \Lambda_v) u_v v_v + \Lambda_v (u^2_v - v^2_v) = 0.
\]

(2.11)
The quantities \hat{e}_ν, Γ_ν, Δ_ν, Δ'_ν are defined as follows:

$$
\hat{e}_\nu = (\epsilon_\nu + 2v_{\nu-\nu-\nu}) \frac{[R^1_1(\nu)]}{R^0_0},
$$

$$
\Gamma_\nu = 4 \sum_{\nu_1} (v_{\nu_1\nu_1\nu_1} + v_{\nu-\nu-\nu-\nu}) v^2_{\nu_1} \frac{[R^2_2(\nu_1\nu)]}{R^0_0},
$$

$$
\Delta_\nu = 2 \sum_{\nu_1} v_{\nu-\nu_1-\nu_1} u_{\nu_1} v_{\nu_1} \frac{[R^2_1(\nu_1\nu)]}{R^0_0},
$$

$$
\Delta'_\nu = \sum_{\nu_1} (\epsilon_\nu + 2v_{\nu_1-\nu_1-\nu_1}) v^2_{\nu_1} \frac{R^1_0(\nu) R^2_2(\nu_1\nu) - R^2_1(\nu) R^2_2(\nu_1\nu)}{(R^0_0)^2}
$$

$$
+ 2 \sum_{\nu_1 \nu_2} (v_{\nu_1\nu_2\nu_2\nu_2} + v_{\nu_1-\nu_2-\nu_2-\nu_2}) v^2_{\nu_1} v^2_{\nu_2}
$$

$$
+ 2 \sum_{\nu_1 \nu_2} v_{\nu_1-\nu_1-\nu_1-\nu_2} u_{\nu_1} v_{\nu_1} u_{\nu_2} v_{\nu_2}
$$

$$
\frac{R^1_0(\nu) R^2_2(\nu_1\nu_2\nu) - R^2_1(\nu) R^3_2(\nu_1\nu_2\nu)}{(R^0_0)^2}.
$$

$$
+ \left[\hat{e}_\nu v^2_{\nu} + \Gamma_\nu v^2_{\nu} + 2\Delta_\nu u_{\nu} v_{\nu} \right] \frac{R^1_0(\nu) - R^1_1(\nu)}{R^0_0}.
$$

The quantities Γ_ν and Δ_ν are the Hartree-Fock and pairing potentials that appear in an analogous way in the BCS-method. In our formulation the term with the diagonal matrix element $V_{\nu-\nu-\nu}$ is included in the single-particle energy \hat{e}_ν (see 2-12), since it contains the same residuum integral as the single-particle energies. This is merely a matter of convenience. In Sec. V 5 we shall rearrange the terms in such a way that they immediately yield the corresponding
quantities of the BCS theory when the saddle-point method is applied.

The quantity Λ_v has no counterpart in the equations of the BCS theory, which contains instead a constant chemical potential. This potential is chosen so as to make the expectation value of the number operator equal to the required particle number. In the derivations of the equations (2-11) the quantity Λ_v arises from the differentiation of the residuum integrals with respect to v_v and u_v (see appendix B). In the formulation (2-15) the recursion relations (3-1) and (3-2) have been used.

An equivalent formulation of Λ_v is

$$
\Lambda_v = \sum_{v_1} (e_{v_1} + 2v_{1-v_1}) v_1^2 \frac{\rho_2(v_1v) - \rho_1^2(v_1v)}{\rho_0^2}
$$

$$
+ 2 \sum_{v_1 v_2} (v_{1-v_1} v_{1-v_1} + v_{1-v_1} v_{1-v_1}) v_1^2 v_2^2 \frac{\rho_3(v_1 v_2 v) - \rho_1^2(v_1 v_2 v)}{\rho_0^2}
$$

$$
+ 2 \sum_{v_1 v_2} v_{1-v_1} v_{1-v_1} v_{1-v_1} v_{1-v_1} u_{v_1} v_{1-v_1} u_{v_1} v_2 v_2 \frac{\rho_3(v_1 v_2 v) - \rho_1^2(v_1 v_2 v)}{\rho_0^2}
$$

$$
= \frac{1}{2} \sum_{v} \frac{\rho_1^2(v) - \rho_0^2(v)}{\rho_0^2}
$$

(2-16)

where E is the total energy given by (2-9).

In the usual superconductivity theory, v_v^2 is the probability for the pair of states $(v, -v)$ being occupied, and u_v^2 is the probability for this pair being unoccupied. This is no longer true in our treatment,
Let us call e_{v}^{2} the probability of occupation, f_{v}^{2} the probability of non-occupation of a pair of states \(\{v, -v\} \).

Then

\[
\begin{align*}
e_{v}^{2} &= \langle \psi | (a_{v}a_{-v})^{\dagger} a_{v}a_{-v} | \psi \rangle = v_{v}^{2} \cdot \frac{[R_{1}^{1}(v)]/R_{0}^{0}}{v_{v}^{2}}, \quad (2-17) \\
f_{v}^{2} &= 1 - e_{v}^{2} = \frac{[R_{0}^{1}(v)]/R_{0}^{0}}{v_{v}^{2}}. \quad (2-18)
\end{align*}
\]

Of course, the sum of the occupation probabilities is equal to \(n_{0} \), the number of pairs of particles.

\[
\sum_{v}^{N_{0}} e_{v}^{2} = n_{0}.
\]
III. BLOCKING IN THE THEORY WITH CONSERVED PARTICLE NUMBER

The pairing model has been extended to systems with an odd number of particles by blocking one of the available pair states. In our theory with conserved particle number, a system with an odd number of particles will be described by the state

$$\varphi_{\bar{\nu}} = C \cdot \phi \cdot \xi^{-n_0/2} \cdot s_{\nu}^{+} \cdot \prod_{\nu} (u_{\nu} + v_{\nu} \cdot s_{\nu}^{+} s_{\nu}^{+}) \phi_{0}. \quad (3-1)$$

Of course, C is again the normalization constant given by

$$|C|^2 = \left[(-\hbar^2) K_0 \left(\bar{\nu} \right) \right]^{-1}, \quad (3-2)$$

n_0 is the number of pairs, the total particle number being $(2n_0 + 1)$. The quantum state $\bar{\nu}$ is occupied by the odd nucleon. The formulas that we will obtain, starting from state (3-1) can be almost guessed without calculation: All residuum integrals will contain the additional argument $\bar{\nu}$, which means that this state is never available to any pair of particles. The interaction of a pair of particles with the odd nucleon will be represented by a special term that will modify the definitions of the quantities \tilde{e}_{ν} and Λ_{ν}. The total energy E has the form

$$E = 2 \sum_{\nu} \tilde{e}_{\nu} v_{\nu}^2 \frac{R_1^2 (\nu \nu)}{K_0 (\bar{\nu})} + e_{\nu} + 4 \sum_{\nu \nu \nu \nu} v_{\nu \nu \nu \nu} v_{\nu}^2 \frac{R_1^2 (\nu \nu)}{R_0 (\nu)}$$

$$+ 4 \sum_{\nu_1 \nu_2} (v_{\nu_1 \nu_2} v_{\nu_1 \nu_2} + v_{\nu_1 \nu_2} v_{\nu_1 \nu_2}) v_{\nu_1}^2 v_{\nu_2}^2 \frac{R_1^2 (\nu_1 \nu_2)}{R_0 (\nu)}.$$
\[
+2 \sum_{v_1 v_2} v_{1v_1} v_{2v_2} u_{v_1} v_{1v_2} u_{v_2} \frac{R_2^b(v_{1v_2}) - R_1^b(v_{v_1v_2})}{R_0^b(v)} \\
\frac{(E - \epsilon_v)}{2} \frac{[R_1^2(v_{1v}) + R_0^2(v_{v})]}{R_0^b(v)}
\]

