Title
A it - B EXCHANGE DEGENERATE MODEL FOR V| & ++ PRODUCTION

Permalink
https://escholarship.org/uc/item/1gg6z1xw

Authors
Abrams, G.S.
Maor, U.

Publication Date
1970-05-28
A π-ρ EXCHANGE DEGENERATE MODEL FOR $\nu^0\Delta^+$ PRODUCTION

G. S. Abrams and U. Maor

May 28, 1970

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
A π-B EXCHANGE DEGENERATE MODEL FOR V^O_DΔ++ PRODUCTION

G. S. Abrams and U. Maor

Lawrence Radiation Laboratory and Department of Physics
University of California, Berkeley, California 94720

May 28, 1970

The forward differential cross section of pΔ production is shown to be reproduced quantitatively by an evasive Reggeized one pion exchange model which smoothly reduces to the Born term at the pion pole. Assuming exact π-B exchange degeneracy leads to predictions for αΔ production which are in agreement with the experimental s and t dependences. Similar agreement is found for K*Δ production.

The t-channel one-pion exchange (OPE) appears as the dominant forward production mechanism, at medium energies, in many two-body reactions. There is, however, a considerable controversy as to the detailed features of this process. The proximity of the pion pole to the physical t region suggests the importance of the Born term. Nevertheless, it is clear that the experimental momentum transfer distributions in the relevant reactions force rather severe modifications of the Born amplitude. Such modifications have been suggested (and applied) taking into account off mass shell corrections, absorption, and a variety of Regge-pole and cut models.

In this letter we offer evidence that the OPE contribution to the reaction

\[\pi^+ p \to \rho^0 \Delta^{++} \]

is consistent with the exchanged pion lying on an evasive (M = 0) Regge-trajectory with a slope near the "universal" value of 1 (GeV/c)^{-2}. This
result is suggested by a recent high statistics experiment6 at 3.7 GeV/c which provides differential cross sections and spin density matrix elements to a $|t|$ value as large as 1.5 (GeV/c)2. A similar analysis of the reaction

\[\pi^+ p \to \omega \Delta^{++} \quad (2) \]

then provides a stringent test of π-ρ exchange degeneracy which is well satisfied by the data.6 Our results are readily extended to the reaction

\[K^+ p \to K^* \Delta^{++} \quad (3) \]

but cannot properly describe either charged pion photoproduction or np charge exchange scattering.7 However, our approach when coupled to models such as the one suggested by Jackson and Quigg5 may provide an overall description which is quite satisfactory.

It has been noted1,3 that the differential cross section of reaction (1) exhibits shrinkage of the forward peak with increasing primary energy. This behavior suggests a simple Regge-pole parametrization with a steep evasive π-trajectory.3 However, it has been argued1 that the shrinkage may originate kinematically from the large widths of the measured ρ and Δ resonances. The availability of the new 3.7 GeV/c data6 makes it possible to examine the structure of the unnatural parity t-channel exchanges away from the very forward direction. The crucial observation is that the zero seen in $\rho_{00} \frac{d\sigma}{dt}$ at $t' = t - t_{\text{min}} = -0.75$ (GeV/c)2 enables us to discriminate against models that are quite satisfactory at lower t' values.

We limit our study to $\sigma^- = \rho_{00} \frac{d\sigma}{dt}$ to which only unnatural parity ($P = (-1)^{J+1}$) exchanges can contribute. The Born OPE cross section for the process $a + b \to c + d$ is calculated6 to be
\[\sigma_0 = \frac{2\pi}{3s^2} \frac{G^2}{2} \left(\frac{1}{t - m^2_\pi} \right) \frac{a_2 b_2}{m^2_\pi} \left[(m_b + m_d)^2 - t \right] \]

(4)

where

\[q^2 = [s - (m_a - m_b)^2][s - (m_a + m_b)^2]/4s \]
\[a_c^2 = [t - (m_a - m_c)^2][t - (m_a + m_c)^2]/4m_c^2 \]
\[b_d^2 = [t - (m_b - m_d)^2][t - (m_b + m_d)^2]/4m_d^2 \]

