Lawrence Berkeley National Laboratory
Recent Work

Title
MICROCANONICAL SIMULATION OF NUCLEAR DISASSEMBLY

Permalink
https://escholarship.org/uc/item/1g88428c

Authors
Koonin, S.E.
Randrup, J.

Publication Date
1986-02-01
Presented at the Fourth Winter Workshop on Nuclear Dynamics, Copper Mountain, CO, February 23-28, 1986

MICROCANONICAL SIMULATION OF NUCLEAR DISASSEMBLY

S.E. Koonin and J. Randrup

February 1986

For Reference

Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Microcanonical Simulation of Nuclear Disassembly

Steven E. Koonin
W.K. Kellogg Radiation Laboratory, California Institute of Technology
Pasadena, California 91125

and

Jørgen Randrup
Nuclear Science Division, Lawrence Berkeley Laboratory
Berkeley, California 94720

Abstract:

We formulate a microcanonical simulation of the disassembly of a finite nuclear system into individually excitable and mutually interacting nuclear fragments. Illustrative results are presented.

There is considerable interest in the disassembly of the hot nuclear matter produced in high-energy nuclear collisions. A particular stimulus has been the prospect of observing a nuclear liquid-gas phase transition. On rather general grounds, such a transition is expected to occur in nuclear matter at sub-saturation densities with temperatures of 10-20 MeV. However, virtually all previous discussions of this phenomenon have been based on thermodynamical considerations valid for infinite, non-interacting systems and the qualitative validity of the results has not been ascertained for the relatively small, finite, interacting systems of practical relevance. Nor is it clear how the occurrence of the phase transition will manifest itself in the asymptotically observed fragment distribution.

To progress in these matters, we have formulated a microcanonical simulation of the disassembly process, including interfragment interactions. It is a natural refinement of the grand canonical model first presented in [1] and further developed in [2] and is also an exact version of the model developed in [3] for the generation of complete multifragment events in medium-energy collisions. In this contribution, we give in brief description of the key ingredients in the model and its numerical implementation. A more detailed presentation, and a discussion of calculated results is currently being prepared for publication [4]; that presentation also contains a discussion of the relationship of our work to those of Gross et al. [5] and Bondorf et al. [6] which are also based on microscopical simulation.

We consider a system of interacting nuclear fragments confined within some volume Ω. A given state F of the system is specified by

$$F : \{N_F; \{A_n, r_n, p_n, \epsilon_n\}, n = 1, ..., N_F\}$$

(1)

Here N_F is the number of fragments present, and $A_n, r_n, p_n, \epsilon_n$ are their mass numbers, positions, momenta, and intrinsic excitation energies. The total number of nucleons present in F is

$$A_F = \sum_{n=1}^{N_F} A_n$$

(2)

and we take the corresponding total energy to be

$$E_F = \sum_{n=1}^{N_F} \left[\frac{p_n^2}{2m A_n} - B_n + \epsilon_n + \frac{1}{2} \sum_{n' \neq n} V_{nn'} \right].$$

(3)
Here, the first term is the kinetic energy associated with translational motion, the inertial mass being taken as $m A_n$, where m is the mass of the free nucleon. The binding energy of the ground state of fragment n may be taken as

$$B_n = a v A_n - a_s A_n^{2/3} - a_G Z_n^2 / A_n^{1/3}$$

(4)

where $Z_n \approx A_n/2$. Furthermore, the intrinsic excitation is denoted by ϵ_n. Finally, $V_{nn'}$ is the interaction energy between the fragments n and n'. This quantity generally includes both the electrostatic (Coulomb) and the nuclear (proximity) energies. A convenient form is

$$V_{12} = e^2 \frac{Z_1 Z_2}{r_{12}} + 4\pi \gamma R b \Phi(\frac{s_{12}}{b})$$

(5)

where r_{12} is the distance between the fragment centers and $s_{12} = r_{12} - C_1 - C_2$ is the corresponding surface separation.\[7]

In the microcanonical simulation, we consider as equally probable all states F that are accessible to the system when due account is taken of conservation laws. In our present studies, we impose overall conservation of nucleon number and energy, but ignore other conservation laws, such as linear and angular momentum. The relaxation of these latter constraints are not expected to be of importance for our present purposes, but our calculational method can readily be modified to accommodate these features as well.

If A is the total nucleon number of the system and E is its total energy, the associated microcanonical density of states is

$$\rho(\Omega, A, E) = \sum_F \delta(A_F - A) \delta(E_F - E)$$

(6)

$$= \sum_{N_F} \frac{1}{N_F!} \prod_{n=1}^{N_F} \left(\sum_{A_n} \int \frac{d\epsilon_n}{\hbar^3} \int \rho_n(\epsilon_{n}) d\epsilon_{n} \right) \delta(A_F - A) \delta(E_F - E)$$

where ρ_n is the intrinsic level density. The integrals over the N_F fragment momenta can be carried out analytically and the expression for ρ can be reduced to

$$\rho(\Omega, A, E) = \sum_N \prod_{n=1}^{N} \int \frac{d\epsilon_n}{\Omega} \int d\epsilon_n w.$$