Blocking of different states \(v \) will, in general, lead to different total energies \(E \). The lowest of these energies is the ground state of the system with odd-particle number; the other ones correspond to excited states.
IV. GENERALIZATION TO NEUTRONS AND PROTONS

In this paragraph we extend our treatment to neutrons and protons. The generalization is completely straightforward. We include the results because it might be useful to have them available for numerical calculations. We describe the system by a product of BCS wave functions, each one conserving particle number:

\[Y = C \prod_{k>0} \int d_{k} \frac{a_{k}^{\dagger}}{N_{p}} \prod_{k>0} \int d_{k} \frac{a_{k}^{\dagger}}{N_{n}} \left(u_{k} + v_{k} a_{k}^{\dagger} a_{-k}^{\dagger} \right) \cdot \prod_{k>0} \int d_{k} \frac{a_{-k}^{\dagger}}{N_{p}} \prod_{k>0} \int d_{k} \frac{a_{-k}^{\dagger}}{N_{n}} \left(u_{v} + v_{v} a_{v}^{\dagger} a_{-v}^{\dagger} \right) \phi_{0} . \]

(4-1)

We have \(a_{k}^{\dagger} \) and \(a_{k}^{\dagger} \) as creation operators for a neutron in state \(v \) and a proton in state \(\kappa \), respectively; \(\phi_{0} \) is the vacuum state; \(N_{p}, N_{n} \) are the total number of proton and neutron pair states; \(n_{p}, n_{n} \) are the proton and neutron pair numbers; \(u_{k}, v_{k} \) and \(u_{v}, v_{v} \) are the variational parameters for protons and neutrons, respectively.

Quantities with arguments or subscripts \(v \) or \(v_{1}, v_{2} \) are neutron quantities, and those with \(\kappa \) or \(\kappa_{1}, \kappa_{2} \) are proton quantities. For cases in which no such arguments or subscripts occur (such as the residuum integral \(R_{0}^{0} \)), we denote neutron quantities by \((n) \) and proton quantities by \((p) \). The normalization constant \(C \) is defined by

\[\langle Y | Y \rangle = 1 = |C|^{2} (4\pi^{2})^{2} R_{0}^{(p)}(p) R_{0}^{(n)}(n) . \]

(4-2)

In (4-1) we do not take into account a possible pairing between neutrons and protons. This is expected to be a reasonable approximation for medium-heavy and heavy nuclei in which neutrons and protons are in different single-particle levels.
The Hamiltonian for the neutron-proton system is

\[H = \sum_{k} \varepsilon_k a_k^+ a_k + \sum_{k_1 k_2 k_3 k_4} v_{k_1 k_2 k_3 k_4} a^+_{k_1} a^+_{k_2} a_{k_3} a_{k_4} + \sum_{n_1 n_2 n_3 n_4} v_{n_1 n_2 n_3 n_4} a^+_{n_1} a^+_{n_2} a_{n_3} a_{n_4} + \sum_{n_1 n_2} \frac{1}{2} [v_{n_1 n_2} a^+_{n_1} a^+_{n_2} a_{n_2} a_{n_1}] \]

(4.2)

The single-particle energies of protons and neutrons are \(\varepsilon_k \) and \(\varepsilon_n \). The matrix elements of the proton-proton, neutron-neutron, and neutron-proton interactions are \(v_{k_1 k_2 k_3 k_4} \), \(v_{n_1 n_2 n_3 n_4} \), and \(v_{n_1 n_2} \), respectively.

The total energy \(E \) has the form

\[E = \langle \psi | H | \psi \rangle = 2 \sum \varepsilon_k \gamma_k^2 \frac{R_1^2(k)}{R_0(\alpha)0} + 4 \sum v_{k-k-k} \gamma_k^2 \cdot \frac{R_1^2(k)}{R_0(\alpha)0} \]

\[+ 4 \sum_{k_1 k_2} (v_{k_1 k_2} a^+_{k_1} a^+_{k_2} a_{k_2} a_{k_1}) \gamma_{k_1}^2 \cdot \gamma_{k_2}^2 \cdot \frac{R_2^2(k_1 k_2)}{R_0(\alpha)0} \]

\[+ 4 \sum_{k_1 k_2} v_{k_1 k_2} a^+_{k_1} a^+_{k_2} a_{k_2} a_{k_1} \frac{R_1^2(k_1 k_2)}{R_0(\alpha)0} \]

\[+ 4 \sum_{k_1 k_2} v_{k_1 k_2} a^+_{k_1} a^+_{k_2} a_{k_2} a_{k_1} \frac{R_1^2(k_1 k_2)}{R_0(\alpha)0} \]
\[+2 \sum_{\nu_1, \nu_2} \left(v_{\nu_1} v_{\nu_2} + v_{\nu_1} v_{\nu_2} + v_{\nu_1} v_{\nu_2} + v_{\nu_1} v_{\nu_2} \right) \frac{R_2^2(\nu_1 \nu_2)}{R_2(\nu_1 \nu_2)} \]

\[+ 4 \sum_{\nu_1, \nu_2} \left(v_{\nu_1} v_{\nu_2} + v_{\nu_1} v_{\nu_2} \right) \frac{R_2^2(\nu_1 \nu_2)}{R_2(\nu_1 \nu_2)} \]

\[+ 2 \sum_{\nu_1, \nu_2} \left(v_{\nu_1} v_{\nu_2} + v_{\nu_1} v_{\nu_2} \right) \frac{R_2^2(\nu_1 \nu_2)}{R_2(\nu_1 \nu_2)} \]

(4-4)

The only term that will modify the Euler-Lagrange equations (2-11) is the last sum containing the neutron-proton interaction. The resulting equations are

\[\left[\partial_\nu \left(\partial_\nu - \frac{\partial_\nu}{\partial \nu} + \Delta_\nu \right) u_\nu \right] v_\nu + \Delta_\nu \left[u_\nu^2 - v_\nu^2 \right] = 0 \]

(4-5)

and

\[\left[\partial_\nu \left(\partial_\nu + \frac{\partial_\nu}{\partial \nu} + \Delta_\nu \right) u_\nu \right] v_\nu + \Delta_\nu \left[u_\nu^2 - v_\nu^2 \right] = 0 \]

(4-6)

The quantities \(\partial_\nu \), \(\partial_\nu \), \(\Gamma_\nu \), \(\Delta_\nu \), \(\Delta_\nu \) are defined as in (2-12), (2-13), and (2-14) the sums being extended over proton and neutron states, respectively. The quantity \(\Gamma_\nu \) describes the interactions of a proton in a state \(\kappa \) with all the neutrons.
\[o_\nu = \sum \nu (v_{\nu + \nu} \nu + v_{\nu - \nu} \nu) v_\nu^2 \left[R_1^2(\nu) \right] R_1^2(\nu) / R_0(\nu)^0 R_0(\nu)^0. \]