The product of the coupling constants \(G^2 = \frac{e^2}{3\pi}\rho/4\pi \cdot \frac{e^2}{F_{\rho\Delta}/4\pi} \approx 0.9 \) if widths of 120 MeV are assumed for both the \(\rho \) and \(\Delta \) resonances. We Reggeize this expression by replacing the pion propagator

\[\frac{1}{t - m^2_\pi} \rightarrow \pi\alpha'(0) \frac{1 + e^{-i\pi\alpha}}{2\sin \pi\alpha} \frac{(1 + 2\alpha)(1 + \frac{2\alpha}{3})\Gamma(\alpha + \frac{1}{2})}{\Gamma(\frac{1}{2})\Gamma(\alpha + 1)} \frac{(s - u)^{\alpha}}{2s_o^{\alpha}} \]

(5)

where \(\alpha = \alpha'(0)(t - m^2_\pi) \). The model thus consists of an evasive pion with kinematical factors determined by the behavior of the Born amplitude at thresholds and pseudothresholds rather than the factors suggested by the crossing matrix. The reduced residue is smoothly continued from the coupling constants calculated at the pion pole. The only arbitrariness in the functional dependence in Eq. (5) is introduced when we suppress the poles of \(\Gamma(\alpha + \frac{1}{2}) \). We choose to multiply by the lowest order polynomial in \(\alpha \) which has the required zeroes in the measured \(t \) region. Alternatively, one may employ a Veneziano-type amplitude where \(\Gamma(\alpha + \frac{1}{2}) \) is eliminated altogether.10

We have performed a fit to the data for reaction (1) at 3.7 GeV/c, minimizing the \(\chi^2 \) as a function of \(\alpha'(0), s_o \) and \(G^2 \). The curve shown in Fig. 1a is the best fit result with a \(\chi^2 \) of 20.1 for 22 degrees of freedom. The best fit parameters are
\[\alpha'(0) = 1.16 \pm 0.03 \text{ (GeV/c)}^{-2} \]
\[2s_0 = 1.08 \pm 0.11 \text{ GeV}^2 \]
\[\alpha^2 = 0.46 \pm 0.05 \]

The zero observed near \(|t'| = 0.75 \text{ (GeV/c)}^2\) is interpreted as a nonsense wrong signature zero in the OPE Regge amplitude corresponding to \(\alpha_\pi = -1\).

The model is seen to reproduce quantitatively both this zero and the detailed shape of \(\sigma_0^+\) over a large range in \(t\). In particular the apparent change in slope near \(|t'| = 0.2 \text{ (GeV/c)}^2\) is well reproduced by our calculation. The fitted \(\sigma^2\) value corresponds to \(\rho\) and \(\Delta\) widths of about 90 MeV each, which may be regarded as satisfactory in view of the simplicity and small number of parameters introduced in this model.

Having fixed the parameters from the fit at 3.7 GeV/c, we compare in Fig. 2 the model predictions with the results of other experiments at different energies.\(^{11-12}\) We wish to stress that we have not attempted to fit the overall data as different experimental procedures have been applied both to cross-section normalization and to background estimation. In our opinion systematic discrepancies as large as 20\% may be present in comparing two different experiments. It may be seen, however, that our calculation provides quantitative agreement with both the s and the t dependence of the data.

We next consider the unnatural parity exchange contribution to reaction (2) for which the nearest t-channel singularity is the B meson with \(J^{PG} = 1^{++}\). From the absence of strongly coupled resonances in the s-channel \(K^+p\) system, one can argue that reaction (3) proceeds via the exchange of exchange degenerate pairs such as \(\pi+B\). Assuming then that \(\sigma_B = \sigma_\pi = \alpha\) and that the residues are equal (strong exchange degeneracy), one finds that
\frac{\sigma_0^- (p\Delta)}{\sigma_0^- (a\Delta)} = A \cot^2 \frac{\pi \alpha}{2} \tag{6}

where \(A = 1 \) in the limit of exact SU(3) symmetry (assuming that \(\Gamma (B \to \varphi \pi) = 0 \), as expected for the ideal nonet).

