Title
In vitro chemosensitivities of human tumor stem cells to the Phase II drug 4'-(9-acridinylamino)methanesulfon-m-anisidide and prospective in vivo correlations.

Permalink
https://escholarship.org/uc/item/1gt3z132

Journal
Cancer research, 42(11)

ISSN
0008-5472

Authors
Ahmann, F R
Meyskens, F L, Jr
Moon, T E
et al.

Publication Date
1982-11-01

Peer reviewed
In Vitro Chemosensitivities of Human Tumor Stem Cells to the Phase II Drug 4′-(9-Acridinylamino)methanesulfon-m-anisidine and Prospective in Vivo Correlations

Frederick R. Ahmann, Frank L. Meyskens, Jr., Thomas E. Moon, Brian G. M. Durie, and Sydney E. Salmon

Section of Hematology/Oncology and Cancer Center Division, The University of Arizona Health Sciences Center, Tucson, Arizona 85724

ABSTRACT

A potential application of the human tumor stem cell colony assay is to guide Phase II clinical investigations by identifying classes of tumors (or individual patients) which are sensitive in vitro to a new antitumor compound. We have tested human tumor stem cells from 140 tumor biopsies representing 20 different tumor types for chemosensitivity to the Phase II drug 4′-(9-acridinylamino)methanesulfon-m-anisidine. In vitro sensitivity was defined as a reduction in the number of tumor colony-forming cells to 30% of the control or less after a 1-hr exposure to one-tenth of the pharmacologically achievable plasma concentration of 4′-(9-acridinylamino)methanesulfon-m-anisidine. In vitro sensitivity was found in 29 cases: non-Hodgkin's lymphoma (2 of 2); cervical carcinoma (1 of 1); sarcoma (3 of 6); neuroblastoma (1 of 2); acute myelogenous leukemia (6 of 16); chronic myelogenous leukemia (1 of 3); melanoma (8 of 34); uterine carcinoma (1 of 5); lung carcinoma (1 of 9); ovarian carcinoma (4 of 36); and breast carcinoma (1 of 11). Prospective in vitro-in vivo correlations in eight patients with various tumor types showed that three of three patients sensitive in vitro to 4′-(9-acridinylamino)methanesulfon-m-anisidine responded in vivo, while five of five patients resistant in vitro had no clinical response. The results provide support for further evaluation of the utility of the human tumor stem cell colony assay for targeting Phase II clinical trials.

INTRODUCTION

In 1977, Hamburger and Salmon (15) reported an in vitro assay that permitted the growth of human tumors in soft agar. This assay has subsequently been modified and successfully utilized to obtain tumor colony formation in a wide variety of human tumor types (23). A variety of morphological, cytogenetic, and biomarker studies have shown that the colonies are composed of tumor cells. One of the major applications of this assay has been to quantify the effects of anticancer drugs. The combined experience in 316 in vitro-in vivo correlative trials using standard cytotoxic drugs at the University of Arizona and the University of Texas at San Antonio has demonstrated that if a drug reduces tumor colony formation less than 70%, clinical progression occurs over 95% of the time (2, 10, 18, 24, 31).

Each year, approximately 15,000 synthetic compounds and 400 purified natural products undergo anticancer screening with mouse tumor models at the Division of Cancer Treatment of the National Cancer Institute (9). In this study, we have focused on the Phase II drug m-AMSA, an amino acridine derivative currently in clinical investigation. This compound demonstrated a wide spectrum of activity in mouse tumors, including L1210 and P388 murine leukemias, B16 melanoma, C3H and CD8F, mammary tumors, and Colon Tumors 26 and 38 (34). Over the last 6 years, extensive Phase I and II clinical trials have been ongoing.

The high frequency of successful prediction of in vivo responses for both resistance and sensitivity to standard cytotoxic drugs suggests that the human tumor stem cell colony assay may allow for targeting of Phase II clinical trials. Accordingly, we have analyzed our experience with the Phase II drug m-AMSA in the human tumor stem cell colony assay. We report here our total in vitro experience with m-AMSA and 8 prospective in vitro-in vivo correlations.

MATERIALS AND METHODS

Patient Material and Biopsy Specimens. All patients in this study were seen, evaluated, and treated at the University of Arizona Cancer Center or the Tucson Veterans Administration Hospital. All biopsy specimens were obtained by surgical excision after informed, written consent and prepared for culture as described previously (15, 25).