(7)

Here the statistical weight of a particular configuration is given by

$$w = \frac{1}{N!} \frac{1}{\Gamma(\frac{3N}{2})} \prod_{n=1}^{N} \left[\Omega \left(\frac{2\pi m A_n}{h^2} \right)^{\frac{3}{2}} \rho_n(\epsilon_{n}) \right] \delta \left(\sum_{n=1}^{N} A_n - A \right) K^{\frac{3N}{2} - 1},$$

(8)

where K is the kinetic energy,

$$K = E - \sum_{n=1}^{N} [-B_n + \epsilon_n + \frac{1}{2} \sum_{n' \neq n} V_{nn'}]$$

(9)

The above form of the density of states ρ is suitable for a Monte Carlo treatment, in which expectation values of observables are calculated as averages over a statistically determined sample of configurations. To select this sample, we employ the Metropolis method, in which a sequence of configurations is generated by a markovian process in configuration space. To generate the next sample member of this sequence, a candidate configuration is first generated from the current one by one of several possible random "moves": change of position or excitation energy of a fragment, exchange of
This figure displays the mean fragment mass number A as a function of the temperature τ in a microcanonical system containing a total of 40 nucleons. These nucleons may coalesce into composite fragments without any internal excitation, and the mean nucleon density is equal to $0.08/\text{fm}^3$, i.e., half the nuclear matter saturation value. The labeled curves correspond to the following five schematic scenarios:

(a) The fragments are totally independent (and thus may overlap) and no Coulomb forces are acting (neither within nor between the fragments).

(b) The fragments are still non-interacting, but the Coulomb energy is included in the fragment binding.

(c) No Coulomb forces are acting at all, but hard-sphere potentials are imposed between the fragment pairs.

(d) In addition to the hard-sphere potential, both intra- and inter-fragment Coulomb forces are included.

(e) In addition to the hard-sphere potential, the intra-fragment Coulomb forces are included (i.e., $a_C > 0$ in (4)), but the inter-fragment Coulomb forces are not.

In terms of the state density, the entropy of the system is $S = \ln \rho(\Omega, A, E)$. While we cannot calculate S by our method, we can find many other quantities of interest. In particular, the basic thermodynamic relation $dE = \tau dS + \mu dA - P d\Omega$ allows the inverse temperature $\beta = 1/\tau$, the chemical potential μ, and the pressure P to be written as

$$\beta = \frac{\partial S}{\partial E}, \quad \mu = -\tau \frac{\partial S}{\partial A}, \quad P = \tau \frac{\partial S}{\partial \Omega}$$ \hspace{1cm} (10)$$

Each of these derivatives leads to the expectation value of some "observable" over the sample of configurations described above. For example, from (7-9), we find $\beta = \langle N/2 - 1 \rangle / K$.

The simplest non-trivial situation occurs when the fragments are assumed to be uncharged, non-interacting and cold. The character of the ensemble is then determined by the balance between the...
fragment kinetic energies (which drive the system towards many, hence small, fragments) and the fragment surface energies (which drive the system towards large, and hence few, fragments).

To illustrate the characteristic features of the multifragmentation process in this simplest situation, we consider the fragments distribution as a function of the imposed temperature, for a specified value of the nucleon density. The result is shown by curve a in the figure. As the temperature is decreased, the composition changes from many small fragments to a few large ones. If the Coulomb energy is included in the fragment binding energy, very little change occurs at higher temperature, while the mean fragment size drops somewhat at lower temperature, as shown by curve b; that is because the total binding is increased by partitioning a given amount of matter into small fragments.

Several refinements of the above simplest scenario can be considered. The first one is to take approximate account of the high nuclear incompressibility by imposing a high penalty for configurations with overlapping fragments, corresponding to considering the fragments to be hard spheres. The effect of this (excluded volume) refinement is shown by curve c. At the same temperature, the system prefers larger fragments. This is because the volume available to a fragment is effectively smaller (and in general the fragments grow larger when the system is compressed).

Next we consider the effects of including the electrostatic energy. The Coulomb forces between the constituent nucleons have two effects: One is to reduce the binding energy of each individual fragment, and the other is to generate a repulsive force between fragment pairs. A consistent treatment must incorporate both of these effects. The result is given by curve d. As would be expected, only little change results, and towards slightly smaller fragments. The effect of including only the self energy, but not the interaction, is shown by curve e. While no effect occurs at high temperature, where the multiplicity is high, there is an enhanced preference for higher multiplicity at the lower temperatures, as would be expected.

The presented model establishes a well-founded formal basis for quantitative studies of a variety of aspects relating to the properties of hot and dilute nuclear matter. In particular, it is expected to be of value in ascertaining the quantitative applicability of thermodynamical methods and certain approximate microcanonical models (such as that of [3]).

This work was supported by the National Science Foundation Grants PHY85-05682 and PHY82-07732, and by the Director, Office of High Energy and Nuclear Physics of the Department of Energy under contract DE-AC03-76SF00098.

References

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.