In Fig. 3a we show the data and the best fit curve from an independent fit of \(\sigma_0^- (p\Delta)/\sigma_0^- (a\Delta) \) as a function of \(t' \). The parameters at the minimum value of \(\chi^2 \) (14 for 19 degrees of freedom) are \(A = 0.41 \pm 0.08 \) and \(\alpha'(0) = (1.12 \pm 0.08) \) (GeV/c)^{-2} when a linear trajectory, \(\alpha = \alpha'(0)(t - \frac{E}{E})^2 \), is assumed. This fitted value of \(\alpha' \) agrees well with the value we have obtained using Eq. (4) and the \(p\Delta \) data alone. The experimental distribution is well reproduced over a wide range of \(t \) values, but the significant dip in \(\sigma_0^- (a\Delta) \) (see Fig. 3b) at \(|t'| = 0.17 \) (GeV/c)^2 is unexplained by our model. A possible explanation in terms of a nonsense wrong signature zero of the \(B \) amplitude appears to be unattractive both on experimental grounds and the rather good general agreement with \(\pi-B \) exchange degeneracy. The fit of our model to reaction (2) at 3.7 GeV/c is shown in Fig. 3b (see also Fig. 1b). The parameters \(\alpha'(0) \) and \(s_0 \) are fixed to the values found for reaction (1), so that the only parameter varied in the fit is \(G^2 \) (the sign of \(\text{Exp}(-i\pi \alpha) \) is reversed in Eq. (5) for \(B \) exchange). This fit was performed over the range \(0.2 \leq |t'| \leq 1.4 \) (GeV/c)^2 to eliminate complications due to the dip and possible \(p-\omega \) interference. While some systematic deviations are seen at the largest \(t' \) values, the overall agreement is good (\(\chi^2 = 16.3 \) for 15 degrees of freedom), as expected from the agreement shown in Fig. 3a.

From the fit to the \(\sigma_0^- (a\Delta) \) distribution at 3.7 GeV/c, we find that \(G^2 = 0.94 \pm 0.15 \). Combining this result with the previous one for \(p\Delta \) production we get \(A = 0.49 \pm 0.06 \) which suggests possible breaking of either SU(3) or
exchange degeneracy.13 A further consequence of our analysis is that the μΔ cross section is expected to fall more rapidly with energy than the ρΔ cross section. This effect arises kinematically from the decrease of $|t_{\text{min}}|$ as s increases, and is evident from the form of Eq. (6). The predicted differential cross section for μΔ at 8 GeV/c is compared to the data11 in the lower part of Fig. 3b, and is seen to reproduce the experimental energy fall-off.

An independent experimental test of our model may be made utilizing available data on reaction (3). To incorporate possible symmetry breakings we have chosen to use the experimental coupling constants determined by the pionic decay of K^* and Δ^{++}, and take $G^2 = 0.38$. The only changes in Eqs. (4-5) are thus the appropriate different masses and signatures, retaining the values of $\alpha(t)$ and s_0 determined in reaction (1). These predictions, shown in Fig. 4, are seen to agree rather well with the data, especially so in view of the lack of arbitrariness in the model.

The model proposed for $\nu^0\Delta^{++}$ production is seen to be in quantitative agreement with experiment. We have considered alternative models to analyze the uniqueness of our conclusions. If the exchanged pion were a fixed pole, or had a trajectory which is almost flat,7 then a zero at $|t'| \approx 0.75 (\text{GeV/c})^2$ is not expected. In particular we note that a form factor1 correction does not produce such a dip. In our opinion the data analysis of Wolf1 is somewhat misleading as he considers the full differential cross sections which contain contributions from natural parity exchanges which cannot be neglected.6 Such contributions cannot be reproduced by an OPE amplitude as long as it is modified by a form factor only. Additionally, a flat trajectory does not motivate a possible $\pi\pi$ exchange degeneracy which is strongly indicated by the data.