(4-7)

The quantity \(o_\nu \) has the analogous meaning for the neutrons,

\[o_\nu = \sum \nu (v_{\nu + \nu} \nu + v_{\nu - \nu} \nu) v_\nu^2 \left[R_1^2(\nu) \right] R_1^2(\nu) / R_0(\nu)^0 R_0(\nu)^0. \]

(4-8)

The coefficients \(A_\nu \) and \(A_\nu \) are given by more lengthy expressions than in (2-15) or (2-16), since the differentiation of the residuum integrals in the neutron-proton interaction leads to additional terms. It will be sufficient to give these quantities in the formulation corresponding to (2-16). The ones corresponding to (2-15) follow from it in a straightforward way:

\[A_\nu = \sum \nu \left(v_{\nu + \nu} \nu + v_{\nu - \nu} \nu \right) v_\nu^2 \frac{R_2^2(\nu_1 \nu) - R_2^2(\nu_1 \nu)}{R_0(\nu)^0} \]

\[+ \sum \nu \left(v_{\nu + \nu} \nu + v_{\nu - \nu} \nu \right) v_\nu^2 \frac{R_2^2(\nu_1 \nu_2 \nu) - R_2^2(\nu_1 \nu_2 \nu)}{R_0(\nu)^0} \]

\[- \sum \nu \left(v_{\nu + \nu} \nu + v_{\nu - \nu} \nu \right) v_\nu^2 \frac{R_2^2(\nu_1 \nu_2 \nu) - R_2^2(\nu_1 \nu_2 \nu)}{R_0(\nu)^0} \]

\[- \sum \nu \left(v_{\nu + \nu} \nu + v_{\nu - \nu} \nu \right) v_\nu^2 \frac{R_2^2(\nu_1 \nu_2 \nu) - R_2^2(\nu_1 \nu_2 \nu)}{R_0(\nu)^0} \]

\[- \frac{E}{2} \frac{[R_1^2(\nu) - R_0^2(\nu)]}{R_0(\nu)^0} \]

(4-9)
\[
A_c = \sum_{v_1} \left(a_{v_1} + 2 \sum_{v_1' v_2} v_1' v_2 v_1 v_2 v_1 v_2 \right) v_1^2 \quad \frac{R^2_{2}(v_1 v_1') - R^2_{2}(v_1 v_1')}{R^{(n)0}_0}
\]

\[
+ 2 \sum_{v_1' v_2} \left(v_1' v_2 v_1 v_2 + v_1 v_2 v_1 v_2 \right) v_1^2 v_1 v_2 v_1 v_2 \quad \frac{R^2_{2}(v_1 v_1) - R^2_{2}(v_1 v_1)}{R^{(n)0}_0}
\]

\[
+ \sum_{v_1'} \left(v_k v_1' v_1 v_1 + v_1 v_1 v_1 v_1 \right) v_1^2 \quad \frac{R^2_{2}(v_1 v_1) - R^2_{2}(v_1 v_1)}{R^{(n)0}_0}
\]

\[
= E_0 \quad \frac{R^2_{2}(v) - R^2_{0}(v)}{R^{(n)0}_0}
\]

In (4-9) and (4-10) \(E \) is the total energy given by (4-4). The neutron-proton interaction couples the equation (4-5) and (4-6). If we wish to generalize the treatment of a system with an odd particle number to an odd-even nucleus, we must start from the state

\[
v_k = \frac{1}{\sqrt{\mathcal{Q}}} \mathcal{Q}^{n-1} a_k \sum_{\nu} \left(\nu_{v_1 v_1} \nu_1' \nu_1 v_1 v_1 \nu_1 v_1 v_1 \nu_1 \right) v_1^2 \quad \frac{R^2_{2}(v_1 v_1) - R^2_{2}(v_1 v_1)}{R^{(n)0}_0}
\]

(4-11)
if we have an odd number \((2n_p + 1)\) of protons and an even number \((2n_n)\) of neutrons. We do not write down the equations that follow from (4.11) but simply mention the modifications that are introduced by the blocking of the proton state \(k\):

we obtain again the set of coupled equations (4.5), (4.6); \(\Gamma_v\) and \(\Lambda_v\) are obtained from (2.15) and (2.14) and the definition of \(\Omega_v\), \(\Omega_k\) from (4.3) and (4.7) just by making the additional exclusion of the state \(k\) in all residuum functions:

\[
R^N_k (\kappa_1 \ldots \kappa_n) \rightarrow R^{N+1}_k (\kappa_1 \ldots \kappa_n k).
\]

The sums, of course, are extended only over neutron and proton states, respectively.

The quantities \(\tilde{\varepsilon}_k\), \(\tilde{\varepsilon}_v\), \(\Lambda_k\), and \(\Lambda_v\) have to be defined in a slightly different way:

\[
\tilde{\varepsilon}_k = \left(\frac{\varepsilon_k + 2 \varepsilon_v - \varepsilon_k - \varepsilon_k}{R_0(k)} \right) \frac{R^2(kk)}{R_0(k)} + 2 \left(\frac{R^2(kk)}{R_0(k)} \varepsilon_k - \varepsilon_k\right) \frac{R^2(kk)}{R_0(k)}, \quad (4.12)
\]

\[
\tilde{\varepsilon}_v = \left(\frac{\varepsilon_v + 2 \varepsilon_v - \varepsilon_v - \varepsilon_v}{R_0(v)} \right) \frac{R^2(vv)}{R_0(v)} + 2 \left(\frac{R^2(vv)}{R_0(v)} \varepsilon_v - \varepsilon_v\right) \frac{R^2(vv)}{R_0(v)}, \quad (4.13)
\]

\[
\Lambda_k = \sum_{\kappa_1} \left(\varepsilon_{k_1}^2 + 2 \phi \varepsilon_{k_1} + \varepsilon_{k_1} \right) \frac{R^2(kk_{\kappa_1})}{R_0(k)} = \frac{R^2(kk_{\kappa_1})}{R_0(k)} \frac{R^2(kk_{\kappa_1})}{R_0(k)}
\]

\[
\phi = 2 \sum_{\kappa_1} \left(\varepsilon_{k_1}^2 + 2 \phi \varepsilon_{k_1} + \varepsilon_{k_1} \right) \frac{R^2(kk_{\kappa_1})}{R_0(k)} = \frac{R^2(kk_{\kappa_1})}{R_0(k)} \frac{R^2(kk_{\kappa_1})}{R_0(k)}
\]
\[2 \sum_{\nu_1 \nu_2} v_{\nu_1} v_{\nu_2} = \frac{R_2^3(\nu_1) R_1^5(\nu_2 \nu_2)}{R_0(n)} \]

\[\sum_{\kappa_{\nu_1}} (v_{\kappa_{\nu_1}} v_{\nu_1} v_{\nu_1} v_{\nu_1} v_{\nu_1}) v_{\kappa_{\nu_1}} v_{\nu_1} \quad \frac{R_1^2(\kappa_{\nu_1})}{R_0^2(\kappa)} \quad \frac{R_2^2(\nu_1 \nu_1)}{R_0^2(n)} \]

\[\frac{1}{2} \frac{R_1^2(n) - R_0^2(n)}{R_0^2(n)} \quad (4-15) \]

The quantities \(E(p) \), \(E(n) \) appearing in Figs. (4-16) and (4-15) are the parts of the total energy \(E \) that depend on the proton coefficients \(u_\kappa \), \(v_\kappa \) or the neutron quantities \(u_\nu \), \(v_\nu \) only.