Briefly, tumor biopsies were placed in a small amount of culture media in a sterile container and minced to approximately 1-mm square pieces using scalpels and then passed through sterile sieves. The resulting suspension was passed through needles of decreasing size and washed once with McCoy’s Medium 5A containing 10% heat-inactivated fetal calf serum.

Drug Assay. A stock solution of m-AMSA (0.1 mg/ml) was prepared in sterile-buffered water and stored at −70°C. Dilutions were made in medium for cell incubation. Single-cell tumor suspensions were transferred to tubes and adjusted to a concentration of 5 × 10⁶ cells/ml with the appropriate m-AMSA dilution or control. Each tumor was tested, if possible, with a minimum of 3 concentrations of m-AMSA including at least one dose calculated as equal to or less than one-tenth of an achievable 1-hr concentration of a drug × time (C x t) level in vivo (19). The final drug concentrations ranged from 0.0001 to 10 μg/ml. After a 1-hr incubation, the cells were centrifuged at 150 x g for 10 min, washed twice in medium, and plated in 35-mm Petri dishes in 1 ml of 0.3% agar layer over a 1 ml 0.5% agar underlayer containing an admixture of fetal bovine serum and growth factors (25). For assays of acute nonlymphocytic leukemia cells, the blast cell clonogenic assay designed by Buick et al. (4) was utilized, with methylcellulose as the semisolid support.

Plates were cultured in an incubator at 37°C in a humidified 7.5% CO₂ environment. Plates were examined serially with an inverted-phase...
microscope for evidence of cluster or colony formation. This procedure included an examination of the final plate for clumps of cells that might be confused with colonies. In addition, a control plate was fixed and preserved for future comparative purposes if needed. Colonies were defined as aggregates of greater than 30 cells. At least 20 tumor colonies/plate were required in the control plates to assure an adequate number for the assessment of drug effect. Plates were counted when sufficient colonies were present (10 to 17 days). The average cloning efficiency was 0.0327% (range, 0.0039 to 0.1632%) (see Table 1).

Phase II Clinical Trial. Simultaneously, a broad phase II clinical trial using m-AMSA was conducted at the University of Arizona Cancer Center and the Tucson Veterans Administration Hospital. m-AMSA was administered as a single agent at a dose of 120 mg/sq m i.v. every 28 days. Patients were eligible to receive m-AMSA if they had measurable lesions, had failed standard therapy, and had a life expectancy of at least 8 weeks. Response to therapy was described as follows: complete response, the disappearance of all measurable lesions lasting at least 4 weeks; partial response, a decrease by at least 50% of all measurable lesions lasting at least 4 weeks; mixed response, a decrease in some measurable lesions with other lesions progressing or demonstrating a response. If a patient failed to achieve a tumor regression after 2 courses of m-AMSA, the drug was discontinued, and the patient was taken off study. In patients who achieved a partial response to m-AMSA, the drug was continued until disease progression.

Statistical Methods. All assay data were stored on a Wang 2200-C laboratory computer disc file. Cloning efficiencies were calculated from the total number of cells plated and were not corrected for the proportion of nontumor cells in the sample. This correction was not made, as normal cells do not form colonies in this system. All tumor specimens have all grossly normal tissue removed prior to the preparation of a single-cell suspension. Nevertheless, relative plating efficiencies are difficult to compare, because the percentage of normal cells varies from biopsy to biopsy. For the graphic presentation, the mean of triplicate observations of the survival of TCFU for each patient was plotted versus drug concentration.

Survival of TCFU at one-tenth the calculated pharmacologically achievable C x f (1 hr) ("cutoff" concentration) was determined. The cutoff concentration used was 0.1 μg/ml. On the basis of experiments with ovarian cancer and multiple myeloma, patients were classified as sensitive if survival of TCFU was less than 30% at the cutoff concentration and resistant if greater than 30% (2, 10). This simple approach to classifying in vitro response has developed from a careful analysis of the more complex 'area under the curve' (19). Due to the fact that the critical concentration of a drug in the human tumor stem cell system which can be used to predict "sensitivity" can vary from drug to drug, it is essential in working with new drugs to utilize several different concentrations of drug and to plot colony formation at several concentrations. After adequate clinical correlation is available, the critical concentration can then be determined accurately.