Hence we argue that the shrinkage observed in ρΔ production is a consequence
of a π trajectory with a slope \(\sim 1 \text{ (GeV/c)}^{-2} \), rather than a pure kinematic effect.\(^1\)

Another suggested model\(^4\) with only Regge poles considers contributions from an \(M = 1 \) pion, its conspirator and a strongly coupled \(A_1 \). While this model provides a good fit to data from reaction (1) at small \(t' \) values, no structure near \(t' \equiv -0.75 \text{ (GeV/c)}^2 \) is suggested. Furthermore the fitted \(A_1 \) trajectory is quite different from the π trajectory, so that it may be difficult to construct an exchange degenerate scheme for this model. It is worth noting that we have neglected an \(A_1 \) exchange contribution in the present model, indicating that the \(\pi A_1 \Delta \) coupling may be rather small.

We have also considered the possibility that the zero observed in \(\sigma_0^{-}(p\Delta) \) is due to the optical properties of the scattering amplitude.\(^16\) Such a zero would be expected near \(t' = -0.6 \text{ (GeV/c)}^2 \) if the net s-channel helicity flip is one. Present data cannot rule out such a correlation. However, this interpretation leads to some difficulties. One expects that the small pion mass would shift the dip to \(|t'| \) values smaller than 0.6 \(\text{ (GeV/c)}^2 \), and not larger as seen experimentally. It is possible to circumvent this complication by associating the dip with \(A_1 \) exchange rather than with π exchange. However, one would then expect the B contribution to \(\omega \Delta \) to show a similar dip which is not observed experimentally.\(^6\) We comment also that the dip observed in \(\rho_{11} + \rho_{1-1} \) near \(t' = -0.65 \text{ (GeV/c)}^2 \) for reaction (2) contradicts the simple optical picture.

The present model offers no explanation for the observed forward peaks in the photoproduction of charged pions and np charge exchange. Modification of the OPE Regge amplitude as used in our calculation by appropriate cuts (absorption) does provide a good fit\(^5\) to these problematic reactions. It
is not entirely clear why such cut corrections are not required in the analysis of reactions (1-3), although we note that there is no s-channel structure in K\(^+\)p reactions and relatively little in \(\pi^+\)p reactions. A better understanding of the role of Regge cuts is therefore crucial to a complete parametrization of the OPE amplitude.

The authors gratefully acknowledge many useful discussions with Gerson Goldhaber, Keith Barnham, Donald Coyne, and Bronwyn Hall.

REFERENCES

*Work supported by the U. S. Atomic Energy Commission.
†On leave from Tel-Aviv University, Tel-Aviv, Israel.
‡Supported by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under Grant No. AF-AFOSR-68-1471.
7. For a recent review of the literature, see G. E. Hite, Rev. Mod. Phys. 41, 669 (1969).

10. The fits reported in this Letter were performed also with this alternative parametrization and found to be equally acceptable.

13. Our analysis supports a strong exchange degeneracy in which the π and B lie on the same trajectory, have the same threshold (and pseudothreshold) factors, and have the same t dependence for their residues. The breaking of exact exchange degeneracy (or SU(3) invariance) occurs only via an overall t-independent scale factor. While the existence of such a scale factor may be associated with SU(3) breaking for the coupling constants of the exchanged π and B (retaining exact exchange degeneracy), the comparison is not straightforward due to the different dimensions of the two couplings.

FIGURE LEGENDS

Fig. 1. σ^{-}_{0} as a function of $|t'|$ at 3.7 GeV/c. (a) $\rho^{0}\Delta^{++}$; (b) $\omega^{0}\Delta^{++}$.

Fig. 2. $\sigma^{-}_{0}(\rho^{0}\Delta^{++})$ as a function of $|t'|$ at 3.7, 8.0 and 13.1 GeV/c.

Fig. 3. (a) $\sigma^{-}_{0}(\rho^{0}\Delta^{++})/\sigma^{-}_{0}(\omega\Delta)$ as a function of $|t'|$. (b) $\sigma^{-}_{0}(\omega^{0}\Delta^{++})$ as a function of $|t'|$ at 3.7 and 8.0 GeV/c.

Fig. 4. $\sigma^{-}_{0}(K^{*0}\Delta^{++})$ as a function of $|t|$ at 2.53, 2.76, 3.20 and 5.0 GeV/c.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.