Using our definitions of \(\xi_\nu \), \(\xi_\kappa \), \(\Gamma_\nu \), \(\Gamma_\kappa \), \(\Delta_\nu \), and \(\Delta_\kappa \), we can write these quantities as

\[E(p) = \sum_{\kappa} \left(2 \xi_\kappa + \Gamma_\kappa + 2 \nu_\kappa \right) v_\kappa^2 + 2 \sum_{\kappa} \Delta_\kappa u_\kappa v_\kappa \quad (4-16) \]

\[E(n) = \sum_{\nu} \left(2 \xi_\nu + \Gamma_\nu + 2 \nu_\nu \right) v_\nu^2 + 2 \sum_{\nu} \Delta_\nu u_\nu v_\nu \quad (4-17) \]

The total energy \(E \) is not equal to the sum \(E(n) + E(p) \) but is given by

\[E = \sum_{\kappa} \left(2 \xi_\kappa + \Gamma_\kappa + 2 \nu_\kappa \right) v_\kappa^2 + 2 \sum_{\kappa} \Delta_\kappa u_\kappa v_\kappa + \xi_\kappa \]
\[\sum_v \left(2 v_\nu ^2 + \gamma_\nu + n_\nu \right) + 2 \sum_v u_\nu v_\nu \quad (4-18) \]

If we have an odd number of neutrons and an even number of protons the definitions (4-12), (4-13) and (4-14), and (4-15) obviously have to be interchanged.

We note that simply by replacing the proton single-particle energies \(e_\kappa \) by

\[e_\kappa \rightarrow e_\kappa + 2 \left(V_\kappa \kappa \overline{\kappa} \kappa + i V_\overline{\kappa} \kappa \overline{\kappa} \right) \]

and the neutron single-particle energies \(e_\nu \) by

\[e_\nu \rightarrow e_\nu + \frac{1}{2} \left(V_\kappa \nu \overline{\kappa} \nu + i V_\overline{\kappa} \nu \overline{\kappa} \nu \right) \]

and by blocking the additional state \(\overline{\kappa} \) in all the proton \(\overline{\kappa} \) functions, we obtain from the variational equations of an even-even nucleus the corresponding equations of the neighboring odd-even nucleus with one additional proton in state \(\overline{\kappa} \). In an analogous manner we find the equations for a nucleus with an odd number of neutrons and an even number of protons.
V. USE OF THE SADDLE-POINT METHOD FOR THE EVALUATION OF THE RESIDUUM INTEGRALS

Bayman⁹ has shown that using the saddle point method for the evaluation of the integrals \(R_n^N(v_1, \ldots, v_N) \) is equivalent to the BCS treatment. He assumes that the saddle points corresponding to different integrals \(R_n^N \) are almost equal, and he shows that this is the case for a constant level density. We reformulate his proof only for the sake of completeness, using a slightly different formulation.

We write the residuum integrals (2.8) in the following way:

\[
R_n^N(v_1, \ldots, v_N) = \frac{1}{2\pi i} \oint dz \cdot e^{f(z)} \cdot \chi_n^N(z),
\]
(5-1)

where \(f(z) = n_0 \ln z + \sum_{v=1}^{N_0} \ln (u_v^2 + z v^2) \).
(5-2)

\[
\chi_n^N(z) = \frac{z^{n-1}}{\prod_{v=1}^{N} (u_v^2 + zv^2)}
\]
(5-3)

\(f(z) \) and \(\chi_n^N(z) \) are analytic functions of \(z \) on the path of integration. The path of integration can be chosen so that it crosses the saddle point \(z_0 \) of \(f(z) \) on a line of steepest descent, the saddle point being defined by

\[
f'(z_0) = -\frac{n_0 z_0}{u_v^2 + z_0 u_v^2} = 0.
\]
(5-4)

Thus we can use the saddle-point method to evaluate the residuum integrals (see Appendix C). We obtain
\[R^\pi_n (v_1, \ldots, v_N) = \frac{1}{(2\pi)^{1/2}} \frac{\theta(z_0) \cdot T^\pi_n (z_0, v_1, \ldots, v_N)}{|\phi''(z_0)|^{1/2}} \] \hspace{1cm} (5-5)

with

\[\phi''(z_0) = \frac{\mu}{\varepsilon_0^2} + \sum_v \frac{v_v^4}{(u_v^2 + z_0 v_v^2)^2} \] \hspace{1cm} (5-6)

The total energy \(E \) (2.9) as well as the variational equations (2.11) contain only quotients of residuum integrals. By using the saddle-point method, the total energy \(E \) will be given by

\[E = 2 \sum_v \varepsilon_v v_v^2 \chi_1^2 (z_0, v) + 4 \sum_{v_1, v_2} v_{v_1 v_2} v_{v_1} v_{v_1} v_{v_2} v_{v_2} \chi_2^2 (z_0, v_1 v_2) \]

\[+ 4 \sum_{v_1, v_2} v_{v_1 - v_2} v_{v_1} v_{v_2} u_{v_1} v_{v_1} u_{v_2} v_{v_2} \chi_1^2 (z_0, v_1 v_2) \] \hspace{1cm} (5-7)

In Appendix (A) we shall show that the set of \(v_v \) and \(u_v \) is not unique. Given a set of \(u_v \) and \(v_v \) that corresponds to a saddle point \(z_0 \neq 1 \), we can always find a transformation [see (A-4)] such that for the equivalent solution \(\tilde{u}_v, \tilde{v}_v \) of the variational equations the saddle point will be at \(z_0 = 1 \). For \(z_0 = 1 \) Eq. (5.4) is the subsidiary condition required in the theory of superconductivity.

\[\sum_v v_v^2 = \langle v_{\text{BCS}} | \sum v_v^2 | v_{\text{BCS}} \rangle = n_0 \] \hspace{1cm} (5-8)
and (5.7) is the total energy of BCS. We can also argue in the following way: We may multiply E by z_0 and consider the variation of $E \cdot z_0$, since E will be stationary if $E \cdot z_0$ is stationary, and vice versa. Equation (5.4) can be written

$$n_0 = -\sum \frac{(z_0^2 v^2)/(u^2 + z_0 v^2)}{v} = 0.$$ \hspace{1cm} (5-9)

We observe that $E \cdot z_0$ as well as Eq. (5.9) contains z_0 only in the combination $z_0^{1/2} \cdot v$. Therefore we can choose $z_0 = 1$ without loss of generality. This is Bayman's line of argument. Thus it is shown that using the saddle-point method in the theory with conserved particle number is equivalent to the usual BCS treatment, if we choose the saddle point at $z_0 = 1$. In this case all the residuum integrals become equal if they are evaluated with the saddle-point method.