RESULTS

Effect of m-AMSA on Tumor Colony Formation. Stem cells from 140 tumor biopsy specimens demonstrated greater than 20 colonies/plate and were tested against m-AMSA. Represented among these 140 specimens were 20 different tumor types (Table 1). Nine or more specimens were tested in breast carcinoma, lung carcinoma, acute myelogenous leukemia, ovarian carcinoma, and melanoma, and 4 or more specimens were tested in sarcomas, bladder carcinoma, uterine carcinoma, and colon carcinoma. The percentage of tumor specimens which had a 70% or greater inhibition of colony formation after exposure to m-AMSA at concentrations of 0.1 μg/ml or less are presented in Table 1. The in vitro response rate was higher (33% or more) in non-Hodgkin's lymphoma, acute myelogenous leukemia, chronic myelogenous leukemia, neuroblastoma, and sarcomas.

Prospective Correlation of in Vitro-In Vivo Effects of m-AMSA. Eight evaluable patients in the clinical trial also underwent biopsy and had successful human tumor stem cell colony formation prior to the initiation of therapy with m-AMSA. Chart 1 depicts the results and correlations as survival-concentration curves; the tumor specimen from the patient with papillary thyroid carcinoma had only enough cells to test one concentration of m-AMSA. The concentration of 1 μg/ml was selected prior to knowledge of the clinically achievable levels of m-AMSA. The tumor specimen from the patient with lymphoma

Table 1

<table>
<thead>
<tr>
<th>Tumor types</th>
<th>Mean plating efficiency (%)</th>
<th>No. of sensitive in vitro</th>
<th>95% confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Hodgkin's lymphoma</td>
<td>0.0134</td>
<td>1</td>
<td>46, 100</td>
</tr>
<tr>
<td>Cervical carcinoma</td>
<td>0.0048</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>0.0086</td>
<td>3</td>
<td>15, 87</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>0.0048</td>
<td>1</td>
<td>30, 95</td>
</tr>
<tr>
<td>Acute myelogenous leukemia</td>
<td>0.1256</td>
<td>6</td>
<td>38, 62</td>
</tr>
<tr>
<td>Chronic myelogenous leukemia</td>
<td>0.1632</td>
<td>1</td>
<td>33, 78</td>
</tr>
<tr>
<td>Melanoma</td>
<td>0.0164</td>
<td>8</td>
<td>24, 43</td>
</tr>
<tr>
<td>Uterine Carcinoma</td>
<td>0.0246</td>
<td>1</td>
<td>20, 63</td>
</tr>
<tr>
<td>Lung carcinoma</td>
<td>0.0222</td>
<td>1</td>
<td>11, 53</td>
</tr>
<tr>
<td>Ovarian carcinoma</td>
<td>0.0140</td>
<td>4</td>
<td>11, 32</td>
</tr>
<tr>
<td>Breast carcinoma</td>
<td>0.0125</td>
<td>1</td>
<td>9, 42</td>
</tr>
<tr>
<td>Bladder carcinoma</td>
<td>0.0333</td>
<td>0</td>
<td>0, 43</td>
</tr>
<tr>
<td>Colon carcinoma</td>
<td>0.0148</td>
<td>0</td>
<td>0, 50</td>
</tr>
<tr>
<td>Thyroid carcinoma</td>
<td>0.0142</td>
<td>0</td>
<td>0, 60</td>
</tr>
<tr>
<td>Pancreatic carcinoma</td>
<td>0.0041</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prostatic carcinoma</td>
<td>0.0106</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Myeloma</td>
<td>0.0053</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brain</td>
<td>0.0039</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Squamous cell carcinoma of the head and neck</td>
<td>0.0044</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Testicular carcinoma</td>
<td>0.0010</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Numbers in parentheses, percentage.

In vitro sensitivity of tumor stem cells to m-AMSA at 0.1 μg/ml

Sensitivity was defined as a 70% or greater inhibition of tumor colony formation when compared to controls. Plating efficiency was calculated as the number of colonies formed on controls as a percentage of the total number of nucleated cells inoculated.
demonstrated a significant decrease in colony formation inhibition at the 1-µg/ml drug concentration compared to the 0.1-µg/ml drug concentration. This is a rare phenomenon which has unclear significance.