In the Euler-Lagrange equations (2.11), the term $\hat{\xi}_v u_v v_v$ contains the diagonal matrix element $V_{v-v:v-v}$ in the form

$$2 V_{v-v:v-v} \frac{R^1(v)}{R_0} u_v v_v.$$ \hspace{1cm} (5-10)

We can write this term as

$$2 V_{v-v:v-v} \frac{R^1(v)}{R_0} u_v v_v = 4 V_{v-v:v-v} \frac{R^1(v)}{R_0} v^2 u_v v_v + 2 V_{v-v:v-v} \frac{R^1(v)}{R_0} u_v v_v (v^2 - v^2)$$ \hspace{1cm} (5-10)

So, if we define $\hat{\xi}_v$, Γ_v, Λ_v as

$$\hat{\xi}_v = \xi_v \cdot \frac{R^1(v)}{R_0},$$ \hspace{1cm} (5-11)
\[\Gamma_v = -\sum_{v_1}(v_{v_1v_1} + v_{v-v_1v_1}) v_{v_1}^2 \frac{R^2(v_1v)}{R_0} + 4 v_{vvvv} v_{v}^3 \frac{R^4(v)}{R_0}, \quad (5-12) \]

and

\[\Lambda_v = 2 \sum_{v_1} v_{v_1v_1} v_{v_1} v_{v_1}^2 \frac{R^2(v_1v)}{R_0} + 2 v_{v_1vvv} v_{v} v_{v} \frac{R^4(v)}{R_0}, \quad (5-13) \]

these quantities go over into the corresponding quantities of the EGS theory if the saddle-point method is applied. The quantity \(\Lambda_v \) goes to zero in this limit.
VI. NUMERICAL RESULTS

We wish to study the differences between the BCS theory and the results of the theory with conserved particle number as a function of (a) the particle number, (b) the strength of the pairing type interaction, and (c) the level spectrum. For this we use the special case of a level system with 15 pair states and an attractive 6-function potential of strength constant \(w \). We consider separately the case of a level spectrum that corresponds to a spherically symmetric nucleus (see Fig. 1) and the one that corresponds to an axially symmetric, rather strongly deformed nucleus (see Fig. 2, deformation parameter \(\eta \) of Nilsson\(^{23} \approx 4.2 \).

We have also performed some calculations with more complicated forces such as delta-plus quadrupole and finite-range forces and have found the expected result that the errors due to non-conservation of particle number do not depend much upon the special type of forces but mainly on the relative strength of the attractive short-range part of the force compared to the average level spacing. Thus, it is sufficient to study the question of nonconservation of particle number in the special example mentioned above.

In Figs. 3-15 we plot on the abscissa the quantities

\[
\chi_\nu = \epsilon_\nu + \Gamma_\nu^{BCS},
\]

(6.1)

where \(\epsilon_\nu \) are the single-particle energies and \(\Gamma_\nu^{BCS} \) is the Hartree-Fock potential \(\Gamma_\nu \) in the BCS theory, i.e.,

\[
\Gamma_\nu^{BCS} = 4 \sum_{\nu_1} (\nu_\nu_1 \nu_\nu_1 + \nu_\nu_1 \nu_\nu_1) \nu_\nu_1^2 .
\]

(6.2)

In the case of our spherical nucleus, \(\nu = (\text{angular momentum } k, \text{ magnetic quantum number } m) \). Physically, \(\chi_\nu \) is the average field acting on a particle in state \(\nu \). It depends, of course, on the interaction strength \(w \) and on the number of particles.
We call the pairing interaction strong if the pairing potential \(\Delta_{v}^{\text{BCS}} \) in the BCS treatment is larger in absolute value than the experimental odd-even mass differences where

\[
\Delta_{v}^{\text{BCS}} = \frac{1}{4} \sum_{v_{1}} v_{v_{1}}^{} - v_{1}^{} v_{v_{1}}^{} v_{v_{1}}^{} \quad (6-3)
\]

[The factor of \(\frac{1}{4} \) used in Eq. (6-3) is a different convention than the factor of 2 used in Eq. (2-14).] The level spectrum we have chosen corresponds to a nuclear situation in the \(^{208}\text{Pb} \) region where the odd-even mass differences are known to be of the order of 1.0 MeV. This means that \(v = -1 \) must be regarded as a strong pairing interaction, \(v = -0.9 \) [MeV] is still slightly stronger than realistic, \(v = -0.45 \) is slightly weaker than realistic, and \(v = -0.2 \) is extremely weak.

In the case of the spherically symmetric nucleus the levels are degenerate. For this case, we define quantities \(p_{k} \) as the sum of occupation probabilities for all the degenerate magnetic substates of the level with angular momentum \(k \),

\[
p_{k} = \sum_{m} e_{km}^2 \quad (6-4)
\]

and \(p_{k}^{\text{BCS}} \) is the corresponding quantity in the BCS theory,

\[
p_{k}^{\text{BCS}} = \sum_{m} v_{km}^2 \quad (6-5)
\]

Figures 5, 4 and 5 show \(p_{k} \) and \(p_{k}^{\text{BCS}} \) as a function of \(e_{km} \) for pairing interactions.
of different strength and for different pair numbers \(n_0 \). Figure 6 displays the occupation probabilities of the \(n = 1/2 \) substates as a function of \(h_{\text{nm}} \) for three different pair numbers.

Besides realizing that the agreement between the results of the BCS theory and the theory with conserved particle number is good, rather independently of the number of pairs, we mention that for strong and moderately strong pairing interaction, the BCS-theory overestimates the dissolution of the Fermi surface; for weak pairing interactions it underestimates it.

Furthermore, we observe from Fig. 3 that there may be cases in which a level of higher energy is more strongly occupied than a neighboring one with lower energy. This happens if the gain in pairing energy is larger than the loss in single-particle energies. This phenomenon is well-known since the early days of the shell model.\(^ {24} \)

A clearer picture of the errors connected with nonconservation of particle number can be obtained from Figs. 7, 8, and 9:

A procedure that is frequently used to improve the result of a BCS treatment consists in first solving the BCS equations and then projecting from the obtained BCS state the required eigenstate of the number operator. In this case, a new set of occupation probabilities \(e_{\nu}^2 \) is calculated according to (2.17) from the set of \(\nu_{\nu}^2 \) that has been obtained as a solution of the BCS equations.

In order to measure the accuracy of the BCS solution and of the solution obtained from it by projection, we define the quantities

\[
A_{\text{BCS}} = \frac{e_{\nu}^2 - \nu_{\nu}^2}{e_{\nu}^2} \times 100 \quad (6-5)
\]

and

\[
A_{\nu} = \frac{e_{\nu}^2 - e_{\nu}^{\text{B}}}{e_{\nu}^2} \times 100 \quad (6-7)
\]
and plot them against h_ν for different pair numbers n_0 and different strength constants w. This is done in Figs. 7, 8, and 9 for the case of spherical nuclei. We can learn several things from these diagrams: (1) The smaller the occupation probabilities of the states in question, the larger the errors in both the BCS occupation probabilities and the ones obtained by projection; (2) The weaker the pairing-type interaction the larger the errors of both methods. In this connection we stress that the projected solution is only better than the BCS solution for strong and moderately strong pairing-type interaction, whereas it may be worse in the case of weak pairing interactions; (3) In all the cases considered, the solution obtained by projection yielded too small occupation probabilities for the weakly occupied levels. In other words, the projected solution generally under-estimates the smearing out of the Fermi surface.

Figures 10 to 13 show the corresponding plots in the case of a deformed nucleus. Figures 10 and 11 show the occupation probabilities as a function of the single-particle energies h_ν. In the case of the very weak pairing interaction ($w = 0.2$) the Fermi surface is practically sharp. In this case the occupation probabilities of the weakly occupied levels come out wrong in the BCS treatment by factors of 100 or more, and they become even worse if we project the correct particle number from this solution. Fortunately, the case of an extremely weak pairing interaction is not the one we are faced with in nuclear physics. The distributions are very smooth now, and no shell effects are discernible. Figures 12 and 13 again show the accuracy of BCS treatment and of the BCS calculation with subsequent projection. Evidently, the statements we have made for the case of the spherical nucleus remain correct also for the deformed nucleus. For the case of a strong pairing-type force the projected solution becomes a very good approximation.

Figures 14 and 15 are supposed to show the accuracy of the saddle-point method for the case of individual integrals R_n^N. We define the quantity $\zeta_1^1 (v)$ as
\[Q_1^1 (v) = \left[\frac{R_1^1 (v) - R_0^0}{R_0^0} \right] \times 100, \quad (6.8) \]

The quantities \(Q_1^1 (v) \) are evaluated as a function of the set of \(v_v^2 \) that is obtained from a solution of the BCS equations. Hence, if the saddle-point method were correct, the quantities \(Q_1^1 (v) \) should be zero according to what has been said in Sec. V.

The \(Q_1^1 (v) \) can also be written

\[Q_1^1 (v) = \frac{(e_\nu^2 - v_{\text{BCS}}^2)}{(v_{\text{BCS}}^2)} \times 100, \quad (6.9) \]

i.e., the differences between the occupation probabilities \(v_{\text{BCS}}^2 \) of the BCS theory and the occupation probabilities \(e_\nu^2 \) obtained by subsequent projection give a direct measure of the accuracy of the saddle-point method. For physical pairing interactions, the true occupation probabilities \(e_\nu^2 \) usually lie between the quantities \(e_{\nu v}^2 \) and \(v_{\nu v}^2 \). This means that for these cases the BCS theory is more reliable than one would expect from considering the accuracy of the saddle-point method.

In the case of odd nuclei, we obtain different nuclear states by putting the unpaired nucleon into different orbitals. The state of lowest energy is the ground-state of the odd nucleus; the others represent excited states. These states are calculated in different approximations in the literature. If we do not conserve the particle number in the pairing model, we write the wave function \(\phi_v \) of an odd nucleus with the unpaired nucleon being in state \(\nu \) as

\[\phi_v = a_v^+ \int_{\nu}^{\nu} (u_v + v_v a_{\nu}^+ a_{\nu}^) \phi_0, \quad (6.10) \]

and we obtain the excitation energy \(E_v \) from
where E_0 is the ground-state energy of the odd nucleus. In crudest approximation (approximation Q in Fig. 16), the variational equations corresponding to an ordinary BCS state

$$E_v = (\phi_v | H | \phi_v) = E_0,$$

(6-11)

are solved, and the expectation value of the number operator is kept equal to the required odd-particle number. The set of u_v and v_v thus obtained is used to calculate E_v according to (6-11). A better approximation (approximation B in Fig. 16) consists in solving the Euler-Lagrange equations corresponding to the trial state (6-10). One can hope to improve this latter approximation by projecting from solution B the correct eigenstate of the number operator (approximation BF in Fig. 16).

In Fig. 16, results of these three methods are compared with the result of the theory with conserved particle number (method C).

The cases of 13, 15, 17, 19, and 21 nucleons in 25 Nilsson orbitals are considered. Again, a δ force is used as pairing interaction. The orbitals correspond to the actinide region and the nuclei successively to Ac, Pa, Np, Am, Ek. Having neglected the neutron-proton interaction we do not put any emphasis upon obtaining agreement with experiment. Nevertheless, the ground-state spins come out correctly. We are interested only in the comparison of results of the different methods.

Approximation Q is poor in almost all cases. The excitation energies differ usually by more than 100% from the values obtained with the theory with conserved particle number.
The blocking calculations (B) give relatively better results. However, there are still errors up to more than 100 keV for excitation energies ranging from a few keV up to 700 keV, and neighboring levels sometimes come out in the wrong order.

Subsequent projection (BP) improves the blocking calculations for the case of Am, Pa, and Np, where the pairing interaction is relatively strong compared to the average level distance. In the spectrum of Am this procedure brings the levels 2 and 6 into wrong order. In the case of Bk the solution obtained by subsequent projection is definitely of poorer accuracy than the simple blocking calculation. Thus, we find again that subsequent projection does not improve the BCS results if the pairing interaction is relatively weak.

Generally speaking, the errors due to nonconservation of particle number are considerably larger for the excitation energies than for the occupation probabilities. Furthermore, these errors are usually of different magnitude for neighboring even-even and odd-even nuclei. This question is studied in detail in a forthcoming paper by Nilsson. 14

Last but not least, it should be mentioned that the total energy E as obtained from the BCS theory, from the BCS theory with subsequent projection, or finally from our formulation with rigorous conservation of particle number differ usually only by fractions of a percent. The reason is that the main contributions to the total energy originate from strongly occupied levels. As we have seen before the occupation probabilities for strongly occupied levels are by far more accurate than the ones corresponding to weakly occupied levels.
A. Discussion of the Solution of the Variational Equations

We can write the trial state in the form

\[\Psi = C \left[\prod_{\nu} u_{\nu} \right] \phi \frac{\alpha}{\sqrt{n+1}} \int_{\nu} \left(1 + \frac{V_{\nu}}{u_{\nu}} (a_{\nu}^+ a_{\nu}^+) \right) \phi_0 = C \phi \frac{\alpha}{\sqrt{n+1}} \int_{\nu} \left(1 + \frac{V_{\nu}}{u_{\nu}} (a_{\nu}^+ a_{\nu}^+) \right) \phi_0. \]

(A-1)

From this follows that only the quotient \(\frac{V_{\nu}}{u_{\nu}} \) will be defined by the variational equations. We may, of course, retain the redundant parameters and impose as many conditions as there are superfluous parameters. We choose the conditions

\[u_{\nu}^* u_{\nu} + v_{\nu}^* v_{\nu} = 1. \]

(A-2)

The normalization coefficient \(C \) is given by

\[(\Psi | \Psi) = \frac{1}{(-1)^{l/2}}. \]

(A-3)

The numerator and denominator on the right side of Eq. (A-1) are sums of terms each containing a product of \(n_0 \) factors \(\frac{V_{\nu}}{u_{\nu}} \). Thus, if we multiply all quotients \(\frac{V_{\nu}}{u_{\nu}} \) with a common factor \(X \), this factor cancels in (A-1). This means that even with the restrictive conditions (A-2), the set of \(u_{\nu}, v_{\nu} \) is determined only up to the following transformation between equivalent sets of \(u_{\nu}, v_{\nu} \):
\[\tilde{v}_v = \frac{x \cdot v}{(u_v^2 + x^2 v_v^2)^{\frac{1}{2}}} \quad \tilde{u}_v = \frac{u}{(u_v^2 + x^2 v_v^2)^{\frac{1}{2}}} \quad . \]