The 5 patients who demonstrated less than 70% colony-forming inhibition after a 1-hr exposure to 0.1 µg/ml of m-AMSA in vitro all failed to respond to m-AMSA in vivo in the clinical trial. All 3 patients who showed a reduction in survival of colony-forming cells to 30% or less after a 1-hr exposure to m-AMSA (0.1 µg/ml) had a mixed or partial clinical response to the drug in vivo. Two of the 3 patients who were sensitive to m-AMSA in vitro had partial responses to the drug. A patient with poorly differentiated nodular lymphoma had a greater than 50% shrinkage of his enlarged lymph nodes, which lasted 3 months, and a patient with a large pelvic mass secondary to cervical carcinoma achieved a greater than 50% reduction in tumor volume, which lasted 2 months. The other response was in a patient with metastatic melanoma who had a greater than 50% reduction in size of a grossly enlarged liver together with improved liver function tests, while a neck mass enlarged (mixed response). The tumor specimen from this patient was obtained from an excisional biopsy of a separate lymph node metastasis.

DISCUSSION

Correlative clinical trials have demonstrated that in vitro chemosensitivity to standard cytotoxic compounds in the tumor stem cell colony assay can predict clinical sensitivity or resistance with a high degree of accuracy (2, 10, 18, 24, 31). The in vitro experience with the assay reported here involved 20 different tumor types and suggested that m-AMSA may have clinical activity in leukemia. Our in vitro studies also suggest that there may not be significant antitumor activity for m-AMSA in lung carcinoma, breast carcinoma, and ovarian carcinoma. The data available on other tumor types tested in vitro are on a very small number of patients, and no firm conclusions can be drawn. m-AMSA has been the subject of extensive Phase I and II clinical trials since the late 70's. Only a limited number of Phase II clinical trials using m-AMSA have been published in detail. m-AMSA appears to have minimal activity in colorectal carcinoma, lung cancer, hypernephroma, hepatoma, head and neck carcinoma, breast carcinoma, prostate cancer, and sarcoma (6–8, 11–14, 16, 20, 21, 26, 27, 29, 30, 35). The clinical utility of m-AMSA in non-Hodgkin's lymphoma is unclear, but the drug appears to be active in acute leukemia (3, 5, 28, 33).

The in vitro results in melanoma warrant separate comment. The chemosensitivity results as reported here in 34 human melanoma specimens would have predicted an in vivo sensitivity (22); (c) metastatic melanoma in any one patient may represent a particular heterogeneous tumor with several coexistent clones of malignant cells, each with differing chemosensitivity patterns. The frequency of response in vivo, in fact, supports this latter possibility. Additional in vitro studies, in vivo-in vitro correlations, and additional pharmacological studies in patients with melanoma treated with m-AMSA will be required to select among these alternatives.

With regard to the prediction of chemosensitivity to m-AMSA, the 8 prospective in vitro/in vivo trials reported in this study, while small in number, showed an excellent (100%) correlation with the human tumor stem cell colony assay results. These correlations support the reliability of the human tumor stem cell colony assay to predict in vivo responses to Phase II agents; however, since only partial or mixed responses were achieved, such responses were not of major clinical significance. It appears probable that more stringent criteria for in vitro chemosensitivity (e.g., lower TCFU survival cutoff) may be required to predict complete responses successfully.

The major objective of Phase II clinical trial is to determine if a new agent has anticancer activity in humans. As currently conducted by the Division of Cancer Treatment of the National Cancer Institute, Phase II clinical trials have a number of problems (32). Evaluations are performed on extensively pretreated patients. A limited number of tumor types are tested. The process is expensive, it takes from 3 to 7 years to complete, and patients incur significant morbidity with a low probability of benefit. The human tumor stem cell colony assay provides a new methodology with which to evaluate potential Phase II agents and may allow identification of tumor types and specific patients who might benefit from a new drug. Our in vitro studies of m-AMSA together with 8 in vivo correlations support further investigations of this approach.

REFERENCES

In Vitro Chemosensitivities of Human Tumor Stem Cells to the Phase II Drug 4-(9-Acridinylamino)methanesulfon-\textit{m}-anisidine and Prospective \textit{in Vivo} Correlations

Frederick R. Ahmann, Frank L. Meyskens, Jr., Thomas E. Moon, et al.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/42/11/4495

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.