Physically meaningful quantities like the probabilities of occupation \(e_v^2 \) or the total energy \(E \) are invariant under the transformation (A-4). This ambiguity of the solutions does not exist in the HGS theory. Next, we wish to show that we may assume the \(v_v \) and \(u_v \) to be real without loss of generality. In the case of \(\alpha \) and \(\beta \), the total energy \(E \) is given by

\[E = 2 \sum_v e_v \nu^*_v \nu_v \frac{R_1^2(v)}{R_0^2(v)} + 4 \sum_{v,v'} \nu^*_v \nu_{v'} \nu^*_v \nu_v \frac{R_1^2(v)}{R_0^2(v)} \]

\[+ 4 \sum_{v_1 v_2} (\nu^*_v \nu_{v_1} \nu_{v_2} + \nu^*_v \nu_{v_2} \nu_{v_1}) \nu^*_v \nu_{v_1} \nu_{v_2} \nu_v \frac{R_2^2(v_1 v_2)}{R_0^2} \]

\[+ 4 \sum_{v_1 v_2} \nu^*_v \nu_{v_1} \nu_{v_2} \nu_v \nu^*_v \nu_{v_1} \nu_{v_2} \nu_v \frac{R_1^2(v_1 v_2)}{R_0^2} \]

We can write the \(u_v \) and \(v_v \) as

\[v_v = |v_v| \cdot \exp \left(\overline{\arg v_v} \right) \quad u_v = |u_v| \cdot \exp \left(\overline{\arg u_v} \right) \]

From (A-1) we infer that we may put

\[\overline{\arg u_v} = 0 \]

without loss of generality.
We choose the representation so that the matrix elements of the nucleon-nucleon interaction are all real. Then we have the symmetry condition

\[V_{v_1-v_2'-v_2} = V_{v_2-v_2'v_1-v_1} \] \hspace{1cm} (A.8)

and with the aid of (A-6) and (A-7), we may write the energy as

\[E = 2 \sum_v \epsilon_v |v_v|^2 \frac{R_1^1(v)}{R_0^0} + 4 \sum_{v_1-v_2} |v_{v_1}|^2 \frac{R_1^1(v)}{R_0^0} \]

\[+ 4 \sum_{v_1-v_2} (v_{v_1} v_{v_2}) |v_{v_1}|^2 |v_{v_2}|^2 \frac{R_2^2(v_{v_2})}{R_0^0} \]

\[+ 8 \sum_{v_1<v_2} |v_{v_1}| |u_{v_2}| |v_{v_1}| |v_{v_2}| \cos[\arg v_{v_2} - \arg v_{v_1}] \frac{R_2^2(v_{v_2})}{R_0^0} \] \hspace{1cm} (A.9)

The \(<\) sign at the last sum means that any couple of quantum states \((v_1, v_2)\) should appear only once, not also in the reversed order \((v_2, v_1)\). The residuum integrals are all independent of the phases.

Variation with regard to the quantities \(|u_v|\) and \(|v_v|\) leads to the set of equations that we have derived in Sec. 2, the only difference being that all pairing-type matrix elements are multiplied by \(\cos[\arg v_{v_2} - \arg v_{v_1}]\). Variation with respect to the phases leads to the following equations:

\[\sum_{v_2} v_{v-v_1} v_{v_2-v_2} [u_{v_2}] |v_{v_2}| [\sin[\arg v_{v_2} - \arg v_{v_1}]] R_1^1(v_{v_2}) \sqrt{R_0^0} = 0 \] \hspace{1cm} (A.10)
Equation (A-10) has the trivial solution

\[\arg v_v = \text{const.} \] \hspace{1cm} (A-11)

Since a common-phase factor of all parameters \(v_v \) can be immediately replaced by \(-1\), (A-11) corresponds to a solution with real, positive coefficients \(v_v \) and \(u_v \), the one considered in Sec. II.

We assert that this solution corresponds to the lowest energy \(E_1 \) if the pairing-type matrix elements are all negative. This is the case for an attractive interaction and the phase convention defined in (2.1'), and (2.1''). Proof: Suppose we have found a solution of the Euler Lagrange equations (A-10) and (2.11)\((2.11) \) being modified by the phases in the above-mentioned way with a set of phases \(\arg v_v \neq \text{const} \), and \(E_0 \) being the energy corresponding to this solution. Then we can certainly find a lower energy \(E_1 < E_0 \) by replacing all the cosine factors by 1. Since the set of \(|u_v|, |v_v| \) is consistent only with the set of nonconstant phases, \(E_1 \) does not correspond to a solution of the variational problem. But we can now determine the minimum of \(E_1 \) by variation of \(|v_v| \) and \(|u_v| \) keeping

\[|u_v|^2 + |v_v|^2 = 1 \] \hspace{1cm} (A-12)

This variation leads to the set of equations (2.11) and to a total energy \(E_2 \) that is lower or equal to \(E_1 \),

\[E_2 < E_1 < E_0 \] \hspace{1cm} (A-13)

if the second variation of \(\langle \psi | H | \psi \rangle \) is positive in the neighborhood of our solution. This must be the case for any physically reasonable solution.
B. Some Properties of the Residuum Integrals

From definition (2.8) of the residuum integral we can easily infer the following recursion relations:

\[R_{n+1}^{N+1}(v_1, \ldots, v_n) v_\nu^2 + R_n^{N+1}(v_1, \ldots, v_n) u_\nu^2 = R_n^N(v_1, \ldots, v_n) \] \hspace{1cm} (B-1)

\[R_{n+1}^N(v_1, \ldots, v_N) R_n^{N+1}(v_1, \ldots, v_N, v') = R_n^N(v_1, \ldots, v_N) R_{n+1}^{N+1}(v_1, \ldots, v_N, v') \]

\[= \sqrt{v} [R_n^{N+1}(v_1, \ldots, v_N) R_n^{N+2}(v_1, \ldots, v_N, v') - R_n^{N+1}(v_1, \ldots, v_N, v') R_{n+1}^{N+1}(v_1, \ldots, v_N, v')] \] \hspace{1cm} (B-2)

Relation (B-1) is useful for numerical computation of the residuum integrals.

In the limit of the saddle-point method (with saddle point at \(z_0 = 1 \)) relation (B-1) becomes the normalization condition

\[u_\nu^2 + v_\nu^2 = 1 \]

of the usual superconductivity theory. Furthermore, we see from (B.1) that all the residuum integrals will have values between 0 and +1 if the \(u_\nu \) and \(v_\nu \) fulfill condition (2.5).

In the derivation of the Euler-Lagrange equations, we have to evaluate variational derivatives of the residuum integrals

\[\frac{\delta R_n^N(v_1, \ldots, v_N)}{\delta v_\nu} \]

\[= \left[\frac{\partial}{\partial v_\nu} - \frac{v_\nu}{u_\nu} \frac{\delta}{\delta u_\nu} \right] R_n^N(v_1, \ldots, v_N) \]
From definition (2.8) of the resolvent integral we can immediately see that the following relation holds:

\[
\frac{8R_N^{N+1}(v_1, \ldots, v_N)}{v} = 2v \left[R_{n+1}^{N+1}(v_1, \ldots, v_N, v) - R_N^{N+1}(v_1, \ldots, v_N) \right] \quad (B-3)
\]

From (B-3) it becomes apparent how the term \(A \) [see (2.16)] comes to exist.

C. Use of the Saddle-Point Method

Integrals of the type

\[
I = \int_A^B e^{tf(z)} \cdot x(z) \, dz \quad (C-1)
\]

where \(t \) is real and positive and \(f(z), x(z) \) are analytic on the path of integration, can be approximated by the method of steepest descent (see for instance \(2^5 \)). If \(f(z) \) exhibits a saddle point \(z_0 \) somewhere between \(A \) and \(B \), the path of integration should be chosen so as to cross the saddle point on a line of steepest descent. In this case the integral \(I \) can be approximated by (see \(2^5 \))

\[
I \approx \left[e^{tf(z_0)} x(z_0) \sqrt{(2\pi)^2} \cdot e^{i\alpha} \right] / |t f''(z_0)|^{1/2} \quad (C-2)
\]

In (C-2) \(\alpha \) is the angle between the positive real axis and the direction of the path in \(z_0 \). If \(f''(z_0) \neq 0 \), \(f(z) \) can be expanded near \(z_0 \) in the form

\[
f(z) = f(z_0) + \frac{1}{2} (z-z_0)^2 f''(z_0) + \ldots \quad (C-3)
\]
the direction of the path in \(z_0 \) has to be such that \((z-z_0)^2 f''(z_0)\) is real and negative. \(^{25}\)

Equation (C-2) represents the first term of an asymptotic expansion (see reference 25, p. 502). The higher-order terms of this expansion are in general difficult to obtain. Therefore, it is difficult to obtain a reliable estimate of the accuracy of formula (C-2). The error will certainly be small, if the dominant contributions to the integral come from the immediate vicinity of the saddle point.

In the case of our residuum integrals the saddle point is at \(z_0 = 1 \) and we integrate over the unit circle. The quantities \(f(z), x(z) \) are defined in (5.2) and (5.3). Let \(\psi \) be the angle where the exponential \(e^{f(z)} \) has dropped to \(\frac{1}{e} \) of its value at \(z_0 = 1 \). The equation for \(\psi \) is given by

\[
\psi = \frac{\sqrt{2}}{|f''(z_0)|^{\frac{1}{2}}} = \frac{\sqrt{2}}{|n_0 - \sum v_v^4|^{\frac{1}{2}}} = \frac{\sqrt{2}}{|\frac{\partial}{\partial v} u_v v_v^2|^{\frac{1}{2}}}. \tag{C-4}
\]

For the saddle-point method to be applicable, \(2\psi \) should be small compared to the total path length \(2\pi \), or

\[
\left(\frac{\psi u_v v_v^2}{\pi} \right)^{\frac{1}{2}} \gg \frac{\sqrt{2}}{\pi} = \frac{1}{2}. \tag{C-5}
\]

The product \(u_v v_v \) is different from zero only if \(v_v \) as well as \(u_v \) is substantially different from 0, i.e., only in the region II, where \(v_v^2 \) drops from \(-1\) to almost 0 (see Fig. 17). Bayman \(^9\) uses the approximation

\[
\sum u_v^2 v_v^2 = \frac{1}{4} \Omega. \tag{C-6}
\]
where Ω is the number of states ν in region II. With this we obtain the
criterion

$$\sqrt{\Omega} \gg 1.$$ \hfill (C.7)

The larger Ω is, the more reliable the saddle-point method should be. Large Ω
is favored by strong pairing interactions. On the other hand the BCS state conserves
particle number in the case of a sharp Fermi surface. Thus it is to be expected that
in the limit of very small Ω, the errors connected with the nonconservation of
particle number should be small too,9 whereas the saddle-point method can be substantially
wrong in this case. This is borne out by our numerical results (see Sec. VI).
ACKNOWLEDGMENTS

We thank K. Poggenburg for carrying out the calculations that correspond to Fig. 16. One of the authors (K.D.) wishes to express his gratitude to the Bundesministerium für wissenschaftliche Forschung for a fellowship and to the Fulbright Commission for a travel grant.
FOOTNOTES AND REFERENCES

Work done under the auspices of the U.S. Atomic Energy Commission.

21. If not mentioned differently the indices are always supposed to run only over positive values of the magnetic quantum number.

FIGURE CAPTIONS

Figure 1. Spectrum of single-particle energies for spherical nucleus.

Figure 2. Spectrum of single-particle energies for deformed nucleus \((\text{Nilsson}^*_{4.2}) \).

Figure 3. Level occupation \(p_k \) as a function of the (self) energies \(h_{km} \)
for two pairs \((n_0 = 2) \) and different interaction strength.

\(\Delta \) — theory with conserved-particle number

\(0 \) —— BCS theory

Figure 4. Level occupation \(p_k \) as a function of the (self) energies \(h_{km} \)
for six pairs \((n_0 = 6) \) and different interaction strength.

Figure 5. Level occupation \(p_k \) as a function of the (self) energies \(h_{km} \)
for ten pairs \((n_0 = 10) \).

Figure 6. Occupation probability for the \(m = 1/2 \) magnetic substates for
strength constant \(W = -1.0 \) and for different pair numbers.

\(\Delta \) — theory with conserved particle number

\(0 \) —— BCS theory

Figure 7. Accuracy of occupation probabilities in methods without conservation
of particles for different pair numbers and strength constant \(W = -0.9 \).

\(\Delta \) —— BCS method with subsequent projection

\(0 \) —— BCS method

Figure 8. Accuracy of occupation probabilities in methods without conservation
of particles for different pair numbers and strength constant \(W = -0.45 \).

Figure 9. Accuracy of occupation probabilities in methods without conservation
of particles for different pair numbers and strength constant \(W = -0.2 \).
Figure 10. Occupation probabilities for deformed nucleus ($\eta_{\text{Nilsson}} \approx 4.2$),
pair number $n_0 = 3$; strength constant $W = -1.0$.

- Δ --- theory with conserved particle number
- \circ --- BCS theory

Figure 11. Occupation probabilities for deformed nucleus ($\eta_{\text{Nilsson}} \approx 4.2$),
pair number $n_0 = 6$ and different strength constants.

Figure 12. Accuracy of occupation probabilities in methods without conservation
of particles for deformed nucleus ($\eta_{\text{Nilsson}} \approx 4.2$), strength constant
$W = -0.9$.

Figure 13. Accuracy of occupation probabilities in methods without conservation
of particles for deformed nucleus ($\eta_{\text{Nilsson}} \approx 4.2$), strength constant
$W = -0.45$.

Figure 14. Accuracy of the saddle-point method for different pair numbers and
spherical nucleus-strength constant $W = -0.9$.

Figure 15. Accuracy of the saddle-point method for different pair numbers and
spherical nucleus-strength constant $W = -0.45$.

Figure 16. Excitation energies of odd nuclei calculated with different
approximations (see text).

The level numbers signify the following Nilsson orbitals:

- $3/2$ 651 = 1;
- $5/2$ 642 = 2;
- $7/2$ 635 = 3;
- $4/2$ 550 = 4;
- $3/2$ 521 = 5;
- $5/2$ 523 = 6;
- $7/2$ 514 = 7.

Figure 17. Occupation probabilities as a function of the energy levels.
Fig. 1
Fig. 2
Fig. 3

\[h_{km} \text{ (MeV)} \]

\[w = -0.45 \]

\[w = -0.9 \]

\(P_{k, BCS} \)
Fig. 4

h_{km} (MeV)

\(w = -1.0 \quad w = -0.45 \)
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 14
Fig. 15
Fig. 16
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.